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The SABR model is popularly used by practitioners in the financial industry due to a fairly simple 
implied volatility formula but it wouldn’t capture the mean reverting nature of the volatility as a 
drawback. This paper proposes a stochastic-local volatility model that unifies SABR volatility and 
mean reverting stochastic volatility for pricing derivatives. We obtain an explicit pricing formula 
in convolution form through the combination of asymptotics and the Mellin transform method. 
The formula allows us to compute the derivative price in terms of a single integral calculation 
(Mellin convolution) instead of a double integral. Further, we obtain a closed-form pricing formula 
that can be calculated by using the three Greeks (Delta, Gamma, and Speed) of the Black-Scholes 
derivative price in a reasonably practical situation. The accuracy of the derived formula is tested 
through Monte Carlo simulation. The validity of the formula is demonstrated through an empirical 
analysis of a foreign exchange option, as incorporating a mean-reverting volatility feature into the 
SABR model aids in calibrating the model to real market instruments by reproducing the U-shaped 
structure of the implied volatility.

1. Introduction

The SABR model is one of the stochastic-local volatility models popularly used by practitioners, especially in the interest rate 
derivative and foreign exchange markets, in an attempt to capture the volatility smile. The name stands for ``stochastic 𝛼 (alpha), 𝛽
(beta), 𝜌 (rho)'', referring to the parameters of the stochastic differential equations (SDEs)

𝑑𝑆𝑡 = 𝑋𝑡 𝑆
𝛽

𝑡
𝑑𝑊 𝑠

𝑡
,

𝑑𝑋𝑡 = 𝛼 𝑋𝑡 𝑑𝑊 𝑥
𝑡

, 𝑑⟨𝑊 𝑠,𝑊 𝑥⟩𝑡 = 𝜌 𝑑𝑡
(1.1)

which was developed by Hagan et al. [1], where 𝑊 𝑠
𝑡

and 𝑊 𝑥
𝑡

are standard Brownian motions and 𝛼 (vol-of-vol), 𝛽 (skewness) and 
𝜌 (correlation between the underlying and its volatility) are assumed to satisfy 𝛼 > 0, 𝛽 > 0 and −1 < 𝜌 < 1, respectively. Given the 
underlying of a considered derivative, 𝑋𝑡 controls the volatility level of the underlying. In particular, the initial volatility 𝑋0 controls 
the height of the ATM implied volatility level. The volatility of volatility 𝛼 controls the implied volatility curvature while both 𝛽
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and 𝜌 control the slope of the implied volatility skew. The parameter 𝛽 is often fixed before the calibration of the other parameters 
(cf. West [2]) because of the similar effect on the skew. There is no exact closed-form solution for the probability distribution of 
the process 𝑆𝑡 but there is an asymptotic solution in the small parameter 𝑇 𝛼2 in terms of implied volatility, where 𝑇 is the time to 
expiration of a European option.

There are variants and extensions of the SABR model due to the unrealistic assumption that the variance process 𝑋𝑡 in (1.1) is 
a geometric Brownian motion. One of them is the ‘𝜆− SABR model’ of Henry-Labordère [3] in which a mean-reverting drift term is 
integrated in the SDE for 𝑋𝑡. By replacing 𝑆𝛽

𝑡
with |𝑆𝑡|𝛽 in (1.1), Antonov et al. [4] considered the ‘free boundary SABR model’ not 

bounding how negative interest rates can become. In addition, the standard SABR model can be extended by making the parameters 
time-dependent, as studied by Van Der Stoep et al. [5] and Guerrero and Orlando [6]. Cui et al. [7] considered a general stochastic

local volatility framework that covers the SABR model and some of its variants.

The SABR model is reduced to the CEV model that Cox introduced [8] when 𝛼 merges to 0. So, it is a stochastic generalization of 
the CEV model with the skewness parameter 𝛽. The parameter 𝛽 is the central feature of the CEV model and controls the relationship 
between the underlying price and its volatility. We commonly observe 𝛽 < 1 (the leverage effect) in equity markets (cf. Yu [9] for 
example), while 𝛽 > 1 (the inverse leverage effect) in commodity markets (cf. Geman and Shih [10] for example). The special case 
𝛽 = 1 becomes the geometric Brownian motion as in the Black-Scholes model [11]. Another stochastic generalization of the CEV 
model is the so-called SVCEV model developed by Choi et al. [12] based on the observation that volatility will eventually return to 
the long-run mean or average level of the entire dataset (cf. Fouque et al. [13] for example). So, it is similar to the 𝜆− SABR model, but 
the geometric Brownian motion 𝑋𝑡 in the SABR model is replaced by a mean-reverting Ornstein-Uhlenbeck process. In particular, the 
mean reversion rate is high enough to apply the averaging theory developed by Fouque et al. [14] and obtain an asymptotic solution 
with a leading-order term given by the CEV formula for European derivatives. Here, the averaging theory could be understood as an 
asymptotic expansion with the leading-order and first correction terms obtained by the Law of Large Numbers and the Central Limit 
Theorem, respectively. This is related to the asymptotic diffusion limit theory with a small parameter studied by Khasminskii [15], 
Papanicolaou and Kohler [16], Cerrai [17], and Bao et al. [18].

This paper blends the SABR volatility and the SVCEV volatility so that the SABR volatility is equipped with a mean reversion 
property in the unified model. Volatility is recognized as mean reverting in many derivative-pricing models, as this feature aids in 
calibrating the model to real-market instruments. The volatility means reversion property was observed in an empirical analysis of 
high-frequency S&P 500 index data as shown by Fouque et al. [13], which confirms that volatility reverts slowly to its mean compared 
to tick-by-tick fluctuations of the S&P 500 index value, but it is a fast mean reverting when looked at over the time scale of a derivative 
contract. Bali and Demirtas [19] found empirical evidence indicating that conditional variance, log-variance, and standard deviation 
of S&P 500 index futures returns are pulled back to some long-term average level over time. On the other hand, Lee [20] used a 
mean reverting volatility framework to model commodity price dynamics and developed a generic procedure for model calibration. 
In general, it is very difficult to find a derivative price formula explicitly under a stochastic-local volatility model, resulting in the loss 
of some analytic tractability. Even if a solution formula is obtained for the derivative price, double integration is required to calculate 
the formula in most cases. However, since the SABR and SVCEV models provide explicit asymptotic solution formulas, we are able 
to obtain an easy-to-compute valuation formula for European derivatives under the unified SABR and SVCEV model. The formula is 
expressed in convolution form, so only one integration is required to calculate the formula. As a subsequent result of the formula, 
we obtain a closed-form pricing formula that can be calculated by taking a certain combination of the Greeks (Delta, Gamma, and 
Speed) of the Black-Scholes derivative price under a practically reasonable assumption for the elasticity of variance. This is a very 
useful result from a computational point of view. We provide two specific examples (European vanilla option and variance swap) 
of calculating the derivative price based on the formula. Another advantage of our formula is that an alternative expression of the 
known pricing formula under some local or stochastic volatility model can be reproduced in reduced form. We verify the validity of 
the unified formula through an empirical analysis of foreign exchange options. In particular, the U-shaped structure of the implied 
volatility can be approximated by our result.

The remainder of the paper is organized as follows. In Section 2, we write the unified model of the SABR and SVCEV volatilities. 
In Section 3, we derive an asymptotic pricing formula for European derivatives in terms of Mellin convolution. In addition, we obtain 
an approximate closed-form expression near zero elasticity of variance (in terms of the Black-Scholes price). Section 4 provides two 
specific cases, European vanilla option and variance swap, as an application of our pricing formula. In Section 5, we demonstrate 
the performance of the proposed model in real-world scenarios in terms of implied volatility using the GBP/USD options. Finally, we 
give some concluding remarks in Appendix A.

2. Model and derivative pricing

2.1. Model

In this paper, we introduce a new stochastic-local volatility model that blends SABR volatility with SVCEV volatility. Since the 
SABR pricing formula is available under the condition that 𝑇 𝛼2 is small, we change the original notation 𝛼 in the SABR model (1.1) 
to a small parameter 

√
𝛿. In addition, we use the notation 𝜃 instead of 𝛽. Then our model for the price dynamics of risky assets is 

given by
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Table 1
Reduced models depending on the specification of the model pa

rameters 𝜃, 𝜖 and 𝛿. Here, SV𝑓 stands for stochastic volatility of fast 
variation, and MSV and CEV are the initials of multiscale stochastic 
volatility and constant elasticity of variance, respectively.

Parameter specification : Reduced models 
1 − 𝜃, 𝜖, 𝛿 → 0 : Black-Scholes 𝜖, 𝛿 → 0 : CEV 
1 − 𝜃, 𝛿 → 0 : SV𝑓 1 − 𝜃 → 0 : MSV 
𝜖 → 0 : SABR 𝛿 → 0 : SVCEV 

𝑑𝑆𝑡 = 
(
𝑋𝑡 + 𝑓 (𝑌𝑡)

)
𝑆𝜃

𝑡
𝑑𝑊 𝑠

𝑡
,

𝑑𝑋𝑡 = 
√

𝛿 𝑋𝑡 𝑑𝑊 𝑥
𝑡

,

𝑑𝑌𝑡 = 1
𝜖

𝛼(𝑌𝑡) 𝑑𝑡+ 1 √
𝜖

𝛽(𝑌𝑡) 𝑑𝑊
𝑦

𝑡
,

(2.1)

where 𝜃, 𝜖 and 𝛿 are real numbers satisfying 0 < 𝜃 < 1 and 0 < 𝛿, 𝜖 ≪ 1. 𝑊 𝑠, 𝑊 𝑥 and 𝑊 𝑦 are Brownian motions defined on a filtered 
probability space (Ω, ,𝑡,ℚ) and they have a correlation structure expressed as

𝑑⟨𝑊 𝑠,𝑊 𝑥⟩𝑡= 𝜌𝑠𝑥𝑑𝑡, 𝑑⟨𝑊 𝑠,𝑊 𝑦⟩𝑡= 𝜌𝑠𝑦𝑑𝑡, 𝑑⟨𝑊 𝑥,𝑊 𝑦⟩𝑡= 𝜌𝑥𝑦𝑑𝑡.

The functions 𝑓 and 𝛼 and 𝛽 are assumed to satisfy the smooth and boundedness conditions necessary for the stochastic differential 
equation for 𝑆𝑡 to have a unique solution. The time horizon is restricted to the interval [0, 𝜏) where 𝜏 ∶= min{𝑡 > 0 ∶ 𝑆𝑡 = 0}. In 
this paper, the process 𝑌𝑡 is chosen to be ergodic (mean-reverting) and to have an invariant distribution denoted by Φ so that the 
averaging theory of Fouque et al. [14] can be applied. 𝑌𝑡 can be, for example, the Ornstein-Uhlenbeck process defined by 𝛼(𝑦) = 𝑚−𝑦

and 𝛽(𝑦) = 𝜎 and the CIR process defined by 𝛼(𝑦) = 𝑚−𝑦 and 𝛽(𝑦) = 𝜎
√

𝑦 for some positive constants 𝑚 and 𝜎. Throughout the paper, 
we frequently use the notation

⟨𝑔(⋅)⟩ ∶= ∫ 𝑔(𝑦) Φ(𝑦) 𝑑𝑦 (2.2)

for the average of the function 𝑔 with respect to the invariant distribution Φ. We call (2.1) the unified model or the SABR-SVCEV 
model.

There are two small parameters in the unified model (2.1). The small parameter 𝛿 suggests that the SABR approximation formula for 
implied volatility is still expected to be available even if the time to maturity is not that short. On the other hand, the small parameter 
𝜖 implies that the volatility process is speeded up by rescaling time 𝑡 in terms of 𝜖. The empirical reason for this participation is 
that volatility is fast mean reverting on the time scale of a derivative contract, which was confirmed by the study by Fouque et 
al. [13] based on an analysis of high-frequency S&P 500 index data. The fast mean reverting volatility method has also been used 
for interest rate derivatives to produce a better fit of the yield curve (Cotton et al. [21], for example) and portfolio optimization 
to accurately estimate the distribution of the loss from a large portfolio (Hambly and Kolliopoulos [22], for example). However, 
technically, the small parameter 𝜖 plays a role in the application of the averaging principle to the derivation of a derivative price 
formula. The volatilities are sped up towards a limiting distribution so that asymptotic expansion with a few numbers of terms such 
as the leading order and first correction terms would be a reasonable approximation for the derivative price. Here, the leading-order 
and first correction terms can be thought of as the results of the Law of Large Numbers and the Central Limit Theorem in discrete 
probability language when 1∕𝜖 is replaced by the natural number 𝑛. The idea has a long history that can be traced back to the original 
work of Khasminskii [15] for stochastic differential equations with a small parameter.

One can notice that if some of the parameters in the model (2.1) vanish, then previously known models can be recovered. For 
example, if 𝛿 → 0, then the model is reduced to the SVCEV model. If 𝜖 → 0, then it becomes the SABR model. If 𝜃 → 1 and 𝜖, 𝛿 → 0, 
then it converges to the Black-Sholes model. See the reduced models listed in Table 1.

2.2. Derivative price formula

From the Feynman-Kac theorem (cf. Karatzas and Shreve [23]), the derivative price 𝑃 𝜖,𝛿(𝑡, 𝑠, 𝑥, 𝑦), defined by the conditional 
expectation

𝑃 𝜖,𝛿(𝑡, 𝑠, 𝑥, 𝑦) = 𝐸ℚ[ℎ(𝑆𝑇 ) | 𝑆𝑡 = 𝑠,𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦] (2.3)

under a risk-neutral probability measure ℚ, satisfies a final value problem expressed by

𝜖,𝛿𝑃 𝜖,𝛿(𝑡, 𝑠, 𝑥, 𝑦) = 0, 0 ≤ 𝑡 < 𝑇 ,

𝑃 𝜖,𝛿(𝑇 , 𝑠, 𝑥, 𝑦) = ℎ(𝑠),
(2.4)

where ℎ is the payoff of the considered derivative and 𝜖,𝛿 is a multiscale differential operator given by
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𝜖,𝛿 = 1
𝜖
0 +

1 √
𝜖
1 +2 +

√
𝛿

𝜖
3 +

√
𝛿1 + 𝛿2,

0 ∶= 𝛼(𝑦) 𝜕𝑦 +
1
2

𝛽2(𝑦) 𝜕𝑦𝑦,

1 ∶= 𝜌𝑠𝑦 (𝑥+ 𝑓 (𝑦)) 𝛽(𝑦) 𝜃,1𝜕𝑦,

2 ∶= 𝜕𝑡 +
1
2
(𝑥+ 𝑓 (𝑦))22𝜃,2,

1 ∶= 𝜌𝑠𝑥 (𝑥+ 𝑓 (𝑦)) 𝜃,1𝑥
1,1,

2 ∶=
1
2
𝑥

2,2,

3 ∶= 𝜌𝑥𝑦 𝛽(𝑦) 𝑥
1,1𝜕𝑦,

(2.5)

where

𝑚,𝑛 ∶= 𝑠𝑚𝜕𝑠𝑛 , 𝑥
𝑚,𝑛

∶= 𝑥𝑚𝜕𝑥𝑛 . (2.6)

Since the PDE problem (2.4) is a singular perturbation problem, we are interested in an asymptotic solution of the form

𝑃 𝜖,𝛿(𝑡, 𝑠, 𝑥, 𝑦) =
∞ ∑

𝑖,𝑗=0
(
√

𝛿)𝑖(
√

𝜖)𝑗 𝑃𝑖𝑗 (𝑡, 𝑠, 𝑥, 𝑦). (2.7)

In particular, our goal is to obtain the leading order and the first correction terms in 𝛿 and 𝜖. Speaking about an expansion with 
respect to 𝜖, the leading term 𝑃𝑖0 is the value given under the SABR model, and the first correction term 𝑃𝑖1 can be thought of as a 
result of the Central Limit Theorem (when 𝜖 is replaced by 1∕𝑛).

Following the multiscale asymptotic analysis of Fouque et al. [14] and using the operator CEV defined by

CEV = 𝜕𝑡 +
1
2

𝜎̄2
𝑓
(𝑥) 2𝜃,2,

𝜎̄𝑓 (𝑥) ∶= 
√⟨(𝑥+ 𝑓 (⋅))2⟩, (2.8)

one can prove that first, 𝑃00, 𝑃01, and 𝑃10 are independent of the variable 𝑦 and second, they satisfy the PDE problems

CEV𝑃00(𝑡, 𝑠, 𝑥) = ⟨2⟩𝑃00 = 0, 𝑃00(𝑇 , 𝑠, 𝑥) = ℎ(𝑠),

CEV𝑃01(𝑡, 𝑠, 𝑥) = ⟨1−1
0 (2 − ⟨2⟩)⟩𝑃00 = 𝐴01(𝑥)𝜃,12𝜃,2𝑃00(𝑡, 𝑠, 𝑥), 𝑃01(𝑇 , 𝑠, 𝑥) = 0,

CEV𝑃10(𝑡, 𝑠, 𝑥) = −⟨1⟩𝑃00 = −𝐴10(𝑥)𝜃,1𝑥
1,1𝑃00(𝑡, 𝑠, 𝑥), 𝑃10(𝑇 , 𝑠, 𝑥) = 0,

(2.9)

respectively, where the functions 𝐴01(𝑥) and 𝐴10(𝑥) are

𝐴01(𝑥) ∶= 1
2

𝜌𝑠𝑦⟨(𝑥+ 𝑓 (⋅))𝛽(⋅)𝜕𝑦𝜙(𝑥, ⋅)⟩,
𝐴10(𝑥) ∶= 𝜌𝑠𝑥(𝑥+ ⟨𝑓 (⋅)⟩), (2.10)

respectively. Here, 𝜙(𝑥, 𝑦) is a function defined by solution to

0𝜙(𝑥, 𝑦) = (𝑥+ 𝑓 (𝑦))2 − ⟨(𝑥+ 𝑓 (⋅))2⟩. (2.11)

Note that 𝐴01(𝑥) is related to the fast mean reverting variation of volatility, while 𝐴10(𝑥) is connected with the slow-scale variation 
of the SABR type of volatility. We leave the proof of 𝑦 independence of the terms 𝑃00, 𝑃01 and 𝑃10 and the derivation of the PDEs in 
(2.9) to Appendix.

Since CEV defined by (2.8) is the differential operator 𝜕𝑡 plus the infinitesimal generator of the CEV diffusion solving the stochastic 
differential equation

𝑑𝑆𝑡 = 𝜎̄𝑓 (𝑥) 𝑆𝜃
𝑡

𝑑𝑊 𝑠
𝑡

(2.12)

as its notation suggests, the PDE problem CEV𝑃00(𝑡, 𝑠, 𝑥) = 0 with the final condition 𝑃00(𝑇 , 𝑠, 𝑥) = ℎ(𝑠) gives us that 𝑃00 is the 
CEV derivative price and subsequently we use notation 𝑃CEV instead of 𝑃00 from now on. There is a closed-form probability density 
function available to solve the CEV diffusion (2.12). It is given by

𝑝(𝑡, 𝑠; 𝑡, 𝑠̃) = 2(1 − 𝜃)𝑘
1 

2(1−𝜃) (𝑢𝑣1−2𝜃)
1 

4(1−𝜃) 𝑒𝑢−𝑣𝐼1∕2(1−𝜃)(2
√

𝑢𝑣),

𝑘 ∶= 1 
2𝜎̄2

𝑓
(1 − 𝜃)2(𝑡− 𝑡)

,

𝑢 ∶= 𝑘𝑠2(1−𝜃),

𝑣 ∶= 𝑘𝑠̃2(1−𝜃),

(2.13)
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where 𝐼𝑞(𝑥) is the modified Bessel function of the first kind of order 𝑞. From the Feynman-Kac theorem, 𝑃01 and 𝑃10 solving the PDEs 
in (2.9) are given by

𝑃01(𝑡, 𝑠, 𝑥) = 𝐸ℚ
⎡⎢⎢⎣−

𝑇

∫
𝑡 

𝐴01(𝑥)𝜃,12𝜃,2𝑃CEV(𝑡,𝑆𝑡, 𝑥) 𝑑𝑡 | 𝑆𝑡 = 𝑠

⎤⎥⎥⎦
= −𝐴01(𝑥)

∞ 

∫
0 

𝑇

∫
𝑡 

𝑝(𝑡, 𝑠; 𝑡, 𝑠̃) 𝜃,12𝜃,2𝑃CEV(𝑡, 𝑠̃, 𝑥) 𝑑𝑡𝑑𝑠̃,

𝑃10(𝑡, 𝑠, 𝑥) = 𝐸ℚ
⎡⎢⎢⎣

𝑇

∫
𝑡 

𝐴10(𝑥)𝜃,1𝑥
1,1𝑃CEV(𝑡,𝑆𝑡, 𝑥) 𝑑𝑡 | 𝑆𝑡 = 𝑠

⎤⎥⎥⎦
= 𝐴10(𝑥)

∞ 

∫
0 

𝑇

∫
𝑡 

𝑝(𝑡, 𝑠; 𝑡, 𝑠̃) 𝜃,1𝑥
1,1𝑃CEV(𝑡, 𝑠̃, 𝑥) 𝑑𝑡𝑑𝑠̃,

(2.14)

respectively, in term of the probability density function 𝑝(𝑡, 𝑠; 𝑡, 𝑠̃) given in (2.13). However, it seems better to use the Mellin transform 
to express the solutions for 𝑃01 and 𝑃10. The transform can lead to a single integral (instead of double integral) expression of each of 
these terms as shown below.

To solve the PDE problems in (2.9) for 𝑃01 and 𝑃10, we use Mellin transform and its inverse transform defined by

(𝑔)(𝜔) ∶= 𝑔̂(𝜔) =

∞ 

∫
0 

𝑔(𝑠) 𝑠𝜔−1 𝑑𝑠, (−1𝑔̂)(𝑠) ∶= 𝑔(𝑠) = 1 
2𝜋𝑖

𝑎+𝑖∞

∫
𝑎−𝑖∞

𝑔̂(𝜔) 𝑠−𝜔 𝑑𝜔,

respectively, for a real number 𝑎 under the condition given in the Mellin inversion theorem (cf. Debonath and Bhatta [24]). Taking 
the Mellin transform of (2.9), we obtain the ODE problems for 𝑃00, 𝑃01 and 𝑃10 as follows.

𝜕𝑡𝑃CEV(𝑡,𝜔, 𝑥) + 𝜆(𝜔,𝑥)𝑃CEV(𝑡,𝜔, 𝑥) = 0, 𝑃CEV(𝑇 ,𝜔,𝑥) = ℎ̂(𝜔),

𝜕𝑡𝑃01(𝑡,𝜔, 𝑥) + 𝜆(𝜔,𝑥)𝑃01(𝑡,𝜔, 𝑥) = 𝑔01(𝑡,𝜔, 𝑥), 𝑃01(𝑇 ,𝜔,𝑥) = 0,

𝜕𝑡𝑃10(𝑡,𝜔, 𝑥) + 𝜆(𝜔,𝑥)𝑃10(𝑡,𝜔, 𝑥) = 𝑔10(𝑡,𝜔, 𝑥), 𝑃10(𝑇 ,𝜔,𝑥) = 0,

(2.15)

where ℎ̂(𝜔) is the Mellin transform of ℎ(𝑠) and the functions 𝜆(𝜔,𝑥), 𝑔01(𝑡,𝜔, 𝑥) and 𝑔10(𝑡,𝜔, 𝑥) are

𝜆(𝜔,𝑥) ∶= 1
2

𝜎̄2
𝑓
(𝑥)(𝜔+ 2𝜃 − 1)(𝜔+ 2𝜃 − 2),

𝑔01(𝑡,𝜔, 𝑥) ∶= −𝐴01(𝑥)(𝜔+ 𝜃 − 1)(𝜔+ 3𝜃 − 2)(𝜔+ 3𝜃 − 3)𝑃CEV(𝑡,𝜔+ 3𝜃 − 3, 𝑥),

𝑔10(𝑡,𝜔, 𝑥) ∶= 𝐴10(𝑥)(𝜔+ 𝜃 − 1)𝑥
1,1𝑃CEV(𝑡,𝜔+ 𝜃 − 1, 𝑥),

(2.16)

respectively. The problems in (2.15) can be solved as

𝑃CEV(𝑡,𝜔, 𝑥) = 𝑒𝜆(𝜔,𝑥)(𝑇−𝑡) ℎ̂(𝜔),

𝑃01(𝑡,𝜔, 𝑥) = −
𝑇

∫
𝑡 

𝑒𝜆(𝜔,𝑥)(𝑡−𝑡) 𝑔01(𝑡,𝜔, 𝑥) 𝑑𝑡,

𝑃10(𝑡,𝜔, 𝑥) = −
𝑇

∫
𝑡 

𝑒𝜆(𝜔,𝑥)(𝑡−𝑡) 𝑔10(𝑡,𝜔, 𝑥) 𝑑𝑡.

(2.17)

Substituting (2.16) into (2.17), we obtain a closed-form expression of the approximate derivative price 𝑃 𝜖,𝛿 ∶=𝑃CEV +
√

𝜖𝑃01 +
√

𝛿𝑃10
explicitly as

̂̈𝑃 𝜖,𝛿(𝑡,𝜔, 𝑥) = 𝑒𝜆(𝜔,𝑥)(𝑇−𝑡) ℎ̂(𝜔)

+
√

𝜖 𝐴01(𝑥)(𝜔+ 𝜃 − 1)(𝜔+ 3𝜃 − 2)(𝜔+ 3𝜃 − 3) 𝑒
𝜆(𝜔,𝑥)(𝑇−𝑡) − 𝑒𝜆(𝜔+3𝜃−3,𝑥)(𝑇−𝑡)

𝜆(𝜔,𝑥) − 𝜆(𝜔+ 3𝜃 − 3, 𝑥) 
ℎ̂(𝜔+ 3𝜃 − 3)

−
√

𝛿 𝐴10(𝑥)(𝜔+ 𝜃 − 1)𝑥 𝜕𝑥𝜆(𝜔+ 𝜃 − 1, 𝑥) 
(

𝑒𝜆(𝜔,𝑥)(𝑇−𝑡) − 𝑒𝜆(𝜔+𝜃−1,𝑥)(𝑇−𝑡)

(𝜆(𝜔,𝑥) − 𝜆(𝜔+ 𝜃 − 1, 𝑥))2

−(𝑇 − 𝑡) 𝑒𝜆(𝜔+𝜃−1,𝑥)(𝑇−𝑡)

𝜆(𝜔,𝑥) − 𝜆(𝜔+ 𝜃 − 1, 𝑥)

)
ℎ̂(𝜔+ 𝜃 − 1)

(2.18)
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in the domain of the Mellin transform.

The pricing formula (2.18) is given by a linear combination of terms that are in the form of a function of 𝜔 times the (shifted) 
Mellin transform of the payoff function ℎ. Using the functions ℎ̂1(𝜔), ℎ̂3(𝜔), 𝐴̂𝜖(𝑡,𝜔, 𝑥) and 𝐴̂𝛿(𝑡,𝜔, 𝑥) defined by

ℎ̂1(𝜔) ∶= ℎ̂(𝜔+ (𝜃 − 1)),

ℎ̂3(𝜔) ∶= ℎ̂(𝜔+ 3(𝜃 − 1)),

𝐴̂CEV(𝑡,𝜔, 𝑥) ∶= 𝑒𝜆(𝜔,𝑥)(𝑇−𝑡),

𝐴̂𝜖(𝑡,𝜔, 𝑥) ∶= 
√

𝜖 𝐴01(𝑥)(𝜔+ 𝜃 − 1)(𝜔+ 3𝜃 − 2)(𝜔+ 3𝜃 − 3) 𝑒
𝜆(𝜔,𝑥)(𝑇−𝑡) − 𝑒𝜆(𝜔+3𝜃−3,𝑥)(𝑇−𝑡)

𝜆(𝜔,𝑥) − 𝜆(𝜔+ 3𝜃 − 3, 𝑥) 
,

𝐴̂𝛿(𝑡,𝜔, 𝑥) ∶= 
√

𝛿 𝐴10(𝑥)(𝜔+ 𝜃 − 1)𝑥𝜕𝑥𝜆(𝜔+ 𝜃 − 1, 𝑥) 
(

𝑒𝜆(𝜔,𝑥)(𝑇−𝑡) − 𝑒𝜆(𝜔+𝜃−1,𝑥)(𝑇−𝑡)

(𝜆(𝜔,𝑥) − 𝜆(𝜔+ 𝜃 − 1, 𝑥))2

−(𝑇 − 𝑡) 𝑒𝜆(𝜔+𝜃−1,𝑥)(𝑇−𝑡)

𝜆(𝜔,𝑥) − 𝜆(𝜔+ 𝜃 − 1, 𝑥)

)
(2.19)

and taking the inverse Mellin transform of ̂̈𝑃 𝜖,𝛿(𝑡,𝜔, 𝑥) in (2.18), 𝑃 𝜖,𝛿(𝑡, 𝑠, 𝑥) becomes

𝑃 𝜖,𝛿(𝑡, 𝑠, 𝑥) = 1 
2𝜋𝑖

𝑎+𝑖∞

∫
𝑎−𝑖∞

̂̈𝑃 𝜖,𝛿(𝑡,𝜔, 𝑥) 𝑠−𝜔 𝑑𝜔

= 1 
2𝜋𝑖

𝑎+𝑖∞

∫
𝑎−𝑖∞

[
𝐴̂CEV(𝑡,𝜔, 𝑥) ̂ℎ(𝜔) + 𝐴̂𝜖(𝑡,𝜔, 𝑥)ℎ̂3(𝜔) + 𝐴̂𝛿(𝑡,𝜔, 𝑥)ℎ̂1(𝜔)

]
𝑠−𝜔 𝑑𝜔.

(2.20)

Note that the derivative price formula (2.20) requires computation of a single integral not like the case of the double integral in 
(2.14).

By the convolution theorem of the Mellin transform (cf. Srivastava and Buschman [25]) we rewrite the result (2.20) as the following 
simple expression in terms of Mellin convolution. The derivative price is expressed as a single integral representation.

Proposition 2.1. Under the dynamics (2.1) of the underlying asset price, the derivative price defined by (2.3) is approximated by

𝑃 𝜖,𝛿(𝑡, 𝑠, 𝑥) =
(
𝐴CEV ∗ ℎ+𝐴𝜖 ∗ ℎ3 +𝐴𝛿 ∗ ℎ1

)
(𝑡, 𝑠, 𝑥), (2.21)

where ℎ1, ℎ3, 𝐴CEV, 𝐴𝜖 and 𝐴𝛿 are the inverse Mellin transforms of ℎ̂1, ℎ̂3, 𝐴̂CEV, 𝐴̂𝜖 and 𝐴̂𝛿 defined in (2.19), respectively and ∗ denotes 
the Mellin convolution.

From the properties of the Mellin transform (cf. Bracewell [26]), ℎ̂1(𝜔) and ℎ̂3(𝜔) defined in (2.19) lead to

ℎ1(𝑠) = 𝑠𝜃−1ℎ(𝑠),

ℎ3(𝑠) = 𝑠3(𝜃−1)ℎ(𝑠),

respectively. The pricing formula (2.21) is expressed as the CEV price added by two correction terms related to 𝐴𝜖 (SVCEV volatility) 
and 𝐴𝛿 (SABR volatility). When 𝜖 and 𝛿 go to 0, the two terms 𝐴𝜖 and 𝐴𝛿 vanish and thus 𝑃 𝜖,𝛿(𝑡, 𝑠, 𝑥) becomes the CEV price, say 
𝑃CEV(𝑡, 𝑠, 𝑥), which is given by 𝑃CEV(𝑡, 𝑠, 𝑥) =

(
𝐴CEV ∗ ℎ

)
(𝑡, 𝑠, 𝑥). So, the price formula (2.21) can be expressed as

𝑃 𝜖,𝛿(𝑡, 𝑠, 𝑥) = 𝑃CEV(𝑡, 𝑠, 𝑥) +
(
𝐴𝜖 ∗ ℎ3 +𝐴𝛿 ∗ ℎ1

)
(𝑡, 𝑠, 𝑥). (2.22)

If we apply the following result obtained by Yoon and Kim [27] for the inverse Mellin transform

−1
(
𝑒𝑎(𝜔+𝑏)2

)
(𝑥) = 1 √

4𝑎𝜋
𝑥𝑏𝑒

− 1 
4𝑎 (log𝑥)2

,

to 𝐴̂CEV(𝑡,𝜔, 𝑥), then we obtain the following CEV price formula:

𝑃CEV(𝑡, 𝑠, 𝑥) = 
∞ 

∫
0 

𝐴CEV

(
𝑡,

𝑠 
𝑢
, 𝑥

)
ℎ(𝑢)𝑑𝑢

𝑢 

= 𝑒−
1
8 𝜎̄2

𝑓
(𝑥)(𝑇−𝑡) 1 √

2𝜎̄2
𝑓
(𝑥)(𝑇 − 𝑡)𝜋

∞ 

∫
0 

(
𝑠 
𝑢

)2𝜃− 3
2

𝑒

− 1 
2𝜎̄2

𝑓
(𝑥)(𝑇−𝑡)

(
log

(
𝑠 
𝑢

))2
ℎ(𝑢)𝑑𝑢

𝑢 
.

(2.23)



Applied Mathematics and Computation 507 (2025) 129599

7

S.-Y. Choi and J.-H. Kim 

2.3. Near zero elasticity of variance

In this section, we consider the case that the elasticity of variance parameter 𝜃 is close to 1, that is, the elasticity of variance is 
close to 0 as formally defined as 2(𝜃 −1), based on the observation given by Kim et al. [28] for historical data on S&P 500 index. So, 
we define a parameter 𝛾 as

𝛾 = 1 − 𝜃

and assume that 0 < 𝛾 ≪ 1.

We are interested in the approximation 𝑃 𝜖,𝛿,𝛾 ∶= 𝑃000 +
√

𝜖𝑃010 +
√

𝛿𝑃100 + 𝛾𝑃001 of the expansion

𝑃 𝜖,𝛿,𝛾 (𝑡, 𝑠, 𝑥, 𝑦) =
∞ ∑

𝑖,𝑗,𝑘=0
(
√

𝛿)𝑖(
√

𝜖)𝑗𝛾𝑘 𝑃𝑖𝑗𝑘(𝑡, 𝑠, 𝑥, 𝑦). (2.24)

Taking a Taylor expansion of ̂̈𝑃 𝜖,𝛿(𝑡,𝜔, 𝑥) in (2.18) with respect to 𝛾 , we can obtain a formula for ̂̈𝑃 𝜖,𝛿,𝛾 (𝑡,𝜔, 𝑥). To present it concisely, 
we first observe that

lim 
𝛾→0

𝑒𝜆(𝜔,𝑥)(𝑇−𝑡) − 𝑒𝜆(𝜔+3𝜃−3,𝑥)(𝑇−𝑡)

𝜆(𝜔,𝑥) − 𝜆(𝜔+ 3𝜃 − 3, 𝑥) 
= (𝑇 − 𝑡)𝑒

1
2 𝜎̄2

𝑓
(𝑥)𝜔(𝜔+1)(𝑇−𝑡)

,

lim 
𝛾→0

[
𝑒𝜆(𝜔,𝑥)(𝑇−𝑡) − 𝑒𝜆(𝜔+𝜃−1,𝑥)(𝑇−𝑡)

(𝜆(𝜔,𝑥) − 𝜆(𝜔+ 𝜃 − 1, 𝑥))2
− (𝑇 − 𝑡) 𝑒𝜆(𝜔+𝜃−1,𝑥)(𝑇−𝑡)

𝜆(𝜔,𝑥) − 𝜆(𝜔+ 𝜃 − 1, 𝑥)

]
= 1

2
(𝑇 − 𝑡)2𝑒

1
2 𝜎̄2

𝑓
(𝑥)𝜔(𝜔+1)(𝑇−𝑡)

,

lim 
𝛾→0

𝑒𝜆(𝜔,𝑥)(𝑇−𝑡) = 𝑒
1
2 𝜎̄2

𝑓
(𝑥)𝜔(𝜔+1)(𝑇−𝑡)

,

lim 
𝛾→0

ℎ̂3(𝜔) = lim 
𝛾→0

ℎ̂1(𝜔) = ℎ̂(𝜔),

(2.25)

then we have

̂̈𝑃 𝜖,𝛿,𝛾 (𝑡,𝜔, 𝑥) = 𝑃BS(𝑡,𝜔, 𝑥)
[
1 + (𝑇 − 𝑡)𝐴̂𝜖

∗(𝜔,𝑥) − (𝑇 − 𝑡)2𝐴̂𝛿
∗(𝜔,𝑥) − (𝑇 − 𝑡)𝐴̂𝛾

∗(𝜔,𝑥)
]
, (2.26)

where 𝑃BS, 𝐴̂𝜖
∗, 𝐴̂𝛿

∗ and 𝐴̂𝛾
∗ are

𝑃BS(𝑡,𝜔, 𝑥) ∶= 𝑒
1
2 𝜎̄2

𝑓
(𝑥)𝜔(𝜔+1)(𝑇−𝑡)

ℎ̂(𝜔),

𝐴̂𝜖
∗(𝜔,𝑥) ∶= 

√
𝜖 𝐴01(𝑥)𝜔2(𝜔+ 1),

𝐴̂𝛿
∗(𝜔,𝑥) ∶= 1

2

√
𝛿 𝐴10(𝑥)𝑥𝜎̄𝑓 (𝑥)𝜎̄′

𝑓
(𝑥)𝜔2(𝜔+ 1),

𝐴̂
𝛾
∗(𝜔,𝑥) ∶= 𝛾𝜎̄2

𝑓
(𝑥)(2𝜔+ 1),

(2.27)

respectively.

As in the notation, 𝑃BS(𝑡,𝜔, 𝑥) is the Mellin transform of the Black-Scholes derivative price 𝑃BS(𝑡, 𝑠, 𝑥) with payoff ℎ since the CEV 
price 𝑃CEV(𝑡,𝜔, 𝑥) is reduced to the Black-Scholes price when 𝛾 → 0. Also, from the direct calculation of Panini and Srivastav [29], 
𝑃BS(𝑡,𝜔, 𝑥) in (2.27) is exactly the same as the Mellin transform of the Black-Scholes price.

In order to calculate the inverse Mellin transform of ̂̈𝑃 𝜖,𝛿,𝛾 (𝑡,𝜔, 𝑥) given in (2.26), it is required to calculate the inverse Mellin 
transforms of 𝜔𝑃BS, 𝜔2𝑃BS and 𝜔3𝑃BS. They can be obtained by using a property of Mellin transform given by

((1,1)𝑛𝑃BS)(𝜔) = (−𝜔)𝑛𝑃BS(𝑡,𝜔, 𝑥). (2.28)

Then we obtain the following corollary of Proposition 2.1 for 𝑃 𝜖,𝛿,𝛾 (𝑡, 𝑠, 𝑥).

Corollary 2.1. Under the dynamics (2.1) of the underlying asset price where 0< 𝛾 ≪ 1 for 𝜃 ∶= 1− 𝛾 , the derivative price defined by (2.3) 
is approximated by

𝑃 𝜖,𝛿,𝛾 (𝑡, 𝑠, 𝑥) =
[
𝑃BS + (𝑇 − 𝑡)𝑎𝜖(𝑥)

(
−(1,1)3 + (1,1)2

)
𝑃BS

− (𝑇 − 𝑡)2𝑎𝛿(𝑥)
(
−(1,1)3 + (1,1)2

)
𝑃BS

− (𝑇 − 𝑡)𝑎𝛾 (𝑥)
(
−21,1 + 1

)
𝑃BS

]
(𝑡, 𝑠, 𝑥),

(2.29)

where 𝑎𝜖(𝑥), 𝑎𝛿(𝑥) and 𝑎𝛾 (𝑥) are

𝑎𝜖(𝑥) ∶= 
√

𝜖𝐴01(𝑥),

𝑎𝛿(𝑥) ∶= 1
2

√
𝛿𝐴10(𝑥)𝑥𝜎̄𝑓 (𝑥)𝜎̄′

𝑓
(𝑥),

𝑎𝛾 (𝑥) ∶= 𝛾𝜎̄2
𝑓
(𝑥),

(2.30)
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respectively.

According to Corollary 2.1, the derivative price 𝑃 𝜖,𝛿,𝛾 (𝑡, 𝑠, 𝑥) can be calculated simply by taking a combination of the first, second 
and third derivatives (Delta, Gamma, and Speed, respectively) of the Black-Scholes price 𝑃BS(𝑡, 𝑠, 𝑥) with respect to the underlying 
price, which is a practically useful result. Here, 𝑃BS(𝑡, 𝑠, 𝑥) is the usual Black-Scholes price with volatility 𝜎̄𝑓 (𝑥). The number of free 
parameters in the original SABR model is 4 while it is 9 in the case of the unified model. However, when it comes to the purpose 
of pricing derivatives, all the model parameters in the unified model are not required. In fact, they are absorbed into the four group 
parameters 𝜎̄𝑓 (𝑥), 𝑎𝜖

𝑓
(𝑥), 𝑎𝛿

𝑠
(𝑥), and 𝑎𝛾 (𝑥) that are required to price the derivatives, as shown in Corollary 3.1. So, the methodology 

(asymptotic analysis) used here allows the unified model to be practically useful for the purpose of pricing derivatives.

The Black-Scholes price 𝑃BS(𝑡, 𝑠, 𝑥) is the limit of 𝑃 𝜖,𝛿,𝛾 (𝑡, 𝑠, 𝑥) when all 𝜖, 𝛿 and 𝛾 go to zero. If both 𝜖 and 𝛿 go to zero, then 
𝑃 𝜖,𝛿,𝛾 (𝑡, 𝑠, 𝑥) becomes the price of the CEV derivative 𝑃CEV. In this way, we can find the pricing formulas of derivatives in the reduced 
models listed in Table 1. They are presented as follows:

𝑃CEV = 𝑃BS − (𝑇 − 𝑡)𝑎𝛾 (𝑥)
(
−21,1 + 1

)
𝑃BS,

𝑃SV𝑓
= 𝑃BS + (𝑇 − 𝑡)𝑎𝜖(𝑥)

(
−3

1,1 +2
1,1

)
𝑃BS,

𝑃MSV = 𝑃BS + (𝑇 − 𝑡)𝑎𝜖(𝑥)
(
−3

1,1 +2
1,1

)
𝑃BS − (𝑇 − 𝑡)2𝑎𝛿(𝑥)

(
−3

1,1 +2
1,1

)
𝑃BS,

𝑃SVCEV = 𝑃BS + (𝑇 − 𝑡)𝑎𝜖(𝑥)
(
−3

1,1 +2
1,1

)
𝑃BS − (𝑇 − 𝑡)𝑎𝛾 (𝑥)

(
−21,1 + 1

)
𝑃BS,

𝑃SABR = 𝑃BS − (𝑇 − 𝑡)2𝑎𝛿(𝑥)
(
−3

1,1 +2
1,1

)
𝑃BS − (𝑇 − 𝑡)𝑎𝛾 (𝑥)

(
−21,1 + 1

)
𝑃BS,

(2.31)

where 3
1,1 ∶=(1,1)3 and 2

1,1 ∶=(1,1)2. All pricing formulas in (2.31) are expressed as the Black-Scholes derivative price plus 
additional terms related to the elasticity of variance, mean-reverting stochastic volatility, or SABR type of stochastic volatility. As 
observed in (2.1), there is a difference between the SABR-SVCEV model and the plain SABR model in terms of a function of the fast 
mean reversing process 𝑌𝑡. This function becomes a constant as 𝜖 goes to zero. So, if this constant is chosen to be zero in the model, 
then the reference prices exactly become the price given by Hagan’s formula in [1] when 𝜖 goes to zero.

3. Specific application

Once the pay-off function ℎ is given for a considered derivative contract, the CEV price 𝑃CEV(𝑡, 𝑠, 𝑥) and the two convolutions 
constitute the fair price 𝑃 𝜖,𝛿(𝑡, 𝑠, 𝑥) of the derivative as shown in the formula (2.22). In the case where the elasticity of variance is 
close to zero, the formula (2.29) in Corollary 2.1. In this section, we apply this formula to two derivative contract cases, that is, the 
European vanilla option and the variance swap, and we obtain the price formulas concretely.

3.1. European vanilla option

In the case of a European put option with the payoff ℎ(𝑠) = (𝐾 − 𝑠)+, we have ℎ̂(𝜔) = 𝐾𝜔+1

𝜔(𝜔+1) so that, from (2.19), ℎ̂1(𝜔) and ℎ̂3(𝜔)
become

ℎ̂1(𝜔) =
𝐾𝜔+𝜃

(𝜔+ 𝜃 − 1)(𝜔+ 𝜃)
,

ℎ̂3(𝜔) =
𝐾𝜔+3𝜃−2

(𝜔+ 3𝜃 − 3)(𝜔+ 3𝜃 − 2)
,

respectively. Then, by direct calculation, the put option price 𝑃 𝜖,𝛿(𝑡, 𝑠, 𝑥) is given by

𝑃 𝜖,𝛿(𝑡, 𝑠, 𝑥) = 𝑒−
1
8 𝜎̄2

𝑓
(𝑥)(𝑇−𝑡) 1 √

2𝜎̄2
𝑓
(𝑥)(𝑇 − 𝑡)𝜋

𝐾

∫
0 

(
𝑠 
𝑢

)2𝜃− 3
2

𝑒

− 1 
2𝜎̄2

𝑓
(𝑥)(𝑇−𝑡)

(
log

(
𝑠 
𝑢

))2
(𝐾 − 𝑢)𝑑𝑢

𝑢 

+ 1 
2𝜋𝑖

√
𝛿𝐴10(𝑥)𝜎̄𝑓 (𝑥)𝜎̄′

𝑓
(𝑥)𝐾𝜃

𝑎+𝑖∞

∫
𝑎−𝑖∞

(𝜔+ 3𝜃 − 2)(𝜔+ 3𝜃 − 3)
𝜔+ 𝜃 

⋅

⋅
(

𝑒𝜆(𝜔,𝑥)(𝑇−𝑡) − 𝑒𝜆(𝜔+𝜃−1,𝑥)(𝑇−𝑡)

(𝜆(𝜔,𝑥) − 𝜆(𝜔+ 𝜃 − 1, 𝑥))2
− (𝑇 − 𝑡) 𝑒𝜆(𝜔+𝜃−1,𝑥)(𝑇−𝑡)

𝜆(𝜔,𝑥) − 𝜆(𝜔+ 𝜃 − 1, 𝑥)

)(
𝐾

𝑠 

)𝜔

𝑑𝜔

+ 1 
2𝜋𝑖

√
𝜖𝐴01(𝑥)𝐾3𝜃−2

𝑎+𝑖∞

∫
𝑎−𝑖∞

(𝜔+ 𝜃 − 1) 𝑒
𝜆(𝜔,𝑥)(𝑇−𝑡) − 𝑒𝜆(𝜔+3𝜃−3,𝑥)(𝑇−𝑡)

𝜆(𝜔,𝑥) − 𝜆(𝜔+ 3𝜃 − 3, 𝑥) 

(
𝐾

𝑠 

)𝜔

𝑑𝜔,

(3.1)

where 𝐴10 and 𝐴01 are given by (2.10) and 𝜆(𝜔,𝑥) is given by (2.16).
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When the elasticity of variance is close to 0, the well-known the Black-Scholes option price 𝑃BS(𝑡, 𝑠, 𝑥) given by Black, Scholes 
and Merton [11] or [30] applied to Corollary 2.1 leads to the put option price 𝑃 𝜖,𝛿,𝛾 (𝑡, 𝑠, 𝑥). In fact, since we already have the CEV 
derivative price formula (2.23), specifying 𝜃 = 1 and ℎ(𝑢) = (𝐾 − 𝑢)+ in (2.23) gives the following Black-Scholes put option price:

𝑃BS(𝑡, 𝑠, 𝑥) = 𝑒−
1
8 𝜎̄2

𝑓
(𝑥)(𝑇−𝑡) 1 √

2𝜎̄2
𝑓
(𝑥)(𝑇 − 𝑡)𝜋

∞ 

∫
0 

(
𝑠 
𝑢

) 1
2

𝑒

− 1 
2𝜎̄2

𝑓
(𝑥)(𝑇−𝑡)

(
log

(
𝑠 
𝑢

))2
(𝐾 − 𝑢)+ 𝑑𝑢

𝑢 

= 𝑒−
1
8 𝜎̄2

𝑓
(𝑥)(𝑇−𝑡) 1 √

2𝜎̄2
𝑓
(𝑥)(𝑇 − 𝑡)𝜋

∞ 

∫
log(𝑠∕𝐾)

(
𝐾𝑒

1
2 𝑣 − 𝑠𝑒

− 1
2 𝑣
)
exp

(
− 𝑣2

2𝜎̄2
𝑓
(𝑇 − 𝑡)

)
𝑑𝑣

= 𝐾 (−𝑑2) − 𝑠 (−𝑑1),

(3.2)

where  denotes the standard normal cumulative distribution function and 𝑑1 and 𝑑2 are

𝑑1∶= 1 
𝜎̄𝑓 (𝑥)

√
𝑇 − 𝑡

(
log(𝑠∕𝐾) + 1

2
𝜎̄2

𝑓
(𝑥)(𝑇 − 𝑡)

)
, 𝑑2∶= 𝑑1 − 𝜎̄𝑓 (𝑥)

√
𝑇 − 𝑡,

respectively. Plugging the Black-Scholes price (3.2) into (2.29) in Corollary 2.1, we obtain the following put option price formula:

𝑃
𝜖,𝛿,𝛾

put (𝑡, 𝑠, 𝑥) = 𝐾 (−𝑑2) − 𝑠 (−𝑑1)

+ 𝑎𝜖(𝑥) − 𝑎𝛿(𝑥)
𝜎3

(
𝐾 ′′′(−𝑑2) − 𝑠 ′′′(−𝑑1)

) 1 √
𝑇 − 𝑡

+ 𝑎𝜖(𝑥) − 𝑎𝛿(𝑥)
𝜎2

(
𝐾 ′′(−𝑑2) + 2𝑠 ′′(−𝑑1)

)
−
[

𝑎𝜖(𝑥) − 𝑎𝛿(𝑥)
𝜎

𝑠 ′(−𝑑1) + 2𝑎𝛾 (𝑥)
𝜎

(
𝐾 ′(−𝑑2) − 𝑠 ′(−𝑑1)

)]√
𝑇 − 𝑡

− 𝑎𝛾 (𝑥)
(
𝐾 (−𝑑2) + 𝑠 (−𝑑1)

)
(𝑇 − 𝑡),

(3.3)

where 𝑎𝜖(𝑥), 𝑎𝛿(𝑥) and 𝑎𝛾 (𝑥) are given by (2.30). We note that the range of the order of terms in the above formula is from 1 √
𝑇−𝑡

to 
𝑇 − 𝑡, which suggests the ability of the model structure to capture the market’s diverse maturity-dependent view of the likelihood of 
future changes in a given security’s price.

Now, we check the price gap between the unified SABR-SVCEV model and the four reduced models (CEV, SVCEV, SV𝑓 and MSV) 
using the price formulas given in (2.29) and (2.31) in the case of a European call option. As shown in Fig. 1, the price gap reverses 
its sign when the option is near the money and exhibits non-linearity with respect to the price of the underlying asset in the case 
of the CEV and SVCEV models. However, the price gap between the unified model and the SV𝑓 and MSV models exhibits an almost 
linear relationship and continues to grow in the same direction within a range of the prices of the underlying assets. This observed 
difference between the two types of volatility models is attributed to the inclusion or absence of the parameter 𝜃 that captures the 
elasticity of variance.

3.2. Variance swap

A variance swap is one of the volatility derivatives as a forward contract with a pay-off given by the realized variance of the 
underlying asset. The contract is settled based on the difference between the realized variance and the predetermined variance strike. 
The realized variance and volatility swap contracts are discretely sampled, but term sheets of these kinds of contracts are designated 
on a daily monitoring basis, and thus continuous sampling assumption may cause an ignorable approximation error. Refer to Broadie 
and Jain [31] and Jarrow et al. [32] for discussion of the continuously sampled approximation.

From the no-arbitrage argument and the Itô formula, the fair variance swap strike, 𝐾𝜖,𝛿
var , is given by

𝐾𝜖,𝛿
var (𝑡, 𝑠, 𝑥, 𝑦) = − 2 

𝑇 − 𝑡
𝐸ℚ[log

(
𝑆𝑇

𝑠 

) | 𝑆𝑡 = 𝑠,𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦]. (3.4)

So, to price the fair variance swap strike, we need to calculate

𝑃 𝜖,𝛿
var (𝑡, 𝑠, 𝑥, 𝑦) = 𝐸ℚ[log(𝑆𝑇 ) | 𝑆𝑡 = 𝑠,𝑋𝑡 = 𝑥,𝑌𝑡 = 𝑦]. (3.5)

This corresponds to choosing the payoff function ℎ in (2.3) as the logarithmic function. By specifying the function ℎ(𝑢) = log𝑢 and 
𝜃 = 1 in (2.23), we have the following Black-Scholes value of (3.5):
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Fig. 1. Price gap between the SABR-SVCEV model and the four reduced models (CEV, SVCEV, SV𝑓 and MSV) for a European call; Maturity = 1.0, Strike price = 100, 
𝑥0 = 0.1, 𝑟 = 0.3, 𝜌𝑠𝑦 = −0.2, 𝜌𝑠𝑥 = 0.2, 𝜌𝑥𝑦 = 0.2, 𝜖 = 0.1, 𝛿 = 0.01, 𝛾 = 0.1, 𝛼(𝑌𝑡) = 𝑚− 𝑌𝑡, 𝛽(𝑌𝑡) = 𝜎,𝑚 = log(0.1), 𝑓 (𝑥) = exp(𝑥).

𝑃 BS
var (𝑡, 𝑠, 𝑥) = 𝑒−

1
8 𝜎̄2

𝑓
(𝑥)(𝑇−𝑡) 1 √

2𝜎̄2
𝑓
(𝑥)(𝑇 − 𝑡)𝜋

∞ 

∫
0 

(
𝑠 
𝑢

) 1
2

𝑒

− 1 
2𝜎̄2

𝑓
(𝑥)(𝑇−𝑡)

(
log

(
𝑠 
𝑢

))2
log𝑢 𝑑𝑢

𝑢 

= 𝑒−
1
8 𝜎̄2

𝑓
(𝑥)(𝑇−𝑡) 1 √

2𝜎̄2
𝑓
(𝑥)(𝑇 − 𝑡)𝜋

∞ 

∫
−∞

𝑒

− 1 
2𝜎̄2

𝑓
(𝑥)(𝑇−𝑡)

𝑣2+ 1
2 𝑣

(log 𝑠− 𝑣) 𝑑𝑣

= log 𝑠− 1
2

𝜎̄2
𝑓
(𝑥)(𝑇 − 𝑡).

(3.6)

Substituting this Black-Scholes value into (2.29) in Corollary 2.1, we obtain the following first order approximation result:

𝑃
𝜖,𝛿,𝛾
var (𝑡, 𝑠, 𝑥) = log 𝑠− 1

2
𝜎̄2

𝑓
(𝑥)(𝑇 − 𝑡) − 𝑎𝛾 (𝑥)(𝑇 − 𝑡)

(
log 𝑠− 1

2
𝜎̄2

𝑓
(𝑥)(𝑇 − 𝑡) − 2

)
, (3.7)

where 𝑎𝛾 (𝑥) is given by (2.30). Then, from (3.4), (3.5), and (3.7), the approximate fair variance swap strike value is

𝐾̈
𝜖,𝛿,𝛾
var (𝑡, 𝑠, 𝑥) = 𝜎̄2

𝑓
(𝑥) + 2𝑎𝛾 (𝑥)

(
log 𝑠− 1

2
𝜎̄2

𝑓
(𝑥)(𝑇 − 𝑡) − 2

)
. (3.8)

4. Numerical results

In this section, we first check the accuracy of the price formula (2.29) given in Corollary 2.1 using a Monte Carlo simulation. 
Second, we show the convergence of the SABR-SVCEV model to the reduced models listed in Table 1 under various market conditions 
when the corresponding parameters reach 0. Third, we compare the SABR-SVCEV model with the SABR model in terms of the implied 
volatility data fit of a foreign exchange option. Finally, the analytic expression for a variance swap is tested numerically.
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Table 2
Error of implied volatility between the SABR-SVCEV model and MC simulation for 𝑇 = 0.021
(a week), where average elapsed time is less than 0.01 seconds for all the number of simula

tions.

Panel A : ATM Error (%) 
Parameters (𝜖, 𝛿, 𝛾) Simul. 10000 50000 100000

(0.150,0.10,0.10) 82.2282 82.9710 81.7198 
(0.075,0.05,0.05) 34.9586 34.8572 35.5677 
(0.015,0.01,0.01) 3.4904 0.4586 0.1991 
Panel B : ITM ( Moneyness = 95%) Error (%) 
Parameters (𝜖, 𝛿, 𝛾) Simul. 10000 50000 100000

(0.150,0.10,0.10) 97.3077 98.0035 98.2905 
(0.075,0.05,0.05) 43.9167 41.1274 42.6066 
(0.015,0.01,0.01) 0.9917 2.2707 1.2090 
Panel C : OTM ( Moneyness = 105% ) Error (%) 
Parameters (𝜖, 𝛿, 𝛾) Simul. 10000 50000 100000

(0.150,0.10,0.10) 14.0826 13.9444 14.0056 
(0.075,0.05,0.05) 6.5980 7.3184 7.3110 
(0.015,0.01,0.01) 0.8413 1.0581 1.1116 

From Corollary 2.1, we note that all original model parameters are not required to price derivatives. In fact, the number of 
necessary parameters and functions for the derivative price is considerably reduced from 9 to 4 as follows.

𝛾, 𝛿, 𝜖, 𝑓 (𝑥, 𝑦), 𝛼(𝑦), 𝛽(𝑦), 𝜌𝑠𝑥, 𝜌𝑠𝑦, 𝜌𝑥𝑦 ⟹ 𝜎̄𝑓 (𝑥), 𝑎𝜖
𝑓
(𝑥), 𝑎𝛿

𝑠
(𝑥), 𝑎𝛾 (𝑥)

In order to estimate the pricing parameters 𝜎̄𝑓 (𝑥), 𝑎𝜖
𝑓
(𝑥), 𝑎𝛿

𝑠
(𝑥), and 𝑎𝛾 (𝑥) (or 𝛾), we can utilize calibration from near-the-money 

European call option implied volatilities, where the implied volatility is defined as 𝜎analytic satisfying the equation 𝑃BS(𝑡, 𝑠;𝜎analytic) =
𝑃 𝜖,𝛿,𝛾 (𝑡, 𝑠, 𝑥), where 𝑃BS stands for the classical Black-Scholes formula.

The calculations are performed across six option maturities (1 week, 1 month, 3 months, 6 months, 1 year, and 2 years) and three 
different levels of moneyness (at the money (ATM), in the money (ITM), and out of the money (OTM)). The parameters and functions 
commonly used in numerical work are given by 𝑆 = 100, 𝑋 = 0.1, 𝑌 = −1.0, 𝑟 = 0.03, 𝜌𝑠𝑥 = 0.1, 𝜌𝑠𝑦 = −0.1, 𝜌𝑥𝑦 = 0.1, 𝑚 = log(0.1), and 
𝑓 (𝑥) = exp(𝑥) and the process 𝑌𝑡 is assumed to follow an Ornstein-Uhlenbeck process defined by 𝛼(𝑌𝑡) = log(0.1) − 𝑌𝑡 and 𝛽(𝑌𝑡) = 0.1.

4.1. Accuracy

We first present the differences (errors) between the pricing results of the Monte Carlo (MC) simulation and the analytic formula 
(2.29) in terms of implied volatility. Here, the error is defined as

Error (%) = |||𝜎analytic − 𝜎MC
||| × 100,

where 𝜎analytic is the implied volatility calculated by using the analytic formula (2.29) in Corollary 2.1 and 𝜎MC is the implied volatility 
generated by the MC simulation.

In Tables 2--7, we present MC simulation results (error and computational cost) for various time-to-maturity (𝑇 ), namely, one 
week, one month, three months, six months, one year, and two years, across ATM, ITM and OTM cases. The results indicate that the 
implied volatility error tends to diminish as the parameter values approach zero, reflecting the improved accuracy of the SABR-SVCEV 
model under such conditions. This indicates that the derived formula provides reasonable accuracy in modeling the volatility term 
structure. However, it is important to note that, for longer time-to-maturities, convergence is only observable when the parameter 
values are sufficiently small. This is due to the influence of the time step size inherent in the MC simulation. Consequently, the 
parameter sets used in our simulations were adjusted to smaller scales for longer time-to-maturities. This adjustment leads to an 
increase in computational time as time-to-maturity lengthens. Although this may be a critical issue from a practical point of view, 
we emphasize that the primary contribution of this study lies in the derivation of an analytic pricing formula under the SABR-SVCEV 
model. Moreover, the computational burden associated with MC simulations can be significantly mitigated through high performance 
computing techniques, such as parallel computing discussed as, for example, in LeBeau [34] and Alerstam et al. [35].

4.2. Convergence to reduced models

We now examine whether the proposed unified model (the SABR-SVCEV model) converges to the individual models listed in 
Table 1 under various market conditions. Figs. 2 and 3 illustrate how the unified model converges to each reduced model at various 
types of time-to-maturity (1 month, 6 months, 1 year, and 2 years) and moneyness conditions (ATM, ITM, OTM). In terms of the 
absolute pricing error defined by
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Table 3
Error of implied volatility between the SABR-SVCEV model and MC simulation for 𝑇 = 0.083
(a month), where average elapsed time (in seconds) is 0.73, 2.44, and 5.25 for 10000, 50000, 
and 100000, respectively.

Panel A : ATM Error (%) 
Parameters (𝜖, 𝛿, 𝛾) Simul. 10000 50000 100000

(0.0150,0.010,0.010) 4.4079 3.8531 3.7285 
(0.0075,0.005,0.005) 1.5990 2.9200 1.5219 
(0.0015,0.001,0.001) 0.9275 0.3720 0.4233 
Panel B : ITM ( Moneyness = 90%) Error (%) 
Parameters (𝜖, 𝛿, 𝛾) Simul. 10000 50000 100000

(0.0150,0.010,0.010) 27.2932 15.4490 15.2040 
(0.0075,0.005,0.005) 13.2296 8.7595 8.9836 
(0.0015,0.001,0.001) 1.1299 0.2372 0.0840 
Panel C : OTM ( Moneyness = 110% ) Error (%) 
Parameters (𝜖, 𝛿, 𝛾) Simul. 10000 50000 100000

(0.0150,0.010,0.010) 1.0574 1.0282 1.0347 
(0.0075,0.005,0.005) 0.6399 0.5628 0.4267 
(0.0015,0.001,0.001) 0.4446 0.3970 0.0663 

Table 4
Error of implied volatility between the SABR-SVCEV model and MC simulation for 𝑇 = 0.25
(three months), where average elapsed time (in seconds) is 0.71, 2.49, and 5.32 for 10000, 
50000, and 100000, respectively.

Panel A : ATM Error (%) 
Parameters (𝜖, 𝛿, 𝛾) Simul. 10000 50000 100000

(0.0150,0.010,0.010) 11.1156 8.0231 7.6164 
(0.0075,0.005,0.005) 5.5707 4.5135 3.8857 
(0.0015,0.001,0.001) 1.9116 0.7806 0.5868 
Panel B : ITM ( Moneyness = 90%) Error (%) 
Parameters (𝜖, 𝛿, 𝛾) Simul. 10000 50000 100000

(0.0150,0.010,0.010) 25.1200 21.5128 20.1508 
(0.0075,0.005,0.005) 13.4535 11.1906 10.6672 
(0.0015,0.001,0.001) 1.5466 1.8281 0.8064 
Panel C : OTM ( Moneyness = 110% ) Error (%) 
Parameters (𝜖, 𝛿, 𝛾) Simul. 10000 50000 100000

(0.0150,0.010,0.010) 4.8870 4.1641 3.7880 
(0.0075,0.005,0.005) 2.4666 1.7603 1.7855 
(0.0015,0.001,0.001) 0.4480 0.0836 0.0733 

Error = |||𝑃 𝜖,𝛿,𝛾 − 𝑃reduced model
||| ,

where 𝑃 𝜖,𝛿,𝛾 is the option price (2.29) in Corollary 2.1 and 𝑃reduced model is the option price corresponding to one of BS (Black

Scholes), CEV, SV𝑓 , MSV, SVCEV, and SABR models, each subfigure of Figs. 2 and 3 shows that the error between the unified model 
and each reduced model approaches zero as the associated parameters tend toward zero, regardless of maturity and moneyness, as is 
naturally expected. Furthermore, Fig. 4 presents the convergence results under varying volatility environments. Although the shape 
of convergence differs depending on the level of volatility, the absolute error in option prices consistently converges to zero. These 
results collectively confirm that the unified model successfully reduces to the respective individual models across a wide range of 
market conditions.

4.3. Model calibration

To further assess the practical relevance of incorporating a mean-reverting volatility component into the SABR framework, we 
evaluated the calibration performance of the proposed unified model. Specifically, we compare its calibration accuracy against that of 
the standard SABR model using foreign exchange (FX) option data. FX option is chosen here because of its implied volatility structure, 
which exhibits a more pronounced U-shape compared to the implied volatilities observed in stock option markets. In order to calibrate 
the pricing parameters, we minimize the difference between the market-implied volatilities and the model-implied volatilities using 
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Table 5
Error of implied volatility between the SABR-SVCEV model and MC simulation for 𝑇 = 0.5 (6 
months), where average elapsed time (in seconds) is 1.05, 3.19, and 6.65 for 10000, 50000, 
and 100000, respectively.

Panel A : ATM Error (%) 
Parameters (𝜖, 𝛿, 𝛾) Simul. 10000 50000 100000

(0.0150,0.010,0.010) 13.5113 10.2794 10.3761 
(0.0075,0.005,0.005) 6.9042 5.4265 5.4196 
(0.0015,0.001,0.001) 1.9986 0.1249 0.1416 
Panel B : ITM ( Moneyness = 90%) Error (%) 
Parameters (𝜖, 𝛿, 𝛾) Simul. 10000 50000 100000

(0.0150,0.010,0.010) 53.6939 40.8137 39.2071 
(0.0075,0.005,0.005) 24.9460 19.7365 20.4172 
(0.0015,0.001,0.001) 2.7613 0.3048 0.3041 
Panel C : OTM ( Moneyness = 110% ) Error (%) 
Parameters (𝜖, 𝛿, 𝛾) Simul. 10000 50000 100000

(0.0150,0.010,0.010) 43.2133 32.5328 31.7120 
(0.0075,0.005,0.005) 16.7617 16.5213 16.4421 
(0.0015,0.001,0.001) 1.1646 0.8123 0.1278 

Table 6
Error of implied volatility between the SABR-SVCEV model and MC simulation for 𝑇 = 1.0 (1 
year), where average elapsed time (in seconds) is 223.62, 1422.78, and 2718.74 for 10000, 
50000, and 100000, respectively.

Panel A : ATM Error (%) 
Parameters (𝜖, 𝛿, 𝛾) Simul. 10000 50000 100000

(0.0750,0.050,0.050) 16.0883 15.5353 15.0845 
(0.0015,0.001,0.001) 6.3214 6.8028 7.1443 
(0.00015,0.0001,0.0001) 0.5419 0.8858 0.3184 
Panel B : ITM ( Moneyness = 90%) Error (%) 
Parameters (𝜖, 𝛿, 𝛾) Simul. 10000 50000 100000

(0.0750,0.050,0.050) 20.2728 19.5273 19.1683 
(0.0015,0.001,0.001) 10.4328 10.4978 8.7611 
(0.00015,0.0001,0.0001) 0.6165 0.6114 0.1638 
Panel C : OTM ( Moneyness = 110% ) Error (%) 
Parameters (𝜖, 𝛿, 𝛾) Simul. 10000 50000 100000

(0.0750,0.050,0.050) 5.8558 5.1455 5.1469 
(0.0015,0.001,0.001) 3.3500 3.2220 3.1258 
(0.00015,0.0001,0.0001) 0.3975 0.2169 0.5933 

the GBP/USD option, 3 March 2020. Specifically, we collect data for six maturities (1 month, 2 months, 3 months, 6 months, 1 year, 
and 2 years) and consider 17 moneynesses spanning from 80% to 120% for each maturity. The minimization is expressed as

argmin
𝜎̄𝑓 ,𝑎𝜖

𝑓
,𝑎𝛿

𝑠 ,𝛾

⎡⎢⎢⎣
∑
𝑇𝑖

∑
𝐾𝑗

(
𝜎

𝑇𝑖

𝐾𝑗 ,mkt
− 𝜎

𝑇𝑖

𝐾𝑗 ,model

)2⎤⎥⎥⎦ ,

where 𝜎𝑇𝑖

𝐾𝑗 ,mkt
denotes the implied volatility of the FX option market, obtained from Reuters, and 𝜎𝑇𝑖

𝐾𝑗 ,model
represents the implied 

volatility generated by the SABR or unified model for an option with strike 𝐾𝑗 and maturity 𝑇𝑖. Here, the Levenberg-Marquardt 
algorithm (cf. Marquardt [33]), one of the well-known numerical optimization techniques, was used to determine the optimal values 
of the pricing parameters. This calibration process ensures that the model’s outputs align closely with observed market values. Based 
on the selected option price data, Fig. 5 presents the calibration results for SABR and SABR-SVCEV models in terms of implied 
volatility, where 𝛼(𝑌𝑡) = 𝑚− 𝑌𝑡, 𝛽(𝑌𝑡) = 𝜎, 𝑚 = log(0.1), and 𝑓 (𝑥) = exp(𝑥) have been used. The implied volatilities generated by the 
SABR model and the unified model are compared with each other, and the volatilities implied by the market option prices. Also, the 
error between the market-implied volatility and the model-implied volatility is computed for the SABR and unified models, where 
the Error in Fig. 5 for each 𝑖-th maturity is defined as
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Table 7
Error of implied volatility between the SABR-SVCEV model and MC simulation for 𝑇 = 2.0
(2 year), where average elapsed time (in seconds) is 10.62, 4169.14, and 8979.15 for 10000, 
50000, and 100000, respectively.

Panel A : ATM Error (%) 
Parameters (𝜖, 𝛿, 𝛾) Simul. 10000 50000 100000

(0.0750,0.050,0.050) 30.5278 28.9065 28.1902 
(0.0015,0.001,0.001) 13.1217 12.9401 13.4808 
(0.00015,0.0001,0.0001) 0.5384 0.6143 0.1494 
Panel B : ITM ( Moneyness = 90%) Error (%) 
Parameters (𝜖, 𝛿, 𝛾) Simul. 10000 50000 100000

(0.0750,0.050,0.050) 31.1716 29.7023 29.6859 
(0.0015,0.001,0.001) 16.8858 14.7969 14.9227 
(0.00015,0.0001,0.0001) 0.4330 0.9396 0.5744 
Panel C : OTM ( Moneyness = 110% ) Error (%) 
Parameters (𝜖, 𝛿, 𝛾) Simul. 10000 50000 100000

(0.0750,0.050,0.050) 6.8547 6.4990 6.7413 
(0.0015,0.001,0.001) 5.2517 5.0006 4.8404 
(0.00015,0.0001,0.0001) 0.2374 0.1951 0.5246 

Fig. 2. Convergence of option prices under the unified model to those under the reduced models (BS, CEV, and SV𝑓 ) for different time-to-maturity and moneyness. 
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Fig. 3. Convergence of option prices under the unified model to those under the reduced models (MSV, SVCEV, and SABR) for different time-to-maturity and moneyness.

Error𝑖 =
1 
17

17 ∑
𝑗=1 

||||𝜎𝑇𝑖

𝐾𝑗 ,mkt
− 𝜎

𝑇𝑖

𝐾𝑗 ,model

|||| ,
where 𝜎𝑇𝑖

𝐾𝑗 ,mkt
and 𝜎𝑇𝑖

𝐾𝑗 ,model
represent the market- and model-implied volatilities with the 𝑗-th option strike, respectively. The follow

ing facts can be observed. First, the unified model demonstrates superior calibration performance compared to the SABR model. In 
particular, the unified model starts capturing the convexity of the implied volatility curves of the market for short time-to-maturities 
with the first-order price approximation. Second, it should be noted that the unified model tends to exhibit an increasing calibration 
error as the time-to-maturity becomes shorter. This should be attributed to the fact that we employ an approximation that represents 
only the first-order correction, thereby requiring higher-order correction terms for more accurate capture of the U-shaped structure.

4.4. Test on variance swap

In this section, we present some numerical results to support the findings related to variance swaps given in Section 3. Considering 
various values (0.1, 0.05, 0.01) of 𝜖 and (0.1, 0.05, 0.01) of 𝛾 in the context of the SABR-SVCEV model, we demonstrate the functional 
behavior of 𝑃 𝜖,𝛿,𝛾

var (from now on we call it the 𝑃 -function) and the fair strike 𝐾̈𝜖,𝛿,𝛾
var given by (3.7) and (3.8), respectively, with respect 

to the time-to-maturity, and compare the results with the well-known Black-Scholes case.

Fig. 6 shows the results. The key findings shown in this figure are as follows. First, there are significant differences in both the 𝑃

function and the fair strike between the SABR-SVCEV model and the Black-Scholes model, in particular, when the remaining maturity 
is long. Second, as the time-to-maturity approaches zero, the difference in the 𝑃 -function between the two models converges to zero, 
while the difference in the fair strike converges to a non-zero level. This is due to the presence of the term 𝑇 − 𝑡 in the denominator of 
(3.4). Furthermore, the results in the SABR-SVCEV model are closer to those of the Black-Scholes model, as the parameter 𝛾 becomes 
zero.
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Fig. 4. Convergence of option prices under the unified model to those under the reduced models (BS, CEV, SV𝑓 , MSV, SVCEV, and SABR) for different volatility 
regimes, where the time-to-maturity is one month, and the high and low volatility levels are set to be 𝜎 = 1.0 and 𝜎 = 0.01, respectively.

Notably, we observe that for smaller values of 𝜖, the fair strike values in the SABR-SVCEV model exhibit sharper changes in the 
short time-to-maturity region (see Fig. 6-(b), (d), and (f)). This indicates that the SABR-SVCEV model allows for more flexible pricing 
results compared to the Black-Scholes model, in particular, for contracts with short remaining maturities.
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Fig. 5. Implied volatilities of the GBP/USD option, 3rd March, 2020 under the SABR and unified models and market-implied volatilities. 
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Fig. 6. Comparison of the 𝑃 -function and the fair strike price under the Black-Scholes model and the SABR-SVCEV model for various choices in the parameters 𝜖 and 
𝛾 .

5. Conclusion

Both SABR and SVCEV models are the CEV based stochastic-local volatility models which have been used for many financial 
derivatives. This paper proposed a model unifying these two models and obtains an explicit valuation formula for the approximate 
derivative prices under the unified SABR-SVCEV model. The formula is expressed as a simple elegant form in terms of Mellin con

volution, so that it requires only a single integral (instead of a double integral) calculation. The formula can be represented as the 
CEV price plus two perturbation terms related to the SABR and SVCEV related volatilities. Furthermore, we obtained a closed-form 
pricing formula that can be easily calculated using the well-known Black-Scholes derivative price in a reasonably practical situation 
for the elasticity of variance. This is a strong merit from a computational point of view. Two specific examples were provided to 
demonstrate the merits. We demonstrated the performance of the model in real-world scenarios using data from a foreign exchange 
option market.

As future work, one can modify the model introduced here in order to price American style derivatives or path-dependent exotic 
derivatives such as Asian, barrier and lookback options. In addition, the proposed model can be extended to capture more delicate 
features of volatilities such as fractional stochastic volatilities using the Malliavin calculus instead of the classical Itô calculus used 
in this paper.
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Appendix A

For the proof of 𝑦 independence of the terms 𝑃00, 𝑃01 and 𝑃10 and the derivation of the PDEs in (2.9), the following lemmas are 
required. They are the solvability condition of a Poisson equation and the growth condition related to the operator 0 = 𝛼(𝑦)𝜕𝑦 +
1
2𝛽2(𝑦)𝜕𝑦𝑦, respectively. In this paper, we assume that every term 𝑃𝑖𝑗 is assumed to satisfy the growth condition in Lemma 5.2.

Lemma 5.1. The Poisson equation

0𝑝(𝑡, 𝑠, 𝑥, 𝑦) + 𝑞(𝑡, 𝑠, 𝑥, 𝑦) = 0

has a solution 𝑝(𝑡, 𝑠, 𝑥, 𝑦) if and only if the function 𝑞 is centered with respect to the invariant distribution Φ of the process 𝑌 , i.e.,

⟨𝑞(𝑡, 𝑠, 𝑥, ⋅)⟩ = 0.

Proof. This is a version of the Fredholm alternative. Refer to Section 3.2 in Fouque et al. [14]. □

Lemma 5.2. Assume that equation 0𝑝(𝑡, 𝑠, 𝑥, 𝑦) = 0 admits only solutions that do not grow as fast as

𝜕𝑦𝑝(𝑡, 𝑠, 𝑥, 𝑦) ∼ 𝑒∫ (−2𝛼)∕𝛽2𝑑𝑦, 𝑦 →∞.

Then the solution 𝑝 does not depend on the variable 𝑦.

Proof. Solving equation 
(
𝛼(𝑦)𝜕𝑦 +

1
2𝛽2(𝑦)𝜕𝑦𝑦

)
𝑝 = 0 directly leads to this result. □

Plugging the expansion (2.7) into the PDE (2.4), one can obtain

0𝑃00 = 0,

0𝑃01 +1𝑃00 = 0,

0𝑃02 +1𝑃01 +2𝑃00 = 0,

0𝑃03 +1𝑃02 +2𝑃01 = 0.

(A.1)

Then from the first equation in (A.1) we find that 𝑃00 is independent of 𝑦 according to Lemma 5.2. This leads to 0𝑃01 = 0 from the 
second equation in (A.1) which again implies the 𝑦-independence of the term 𝑃01. Then from the third equation in (A.1), we obtain

⟨2⟩𝑃00 = 0. (A.2)

Applying 𝑃02 = −−1
0 2𝑃00 from the third equation in (A.1) to the fourth equation in (A.1) and using (A.2), we have

⟨2⟩𝑃01 = ⟨1−1
0

(2 − ⟨2⟩)⟩𝑃00 (A.3)

by Lemma 5.1. Plugging the expansion (2.7) into the PDE (2.4), one also can obtain

0𝑃10 = 0,

0𝑃11 +1𝑃10 +3𝑃00 = 0,

0𝑃12 +1𝑃11 +2𝑃10 +3𝑃01 +1𝑃00 = 0.

(A.4)

Then from (A.4) we find that 𝑃10 and 𝑃11 are 𝑦-independent by Lemma 5.2 and

⟨2⟩𝑃10 = −⟨1⟩𝑃00, (A.5)

by Lemma 5.1. Therefore, we have derived the PDEs (2.9) since (A.2), (A.3), and (A.5) obtained above are exactly the same as those 
PDEs.

Data availability

Data will be made available on request.
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