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 A B S T R A C T

Generally, a perpetual American strangle option is an investment strategy integrating the 
characteristics of call and put options under an underlying asset with an infinite time horizon. 
Investors commonly use this trading strategy as they anticipate the underlying asset to fluctuate 
considerably but are uncertain about an increase or decrease. In this study, we consider 
the perpetual American strangle options under the Stochastic Volatility Constant Elasticity of 
Variance (SVCEV) model and examine the approximated option prices and free boundary values 
using an asymptotic analysis. Moreover, we verify the pricing accuracy of the approximated 
solutions for perpetual American strangle options under SVCEV by comparing our solutions with 
the prices derived from Monte Carlo simulations. Finally, we analyze the price sensitivities of 
the options and free boundaries in terms of several model parameters. Our findings emphasize 
that the influence of the SV factor on the option price or the optimal exercise boundary is 
significant for the effective volatility and the elasticity parameter.

1. Introduction

Option pricing theory is pivotal in the mathematical finance field. Particularly, volatility is considered essential in pricing 
derivatives, dynamic hedging, and portfolio management in financial markets. For instance, the price for foreign exchange (FX) 
options is commonly quoted in terms of volatility. Moreover, volatility has become a focus of academic research and practical 
applications because of its importance in the valuation of financial derivatives.

Meanwhile, methods to model volatility have been under study for many years. The Black–Scholes model [1] is one of the 
most popular models. However, for such a model, significant challenges have arisen in modeling volatility to capture and reflect 
the accumulated empirical evidence from financial markets. This is because the Black–Scholes model assumes constant implied 
volatilities, which contradicts empirical findings revealing that the implied volatilities of equity options often exhibit a smile or skew 
pattern. Two major types of volatility models have been proposed to address the assumptions in the Black–Scholes model, which 
are unsuitable for real-world financial industries, and to extend it to account for the skew and smile effects: local and Stochastic 
volatility (SV) models.

Local volatility models have been developed by Dupire [2] and Derman and Kani [3] for the continuous and discrete cases, 
respectively, which are collectively referred to as non-parametric local volatility models. In these models, volatility relies on the asset 
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price and time, emphasizing the significance of the correlation between changes in the underlying asset price and the randomness of 
volatility in pricing options. Furthermore, Cox and Ross [4] proposed the constant elasticity of variance (CEV) model as a parametric 
local volatility model. Tian et al. [5] highlight that the CEV model can generate a U-shaped implied volatility curve, in contrast to 
the flat curve assumed in the Black–Scholes model. Nevertheless, in the CEV model proposed by Cox and Ross [4], the volatility 
and the underlying asset price correlate perfectly, which is entirely positive or negative, depending on the elasticity parameter. In 
contrast, empirical studies, such as that by Ghysels et al. [6], reveal that there is a definite correlation at all times between the 
volatility and the risky asset price, displaying the time-varying characteristics of volatility.

Regarding SV models, the extraordinary volatility behaviors observed in financial markets, particularly after the 1987 Financial 
Crash, have highlighted the significance of non-flat implied volatility. Consequently, participants in financial transactions have 
increasingly focused on models that can predict financial asset movement. Subsequently, the (pure) SV model was proposed to better 
describe and reflect real-world financial market conditions after recognizing the SV of an underlying asset. The Heston model (cf. 
Heston [7]) and the fast mean-reverting SV model proposed by Fouque et al. [8] have become representative SV models designed 
to capture the mean-reversion phenomenon of volatility observed in real markets. Additionally, the Hull and White model [9] 
modeled the instantaneous variance process as a geometric Brownian motion. The Heston model [7], with volatility driven by 
a Cox–Ingersoll–Ross(CIR) process, has been widely regarded as one of the most popular stochastic models due to its analytical 
tractability.

However, local volatility and SV models do not fully capture empirical evidence revealing that the implied volatility of equity 
options exhibits smile and skew curves simultaneously. Thus, researchers have proposed a hybrid model that combines these two 
approaches, stressing that these mixed models are designed to leverage the advantages of local and stochastic volatility frameworks. 
Choi et al. [10] combined the SV and CEV in a multi-factor model – the hybrid stochastic and local volatility model or the Stochastic 
Volatility Constant Elasticity of Variance (SVCEV) model – to price the European vanilla options and verify the effectiveness of the 
hybrid model, comparing it with other models. The SVCEV model has been widely used to evaluate various contingent claims. 
For instance, Kim et al. [11] developed a pricing formula for European vulnerable options using the SVCEV model, while Kim 
et al. [12] applied the model to implement the pricing of real options. Choi et al. [13] investigated the analytic pricing formulas 
for timer options based on the SVCEV model. However, Choi et al. [14] used a multiscale hybrid model incorporating fast and slow 
factors to evaluate an equity-linked annuity under this framework. Furthermore, Choi et al. [15] used the hybrid stochastic and 
local volatility model to derive an implied volatility formula for corresponding FX options and conducted calibration experiments 
to analyze the implied volatilities in three FX option markets. Recently, Cao et al. [16] examined the pricing challenge of a variance 
swap based on a hybrid of the CEV and SV models. Through option calibration, they compared the SVCEV model with the CEV 
model and the Heston SV model to evaluate their performance in fitting option data.

In recent years, financial markets have grown more complex and advanced; thus, diverse derivative products designed to 
maximize investor interest have emerged. One of the securities is the strangle option, which is an investment strategy constructed 
via call and put options with the same expiration date but different strike prices.

This strategy is typically useful for investors who anticipate dramatic fluctuations of the risky asset but cannot predict the 
direction. Zaevski [17] revealed that such a phenomenon occurs frequently during periods of high volatility, often supported by 
volatility clustering observed in real financial markets. Furthermore, Chaput and Ederington [18] and Hull [19] observed that the 
strangle strategy is the best for risk management and volatility trading. Extensive research has focused on applying strangle options 
to enhance investment returns or efficiently manage risks associated with sharp price movements in volatile markets. Based on these 
characteristics, extensive research has focused on applying strangle options to enhance investment returns or efficiently manage risks 
associated with sharp price fluctuations in volatile markets. For example, Fahlenbrach and Sandas [20] analyzed option strategies, 
including strangles, in the FTSE-100 index market and studied evidence of order flows in volatility-sensitive strategies. Similarly, 
Kownatzki et al. [21] examined the potential of strangle options for managing event-risk environments from the Standard and Poor’s 
(S&P) 500 index between 2018 and 2020.

In this article, we investigate the pricing of perpetual American strangle options under the SVCEV model. As previously 
mentioned, the SV and CEV models were incorporated into a multi-factor model called the hybrid stochastic and local volatility 
model owing to the disadvantage of the SV or CEV model. This model, introduced by Choi et al. [10], captures the leverage effect 
to better fit the corresponding market and also addresses the hedging instability caused by the CEV model.

Strangle options, particularly when combined with American options, have been the focus of extensive research. These options 
allow investors to efficiently manage volatile market risks by enabling early exercise at an optimal stopping time before maturity, 
offering significant advantages. Consequently, studies have explored the pricing and exercise boundaries of American strangle 
options. For instance, Chiarella and Ziogas [22] studied the American strangle option as a generalization of McKean’s free boundary 
problem [23] for American options, using the Fourier transform technique. Moraux [24] investigate the perpetual American strangles 
taking advantage of a nonlinear technique, comparing them with option portfolios. Boyarchenko [25] examined the pricing of 
perpetual American strangles under a jump-diffusion model. In contrast, Ma and Zhang [26] addressed optimal exercise boundaries 
through numerical methods, introducing a high-order collocation method for pricing. Ha et al. [27] also studied the perpetual 
American strangle option pricing using the SV model. In addition, Chang and Sheu [28] considered the pricing of perpetual American 
strangle and straddle options using a jump-diffusion model. Furthermore, Chuang [29] proposed a quasi-analytical approach to carry 
out the analysis of the perpetual strangles under the early exercise frontier. Nevertheless, no research has been conducted on the 
pricing of the perpetual American strangle option (PASO) and its optimal exercise boundary using the hybrid SV and local volatility 
model to our knowledge. Therefore, we have conducted an extensional study on the pricing of PASOs with SVCEV, referred to as
PASO-SVCEV. 
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The primary contributions of this work are outlined as follows:
Establishing the partial differential equation for PASO-SVCEV: We derive a partial differential equation (PDE) for the value of 

PASO-SVCEV. Due to the complexity of PDE, introduced by stochastic volatility and local volatility (SVCEV), obtaining a closed-form 
solution for this PDE is nearly impossible. Furthermore, the mathematical problem of American strangle options requires handling 
two free boundaries. Thus, we apply the technique of the asymptotic analysis provided by Fouque et al. [8] to derive an approximate 
option pricing formula and determine the approximated early exercise boundary for PASO-SVCEV.

Validating the pricing formula: Using Monte Carlo simulations, we validate the accuracy of the derived option prices. 
Specifically, we compute the residual, which is the difference between the Monte Carlo price and our approximated option price. 
The error between the Monte Carlo price and our approximated option price converges to zero as the number of Monte Carlo paths 
increases, verifying our pricing accuracy.

Analyzing the impact of SV: We conduct a numerical analysis to investigate the influence of SV on the option price and free 
boundary values under various model parameters, especially elasticity and effective volatility. Our findings highlight the significant 
impact of SV on PASO-SVCEV. The effect of the SV factor on the option price and optimal exercise boundary becomes more 
pronounced in terms of elasticity and effective volatility. Additionally, the free boundary for put options is more sensitive to the 
SV term than that of call options with respect to the correlation between the risky asset and the volatility, market price of risk, 
volatility, or elasticity.

The rest of this paper is structured as follows. Section 2 outlines the construction of the model dynamics under the underlying 
asset price and obtains the PDE for PASO-SVCEV. In Section 3, we present the first-order approximation of the option price using 
asymptotic analysis. Section 4 validates the accuracy of the approximated option prices for PASOSV and examines the sensitivities 
of SV factors to the option value with respect to the model parameters. Finally, Section 5 concludes with a summary of key findings 
and remarks.

2. Model formulation

In this section, we first design a stochastic model for the price of the perpetual American strangle option. Let 𝑆𝑡 be the price of 
the underlying asset with stochastic volatility and constant elasticity of variance, considering dividend rate 𝑞. Let 𝑉𝑡 be the volatility 
of 𝑆𝑡 following an OU process. Then, the dynamics of 𝑆𝑡 and 𝑉𝑡 under market probability measure P is described using the following 
stochastic differential equations (SDEs): 

d𝑆𝑡 = (𝜇 − 𝑞)𝑆𝑡d𝑡 + 𝑓 (𝑉𝑡)𝑆
𝜃∕2
𝑡 d𝑊𝑡,

d𝑉𝑡 = 𝛼(𝑚 − 𝑉𝑡)d𝑡 + 𝛽
(

𝜌d𝑊𝑡 +
√

1 − 𝜌2d𝑍𝑡

)

,
(2.1)

where 𝜇 denotes the expected return rate, 𝑓 is a smooth function bounded by positive constants 𝑐1 and 𝑐2, such that 0 < 𝑐1 ≤ 𝑓 ≤
𝑐2 < ∞ and 𝜃 is an elasticity parameter. In addition, 𝛼 and 𝛽 are positive constants, 𝑚 is the long-term mean of 𝑉𝑡, and 𝜌 represents 
the correlation between the standard Brownian motions 𝑊𝑡 and 𝑍𝑡, with 𝜌 satisfying −1 ≤ 𝜌 ≤ 1.

The OU process 𝑉𝑡 is an ergodic process with the mean-reverting property and 𝑉𝑡 is expressed as 𝑉𝑡 = 𝑚 + (𝑉0 − 𝑚)𝑒𝛼𝑡 +
𝛽 ∫ 𝑡

0 𝑒−𝛼(𝑡−𝑠)d𝑍𝑠. Thus, 𝑉𝑡 follows the normal distribution  (𝑚 + (𝑉0 − 𝑚)𝑒−𝛼𝑡, 𝑢2(1 − 𝑒−2𝛼𝑡)). As 𝑡 → ∞, 𝑉𝑡 is independent to 𝑉0, 
such that 𝑉𝑡 ∼  (𝑚, 𝑢2), where 𝑚 is the mean and 𝑢 = 𝛽

√

2𝛼
 is the standard deviation of the invariant distribution of 𝑉𝑡. Suppose 

that the mean reversion rate 𝛼 is sufficient; in that case, 𝑉𝑡 returns to the mean of its invariant distribution independently of time. 
Therefore, we consider a sufficiently small parameter 𝜖, defined as the reciprocal of the mean reversion rate 𝛼.

Option prices are represented as the expected value of discounted payoffs under a risk-neutral measure and the no-arbitrage 
pricing framework. The model’s dynamics (2.1) can be reformulated under the risk-neutral probability measure P∗ by applying the 
Girsanov theorem [30]. 

d𝑆𝑡 = (𝑟 − 𝑞)𝑆𝑡d𝑡 + 𝑓 (𝑉𝑡)𝑆
𝜃∕2
𝑡 d𝑊 ∗

𝑡 ,

d𝑉𝑡 =

(

1
𝜖
(𝑚 − 𝑉𝑡) −

𝑢
√

2
√

𝜖
𝛬(𝑉𝑡)

)

d𝑡 +
𝑢
√

2
𝜖

(

𝜌d𝑊 ∗
𝑡 +

√

1 − 𝜌2d𝑍∗
𝑡

)

,
(2.2)

where 𝑟 is a risk-free interest rate, 𝛬 is expressed as 𝛬(𝑦) = 𝜌 𝜇−𝑟
𝑓 (𝑦) + 𝛾(𝑦)

√

1 − 𝜌2 for the market price of volatility risk 𝛾(⋅), and 𝑊 ∗
𝑡

and 𝑍∗
𝑡  are transformed standard Brownian motions under the measure P∗.

The analytic form of the price of American-style options remains to be revealed; however, the pricing formula for perpetual 
American options is well known. Perpetual options are those with no expiry date, signifying that the holder can exercise the option 
at any time. The option’s value is independent of time and is defined as follows for a given underlying asset price 𝑆𝑡 = 𝑠.

𝑃 (𝑠) = sup
𝜏∈𝛤 [𝑡,∞)

E∗ [𝑒−𝑟(𝜏−𝑡)ℎ(𝑠)𝟏{𝜏<∞} |𝑆𝑡 = 𝑠
]

,

where 𝛤 [𝑡,∞) denotes the set of stopping times 𝜏 on [𝑡,∞) and determines the execution of the option, E∗[⋅] represents the conditional 
value under the risk neutrality measure and the payoff function of perpetual American options, denoted by ℎ, represents the following 
forms, depending on whether the option is a call or put—(𝑆𝑡 −𝐾)+ for a call option and (𝐾 − 𝑆𝑡)+ for a put option. Moreover, the 
optimal execution boundary of the option is defined as 𝜏 = inf{𝑡 > 𝑡 ∶ 𝑆 = 𝑠 }, representing the earliest time that the price 𝑆
2 1 𝑡2 𝑓 𝑡2
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of the underlying asset reaches a boundary 𝑠𝑓 . The price and optimal boundary of the perpetual American option are expressed as 
follows:

𝑃 (𝑠) =
( 𝑠𝑓

𝑠

)
2𝑟
𝜎2 (

𝐾 − 𝑠𝑓
)

and 𝑠𝑓 = 𝐾

1 + 𝜎2
2𝑟

,

where 𝐾, 𝑟, and 𝜎 are the strike price of the option, risk-free interest rate, and constant volatility of the underlying asset, respectively. 
The above pricing formula and optimal boundary correspond to a perpetual American put option under the classical Black–Scholes 
framework, in which the underlying asset follows a geometric Brownian motion with constant volatility.

This characteristic of options provides favorable conditions for investors and expands the possibilities of their use through 
different strategies. A typical example is the strangle strategy. A strangle is an option’s investment strategy that combines a long 
put and a long call option with strike prices 𝐾𝑝 and 𝐾𝑐 , respectively, according to Chiarella and Ziogas [22]. Here, the condition 
𝐾𝑝 < 𝐾𝑐 has to be satisfied. Then, the payoff function is defined as 

ℎ(𝑠) = (𝐾𝑝 − 𝑠)+ + (𝑠 −𝐾𝑐 )+. (2.3)

In addition, under the risk-neutral probability measure P∗, the PASO’s price, denoted by (𝑠, 𝑣), is written as 
(𝑠, 𝑣) = sup

𝜏∈𝛤 [𝑡,∞)
E∗
𝑠,𝑣

[

𝑒−𝑟(𝜏−𝑡)ℎ(𝑠)𝟏{𝜏<∞}
]

. (2.4)

The entire region  = {(𝑠, 𝑣) | 0 < 𝑠 < ∞, 0 < 𝑣 < ∞} is where prices are defined and can be represented as the union of two 
regions— and .

 = {(𝑠, 𝑣) ∈  |(𝑠, 𝑣) = (𝐾𝑝 − 𝑠)+ + (𝑠 −𝐾𝑐 )+}

 = {(𝑠, 𝑣) ∈  |(𝑠, 𝑣) > (𝐾𝑝 − 𝑠)+ + (𝑠 −𝐾𝑐 )+}.

Also,  is divided into two subregions 𝑝 and 𝑐 which are described as
𝑝 = {(𝑠, 𝑣) ∈  |(𝑠, 𝑣) = (𝐾𝑝 − 𝑠)+ > 0},

𝑐 = {(𝑠, 𝑣) ∈  |(𝑠, 𝑣) = (𝑠 −𝐾𝑐 )+ > 0}.

Two boundary values exist because  and  are regions with no intersection. Both boundary values—𝑠𝑓,𝑐 and 𝑠𝑓,𝑝—can be 
represented as follows:

𝑠𝑓,𝑝(𝑣) = sup{𝑠 | (𝑠, 𝑣) ∈ 𝑝} and 𝑠𝑓,𝑐 (𝑣) = inf{𝑠 | (𝑠, 𝑣) ∈ 𝑐},

which is called the free boundary of PASO. Therefore, the continuous region  can be redefined as follows:
 = {(𝑠, 𝑣) | 𝑠𝑓,𝑝 < 𝑠 < 𝑠𝑓,𝑐}.

Subsequently, we can transform the given optimal stopping time problem (2.4) into the following free boundary problem by 
applying the methodology of Tao [31], 

1
2
𝑓 (𝑣)2𝑠𝜃 𝜕

2
𝜕𝑠2

+ 𝑟(𝑠 − 𝑞) 𝜕
𝜕𝑠

− 𝑟 +

√

2𝑢
√

𝜖

(

𝜌𝑓 (𝑣)𝑠𝜃∕2 𝜕2
𝜕𝑠𝜕𝑣

− 𝛬(𝑣) 𝜕
𝜕𝑣

)

+ 1
𝜖

(

(𝑚 − 𝑣) 𝜕
𝜕𝑣

+ 𝑢2 𝜕
2
𝜕𝑣2

)

= 0 (2.5)

for (𝑠, 𝑣) ∈ (𝑠𝑓,𝑝, 𝑠𝑓,𝑐 ) × (−∞,+∞), together with the four boundary conditions 
(𝑠𝑓,𝑝(𝑣), 𝑣) = 𝐾𝑝 − 𝑠𝑓,𝑝,

(𝑠𝑓,𝑐 (𝑣), 𝑣) = 𝑠𝑓,𝑐 −𝐾𝑐 ,
𝜕
𝜕𝑠

(𝑠𝑓,𝑝(𝑣), 𝑣) = −1,

𝜕
𝜕𝑠

(𝑠𝑓,𝑐 (𝑣), 𝑣) = 1,

(2.6)

when 𝐾𝑐 > 𝐾𝑝. Here, the first and second equations in (2.6) are matching conditions for the put and call, respectively and the third 
and fourth equations in (2.6) correspond to the smooth pasting conditions with respect to 𝑠. The PDE (2.5) can be described as 

(

̃2 +
1
√

𝜖
̃1 +

1
𝜖
̃0

)

(𝑠, 𝑣) = 0, (2.7)

by defining the operators in the following manner: 

̃0 = (𝑚 − 𝑣) 𝜕
𝜕𝑣

+ 𝑢2 𝜕2

𝜕𝑣2
,

̃1 =
√

2𝜌𝑢𝑓 (𝑣)𝑠𝜃∕2 𝜕2

𝜕𝑠𝜕𝑦
−
√

2𝑢𝛬(𝑣) 𝜕
𝜕𝑣

,

̃ = 1𝑓 2(𝑣)𝑠𝜃 𝜕2 + (𝑟 − 𝑞) 𝑠 𝜕 − 𝑟,

(2.8)
2 2 𝜕𝑠2 𝜕𝑠

4 
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where  is an identity operator. We use the following new variables to find  , which satisfies the PDE (2.7):
𝑥 = ln 𝑠, 𝑥𝑓,𝑐 = ln 𝑠𝑓,𝑐 , 𝑥𝑓,𝑝 = ln 𝑠𝑓,𝑝, and 𝑄(𝑥, 𝑣) = (𝑠, 𝑣).

Then, the PDE (2.7) is converted into
(

2 +
1
√

𝜖
1 +

1
𝜖
0

)

𝑄(𝑥, 𝑣) = 0,

with the operators 

0 = (𝑚 − 𝑣) 𝜕
𝜕𝑣

+ 𝑢2 𝜕2

𝜕𝑣2
,

1 =
√

2𝜌𝑢𝑓 (𝑣)𝑒(𝜃∕2−1)𝑥 𝜕2

𝜕𝑥𝜕𝑣
−
√

2𝑢𝛬(𝑣) 𝜕
𝜕𝑣

,

2 =
1
2
𝑓 2(𝑣)𝑒(𝜃−2)𝑥 𝜕2

𝜕𝑥2
+
(

𝑟 − 𝑞 − 1
2
𝑓 2(𝑣)𝑒(𝜃−2)𝑥

) 𝜕
𝜕𝑥

− 𝑟.

(2.9)

Subsequently, the linear complementarity problem with four boundary conditions is obtained as follows: 
𝜖𝑄(𝑥, 𝑣) = 0, (𝑥, 𝑣) ∈ (𝑥𝑓,𝑝, 𝑥𝑓,𝑐 ) × (−∞,+∞),

𝑄(𝑥𝑓,𝑝(𝑣), 𝑣) = 𝐾𝑝 − 𝑒𝑥𝑓,𝑝 ,

𝑄(𝑥𝑓,𝑐 (𝑣), 𝑣) = 𝑒𝑥𝑓,𝑐 −𝐾𝑐 ,
𝜕𝑄
𝜕𝑥

(𝑥𝑓,𝑝(𝑣), 𝑣) = −𝑒𝑥,

𝜕𝑄
𝜕𝑥

(𝑥𝑓,𝑐 (𝑣), 𝑣) = 𝑒𝑥,

(2.10)

where the differential operator 𝜖 is 𝜖 = 2 +
1
√

𝜖
1 +

1
𝜖0.

3. Option price approximation

Based on the work by Fouque et al. [8], when the option price 𝑄(𝑥, 𝑣) and free boundaries—𝑥𝑓,𝑝(𝑣) and 𝑥𝑓,𝑐 (𝑣)—are asymptotically 
expanded in terms of the small parameter √𝜖 for 0 < 𝜖 ≪ 1, the following formal series expansions can be derived: 

𝑄(𝑥, 𝑣) =
∞
∑

𝑛=0
𝜖𝑛∕2𝑄𝜖

𝑛(𝑥, 𝑣), 𝑥𝑓,𝑝(𝑣) =
∞
∑

𝑛=0
𝜖𝑛∕2𝑝𝜖𝑛(𝑣), 𝑥𝑓,𝑐 (𝑣) =

∞
∑

𝑛=0
𝜖𝑛∕2𝑐𝜖𝑛(𝑣) (3.1)

Substituting (3.1) into the PDE in (2.10) results in 
1
𝜖
0𝑄

𝜖
0 +

1
√

𝜖
(0𝑄

𝜖
1 + 1𝑄

𝜖
0) + (0𝑄

𝜖
2 + 1𝑄

𝜖
1 + 2𝑄

𝜖
0) +

√

𝜖(0𝑄
𝜖
3 + 1𝑄

𝜖
2 + 2𝑄

𝜖
1) = (𝜖) (3.2)

Furthermore, the matching and smooth pasting conditions in (2.10) can be expanded as follows: 

𝑄𝜖
0(𝑐

𝜖
0(𝑣)) +

√

𝜖
( 𝜕𝑄𝜖

0
𝜕𝑥

(𝑐𝜖0(𝑣))𝑐
𝜖
1(𝑣) +𝑄𝜖

1(𝑐
𝜖
0(𝑣))

)

= −𝐾𝑐 + 𝑒𝑐
𝜖
0 (𝑣) +

√

𝜖𝑐𝜖1(𝑣)𝑒
𝑐𝜖0 (𝑣) + (𝜖),

𝑄𝜖
0(𝑝

𝜖
0(𝑣)) +

√

𝜖
( 𝜕𝑄𝜖

0
𝜕𝑥

(𝑝𝜖0(𝑣))𝑝
𝜖
1(𝑣) +𝑄1(𝑝0,0(𝑣))

)

= 𝐾𝑝 − 𝑒𝑝
𝜖
0(𝑣) −

√

𝜖𝑝𝜖1(𝑣)𝑒
𝑝𝜖0(𝑦) + (𝜖),

𝜕𝑄𝜖
0

𝜕𝑥
(𝑐𝜖0(𝑣)) +

√

𝜖

(

𝜕2𝑄𝜖
0

𝜕𝑥2
(𝑐𝜖0(𝑣))𝑐

𝜖
1(𝑣) +

𝜕𝑄𝜖
1

𝜕𝑥
(𝑐𝜖0(𝑣))

)

= 𝑒𝑐
𝜖
0 (𝑣) +

√

𝜖𝑐𝜖1(𝑣)𝑒
𝑐𝜖0 (𝑣) + (𝜖),

𝜕𝑄𝜖
0

𝜕𝑥
(𝑝𝜖0(𝑣)) +

√

𝜖

(

𝜕2𝑄𝜖
0

𝜕𝑥2
(𝑝𝜖0(𝑣))𝑝

𝜖
1(𝑣) +

𝜕𝑄𝜖
1

𝜕𝑥
(𝑝𝜖0(𝑣))

)

= −𝑒𝑝
𝜖
0(𝑣) −

√

𝜖𝑝𝜖1(𝑣)𝑒
𝑝𝜖0(𝑣) + (𝜖).

(3.3)

According to Section 3.2 of Fouque et al. [8], multiplying Eq. (3.2) by 𝜖 eliminates the diverging term. Thus, inserting the 
expansion (3.1) into the PDE (3.2) results in the following PDEs: 

0𝑄
𝜖
0 = 0,

0𝑄
𝜖
1 + 1𝑄

𝜖
0 = 0,

0𝑄
𝜖
2 + 1𝑄

𝜖
1 + 2𝑄

𝜖
0 = 0,

0𝑄
𝜖
3 + 1𝑄

𝜖
2 + 2𝑄

𝜖
1 = 0,

⋯ .

(3.4)

𝑄𝜖
0 does not depend on the unobserved variable 𝑣 because 0 only acts on 𝑣. Similarly, when the growth conditions are applied to 

the second PDE in (3.4), the correction term 𝑄𝜖
1 is consequently independent of 𝑣. Thus, the third and fourth equations in (3.4) and 

the centering condition yield a homogeneous equation
 𝑄𝜖 = 0, (3.5)
CEV 0
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and CEV𝑄
𝜖
1 = 𝐺(𝑥), (3.6)

respectively. Here, the operator ⟨2⟩ ≜ CEV with effective volatility 𝜎̄ =
√

⟨𝑓 2
⟩ is given by 

CEV = 1
2
𝜎̄2(𝑣)𝑒(𝜃−2)𝑥 𝜕2

𝜕𝑥2
+
(

𝑟 − 𝑞 − 1
2
𝜎̄2(𝑣)𝑒(𝜃−2)𝑥

) 𝜕
𝜕𝑥

− 𝑟, (3.7)

and the non-homogeneous term 𝐺 is given as 

𝐺(𝑥) =
𝑢𝜌
√

2
⟨𝑓𝜙′

⟩𝑒3(𝜃∕2−1)𝑥
(

𝜕3𝑄0,0

𝜕𝑥3
− 3

𝜕2𝑄0,0

𝜕𝑥2
+

𝜕𝑄0,0

𝜕𝑥

)

+ 𝑢
√

2

(

𝜌⟨𝑓𝜙′
⟩𝜃𝑒−3(𝜃∕2−1)𝑥 − ⟨𝛬𝜙′

⟩𝑒(𝜃−2)𝑥
)

(

𝜕2𝑄0,0

𝜕𝑥2
−

𝜕𝑄0,0

𝜕𝑥

)

, (3.8)

where 𝜙(𝑣) is a solution of the Poisson equation 0𝜙 = 𝑓 2(𝑣)− ⟨𝑓 2(𝑣)⟩ and ⟨⋅⟩ = ∫ ∞
−∞ ⋅ 1

2𝜋 ∫ 𝜉
−∞ 𝑒−

𝑧2
2 d𝑧 represents the expectation under 

the invariant distribution of OU process 𝑉𝑡.
We present the leading order, correction term prices, and free boundaries in the subsequent subsections. First, we expand 𝑄𝜖

𝑛, 
𝑝𝜖𝑛, and 𝑐𝜖𝑛 asymptotically with respect to a small parameter 𝛿 = 2 − 𝜃 for 0 < 𝛿 ≪ 1: 

𝑄𝜖
𝑛 =

∞
∑

𝑘=0
𝛿𝑘𝑄𝑛,𝑘, 𝑝𝜖𝑛 =

∞
∑

𝑘=0
𝛿𝑘𝑝𝑛,𝑘, and 𝑐𝜖𝑛 =

∞
∑

𝑘=0
𝛿𝑘𝑐𝑛,𝑘. (3.9)

As stated by Choi et al. [10] and Kim et al. [32], observations of data (S&P 500 index) from the equity market demonstrate that 
the constants elasticity 𝜃 < 2 and 𝜃 ≈ 2. We refer to them and assume that 𝜃 = 2 − 𝛿 for sufficiently small parameter 0 < 𝛿 ≪ 1.

3.1. The zeroth-order approximation price 𝑄𝜖
0

We find the hierarchy of PDEs from the PDE (3.5) and an asymptotic expansion (3.9), as follows:

BS𝑄0,0 = 0,

BS𝑄0,1 =
1
2
𝜎̄2𝑥

(

𝜕2𝑄0,0

𝜕𝑥2
−

𝜕𝑄0,0

𝜕𝑥

)

,

⋯ ,

BS𝑄0,𝑘 = 1
2
𝜎̄2

𝑘
∑

𝑖=1

(−1)𝑖+1𝑥𝑖

𝑖!

(

𝜕2𝑄0,𝑘−𝑖

𝜕𝑥2
−

𝜕𝑄0,𝑘−𝑖

𝜕𝑥

)

where, 

BS(𝜎̄) =
1
2
𝜎̄2 𝜕2

𝜕𝑥2
+
(

𝑟 − 𝑞 − 1
2
𝜎̄2

) 𝜕
𝜕𝑥

− 𝑟. (3.10)

This PDE system can be obtained from the PDE (3.5) using the Taylor expansion of 𝑒−𝛿𝑥 with respect to 𝛿 and comparing the 
coefficients for each 𝛿-order term. In application, we substitute 𝜃 = 2 − 𝛿 into PDE (3.5). Then, the PDE (3.5) yields 

1
2
𝜎̄2𝑒(𝜃−2)𝑥

𝜕2𝑄𝜖
0

𝜕𝑥2
+
(

𝑟 − 𝑞 − 1
2
𝜎̄2𝑒(𝜃−2)𝑥

) 𝜕𝑄𝜖
0

𝜕𝑥
− 𝑟𝜖

0 = 0. (3.11)

Using the Taylor expansion of 𝑒𝛿𝑥, Eq.  (3.11) is expressed as 

1
2
𝜎̄2

∞
∑

𝑘=0
𝛿𝑘

(−1)𝑘𝑥𝑘

𝑘!
𝜕2

𝜕𝑥2

∞
∑

𝑘=0
𝛿𝑘𝑄0,𝑘 +

(

𝑟 − 𝑞 − 1
2
𝜎̄2

∞
∑

𝑘=0
𝛿𝑘

(−1)𝑘𝑥𝑘

𝑘!

)

𝜕
𝜕𝑥

∞
∑

𝑘=0
𝛿𝑘𝑄0,𝑘 − 𝑟

∞
∑

𝑘=0
𝛿𝑘𝑄0,𝑘 = 0. (3.12)

The coefficients of each 𝛿𝑘-order term (𝑘 ≥ 0) in Eq.  (3.12) are compared, resulting in the following PDE.

• The zero-order term of 𝛿 : 
1
2
𝜎̄2

𝜕2𝑄0,0

𝜕𝑥2
+
(

𝑟 − 𝑞 − 1
2
𝜎̄2

) 𝜕𝑄0,0

𝜕𝑥
− 𝑟𝑄0,0 = 0 (3.13)

• 𝛿-order term : 
1
2
𝜎̄2

𝜕2𝑄0,1

𝜕𝑥2
+
(

𝑟 − 𝑞 − 1
2
𝜎̄2

) 𝜕𝑄0,1

𝜕𝑥
− 𝑟𝑄0,1 =

1
2
𝜎̄2𝑥

𝜕2𝑄0,0

𝜕𝑥2
− 1

2
𝜎̄2𝑥

𝜕𝑄0,0

𝜕𝑥
(3.14)

• 𝛿𝑘-order term for 𝑘 > 1 : 

1
2
𝜎̄2

𝜕2𝑄0,𝑘

𝜕𝑥2
+
(

𝑟 − 𝑞 − 1
2
𝜎̄2

) 𝜕𝑄0,𝑘

𝜕𝑥
− 𝑟𝑄0,𝑘 = 1

2
𝜎̄2

𝑘
∑ (−1)𝑖+1𝑥𝑖

𝑖!

(

𝜕2𝑄0,𝑘−𝑖

𝜕𝑥2
−

𝜕𝑄0,𝑘−𝑖

𝜕𝑥

)

(3.15)

𝑖=1

6 
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Additionally, the matching and smooth pasting conditions presented in (3.3) can be expressed in an expanded form as follows: 

𝑄0,0(𝑐0,0(𝑣)) +
√

𝜖
( 𝜕𝑄0,0

𝜕𝑥
(𝑐0,0(𝑣))𝑐0,1(𝑣) +𝑄0,1(𝑐0,0(𝑣))

)

+ 𝛿
( 𝜕𝑄0,0

𝜕𝑥
(𝑐0,0(𝑣), 𝑦)𝑐0,1(𝑣) +𝑄0,1(𝑐0,0(𝑣))

)

= −𝐾𝑐 + 𝑒𝑐0,0(𝑣) +
√

𝜖𝑐0,1(𝑣)𝑒𝑐0,0(𝑣) + 𝛿𝑐0,1(𝑣)𝑒𝑐0,0(𝑣) + (𝜖, 𝛿),

𝑄0,0(𝑝0,0(𝑣)) +
√

𝜖
( 𝜕𝑄0,0

𝜕𝑥
(𝑝0,0(𝑣))𝑝0,1(𝑣) +𝑄0,1(𝑝0,0(𝑣))

)

+ 𝛿
( 𝜕𝑄0,0

𝜕𝑥
(𝑝0,0(𝑣))𝑝0,1(𝑣) +𝑄0,1(𝑝0,0(𝑣))

)

= 𝐾𝑝 − 𝑒𝑝0,0(𝑣) −
√

𝜖𝑝0,1(𝑣)𝑒𝑝0,0(𝑣) − 𝛿𝑝0,1(𝑣)𝑒𝑝0,0(𝑣) − (𝜖, 𝛿),

𝜕𝑄0,0

𝜕𝑥
(𝑐0,0(𝑣)) +

√

𝜖

(

𝜕2𝑄0,0

𝜕𝑥2
(𝑐0,0(𝑣))𝑐0,1(𝑣) +

𝜕𝑄0,1

𝜕𝑥
(𝑐0,0(𝑣))

)

+ 𝛿

(

𝜕2𝑄0,0

𝜕𝑥2
(𝑐0,0(𝑣))𝑐0,1(𝑣) +

𝜕𝑄0,1

𝜕𝑥
(𝑐0,0(𝑣))

)

= 𝑒𝑐0,0(𝑣) +
√

𝜖𝑐0,1(𝑣)𝑒𝑐0,0(𝑣) + 𝛿𝑐0,1(𝑣)𝑒𝑐0,0(𝑣) + (𝜖, 𝛿),

𝜕𝑄0,0

𝜕𝑥
(𝑝0,0(𝑣)) +

√

𝜖

(

𝜕2𝑄0,0

𝜕𝑥2
(𝑝0,0(𝑣))𝑝0,1(𝑣) +

𝜕𝑄0,1

𝜕𝑥
(𝑝0,0(𝑣))

)

+ 𝛿

(

𝜕2𝑄0,0

𝜕𝑥2
(𝑝0,0(𝑣))𝑝0,1(𝑣) +

𝜕𝑄0,1

𝜕𝑥
(𝑝0,0(𝑣))

)

= −𝑒𝑝0,0(𝑣) −
√

𝜖𝑝0,1(𝑣)𝑒𝑝0,0(𝑣) − 𝛿𝑝0,1(𝑣)𝑒𝑝0,0(𝑣) + (𝜖, 𝛿).

(3.16)

As demonstrated in Eqs. (3.13)–(3.15), the solution for the leading order price 𝑄0,0 and the correction price 𝑄0,𝑘 for 𝑘 ≥ 1 is 
obtained. 

Theorem 3.1.  We consider the value of PASO 𝑄0,0(𝑥), which satisfies the following free boundary problem: 

BS𝑄0,0(𝑥) = 0 for 𝑥 ∈ (𝑝0,0, 𝑐0,0)

𝑄0,0(𝑝0,0) = 𝐾𝑝 − 𝑒𝑝0,0 ,

𝑄0,0(𝑐0,0) = 𝑒𝑐0,0 −𝐾𝑐 ,

d𝑄0,0

d𝑥
(𝑝0,0) = −𝑒𝑝0,0 ,

d𝑄0,0

d𝑥
(𝑐0,0) = 𝑒𝑐0,0 .

(3.17)

The solution 𝑄0,0(𝑥) is explicitly represented as the solution to the PDE (3.17), as: 

𝑄0,0(𝑥) =
𝜆1𝜆2

𝜆1 − 𝜆2
(𝑒𝑝0,0 −𝐾𝑝)

[

1
𝜆1

𝑒𝜆1(𝑥−𝑝0,0) − 1
𝜆2

𝑒𝜆2(𝑥−𝑝0,0)
]

+ 1
𝜆1 − 𝜆2

𝑒𝑝0,0
[

𝑒𝜆2(𝑥−𝑝0,0) − 𝑒𝜆1(𝑥−𝑝0,0)
]

, (3.18)

where 𝜆1 > 0 and 𝜆2 < 0 are two distinct real roots of the quadratic equation: 

𝜎̄2

2
𝜆2 +

(

𝑟 − 𝑞 − 𝜎̄2

2

)

𝜆 − 𝑟 = 0. (3.19)

Additionally, the optimal exercise boundaries—𝑝0,0 and 𝑐0,0—are the solutions to the following system of algebraic equations: 

𝜆1𝜆2
𝜆1 − 𝜆2

𝑒𝑝0
[

1
𝜆2

𝑒𝜆1(𝑐0,0−𝑝0,0) − 1
𝜆1

𝑒𝜆2(𝑐0,0−𝑝0,0)
]

+
𝜆1𝜆2

𝜆1 − 𝜆2
(𝑒𝑝0,0 −𝐾𝑝)

[

𝑒𝜆2(𝑐0,0−𝑝0,0) − 𝑒𝜆1(𝑐0,0−𝑝0,0)
]

+ 𝑒𝑐0,0 = 0,

𝜆1𝜆2
𝜆1 − 𝜆2

(𝑒𝑝0,0 −𝐾𝑝)
[

1
𝜆1

𝑒𝜆1(𝑐0,0−𝑝0,0) − 1
𝜆2

𝑒𝜆2(𝑐0,0−𝑝0,0)
]

+ 𝑒𝑝0,0
𝜆1 − 𝜆2

[

𝑒𝜆2(𝑐0,0−𝑝0,0) − 𝑒𝜆1(𝑐0,0−𝑝0,0)
]

− 𝑒𝑐0,0 +𝐾𝑐 = 0.

(3.20)

Proof.  Ha et al. [27] described the process of solving ODE (3.17). The text methodically guides the reader through solving the 
equation and dealing with the boundary conditions. It also explains setting up the boundary conditions and the limitations to easily 
understand the steps needed to obtain the solution. □

The following theorems describe the expression for the correction price 𝑄0,𝑘 and correction terms for optimal boundaries 𝑐0,𝑘
and 𝑝  for 𝑘 ≥ 1 for the zero-order term of 𝜖.
0,𝑘

7 
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Theorem 3.2.  The correction term 𝑄0,1 satisfies the following PDE: 

BS𝑄0,1 =
1
2
𝜎̄2𝑥

(

d2𝑄0,0

d𝑥2
−

d𝑄0,0

d𝑥

)

for 𝑥 ∈ (𝑝0,0, 𝑐0,0),

d𝑄0,0

d𝑥
(𝑐0,0)𝑐0,1 +𝑄0,1(𝑐0,1) = 𝑐0,1𝑒

𝑐0,0 ,

d𝑄0,0

d𝑥
(𝑝0,0)𝑝0,1 +𝑄1,0(𝑝0,0) = −𝑝0,1𝑒𝑝0,0 ,

d2𝑄0,0

d𝑥2
(𝑐0,0)𝑐0,1 +

d𝑄0,1

d𝑥
(𝑐0,1) = 𝑐0,1𝑒

𝑐0,0 ,

d2𝑄0,0

d𝑥2
(𝑝0,0)𝑝0,1 +

d𝑄0,1

d𝑥
(𝑝0,0) = −𝑝0,1𝑒𝑝0,0 .

(3.21)

The solution 𝑄0,1(𝑥) to problem (3.21) is expressed as 

𝑄0,1(𝑥) = 𝐶1𝑒
𝜆1𝑥 + 𝐶2𝑒

𝜆2𝑥 +𝐷1𝑥𝑒
𝜆1𝑥 +𝐷2𝑥𝑒

𝜆2𝑥, (3.22)

where 𝜆1 > 0 and 𝜆2 < 0 are two real roots of the quadratic equation (3.19), and the first-order correction terms for the free boundaries—𝑐0,1
and 𝑝0,1—are determined by

𝑐0,1 =
1
𝑑

[

(𝐵11 + 𝐵12𝜆1)𝐷1𝑒
𝜆1𝑐0,0 + (𝐵11 + 𝐵12𝜆2)𝐷2𝑒

𝜆2𝑐0,0 + (𝐵13 + 𝐵14𝜆1)𝐷1𝑒
𝜆1𝑝0,0 + (𝐵13 + 𝐵14𝜆2)𝐷2𝑒

𝜆2𝑝0,0
]

𝑝0,1 =
1
𝑑

[

(𝐵21 + 𝐵22𝜆1)𝐷1𝑒
𝜆1𝑐0,0 + (𝐵21 + 𝐵22𝜆2)𝐷2𝑒

𝜆2𝑐0,0 + (𝐵23 + 𝐵24𝜆1)𝐷1𝑒
𝜆1𝑝0,0 + (𝐵23 + 𝐵24𝜆2)𝐷2𝑒

𝜆2𝑝0,0
]

,

where

𝐶1 =
1
𝑑

[

(𝐵31 + 𝐵32𝜆1)𝐷1𝑒
𝜆1𝑐0,0 + (𝐵31 + 𝐵32𝜆2)𝐷2𝑒

𝜆2𝑐0,0 + (𝐵33 + 𝐵34𝜆1)𝐷1𝑒
𝜆1𝑝0,0 + (𝐵33 + 𝐵34𝜆2)𝐷2𝑒

𝜆2𝑝0,0
]

,

𝐶2 =
1
𝑑

[

(𝐵41 + 𝐵42𝜆1)𝐷1𝑒
𝜆1𝑐0,0 + (𝐵41 + 𝐵42𝜆2)𝐷2𝑒

𝜆2𝑐0,0 + (𝐵43 + 𝐵44𝜆1)𝐷1𝑒
𝜆1𝑝0,0 + (𝐵43 + 𝐵44𝜆2)𝐷2𝑒

𝜆2𝑝0,0
]

,

𝐷1 =
2𝑄1

𝜎̄2𝜆21 + (2𝑟 − 𝜎̄)𝜆1 − 2𝑟
, 𝐷2 =

2𝑄2

𝜎̄2𝜆22 + (2𝑟 − 𝜎̄)𝜆2 − 2𝑟
,

𝑄1 =
1
2
𝜎̄2𝜆1(𝜆1 − 1)

𝜆2
(

𝐾𝑝 − 𝑒𝑝0,0
)

+ 𝑒𝑝0,0

(𝜆2 − 𝜆1)𝑒𝑝0,0𝜆1
, 𝑄2 =

1
2
𝜎̄2𝜆2(𝜆2 − 1)

−𝜆1
(

𝐾𝑝 − 𝑒𝑝0,0
)

+ 𝑒𝑝0,0

(𝜆2 − 𝜆1)𝑒𝑝0,0𝜆2
,

𝑑 =
(d𝑄1,0

d𝑥
(𝑐0,0) − 𝑒𝑐0,0

)(

𝜆1𝜆2

(d𝑄1,0

d𝑥
(𝑝0,0) − 𝑒𝑝0,0

)

(𝑒𝜆1𝑐0,0+𝜆2𝑝0,0 + 𝑒𝜆1𝑝0,0+𝜆2𝑐0,0 )

+

(

d2𝑄1,0

d𝑥2
(𝑝0,0) − 𝑒𝑝0,0

)

(𝜆2𝑒𝜆1𝑝0,0+𝜆2𝑐0,0 − 𝜆1𝑒
𝜆1𝑐0,0+𝜆2𝑝0,0 )

)

+

(

d2𝑄1,0

d𝑥2
(𝑐0,0) − 𝑒𝑐0,0

)

(( d𝑄1,0

d𝑥
(𝑝0,0) − 𝑒𝑝0,0

)

(𝜆1𝑒𝜆1𝑝0,0+𝜆2𝑐0,0 − 𝜆2𝑒
𝜆1𝑐0,0+𝜆2𝑝0,0 )

+

(

d2𝑄1,0

d𝑥2
(𝑝0,0) − 𝑒𝑝0,0

)

(𝑒𝜆1𝑐0,0+𝜆2𝑝0,0 − 𝑒𝜆1𝑝0,0+𝜆2𝑐0,0 )

)

.

In the above,

𝐵11 = −𝜆2𝑒𝜆2𝑐0,0+𝜆1𝑝0,0
(

d2𝑄0,0

d𝑥2
(𝑝0,0) −

d𝑄0,0

d𝑥
(𝑝0,0)

)

+ 𝑒𝜆1𝑐0,0+𝜆2𝑝0,0
(

d2𝑄0,0

d𝑥2
(𝑝0,0) − 𝜆2

d𝑄0,0

d𝑥
(𝑝0,0) −

(

𝜆1 − 𝜆2
)

𝑒𝑝0,0
)

,

𝐵12 = 𝑒𝜆2𝑐0,0+𝜆1𝑝0,0
(

d2𝑄0,0

d𝑥2
(𝑝0,0) −

d𝑄0,0

d𝑥
(𝑝0,0)

)

− 𝑒𝜆1𝑐0,0+𝜆2𝑝0,0
(

d2𝑄0,0

d𝑥2
(𝑝0,0) − 𝜆2

d𝑄0,0

d𝑥
(𝑝0,0) −

(

𝜆1 − 𝜆2
)

𝑒𝑝0,0
)

,

𝐵13 = −𝑒(𝜆1+𝜆2)𝑐0,0
(

d2𝑄0,0

d𝑥2
(𝑝0,0) − 𝑒𝑝0,0

)

(

𝜆1 − 𝜆2
)

,

𝐵14 = 𝑒(𝜆1+𝜆2)𝑐0,0
(d𝑄0,0

d𝑥
(𝑝0,0) − 𝑒𝑝0,0

)

(

𝜆1 − 𝜆2
)

,

𝐵21 = 𝑒(𝜆1+𝜆2)𝑝0,0
(

d2𝑄0,0

d𝑥2
(𝑐0,0) − 𝑒𝑐0,0

)

(

𝜆1 − 𝜆2
)

,

𝐵22 = −𝑒(𝜆1+𝜆2)𝑝0,0
(d𝑄0,0 (𝑐0,0) − 𝑒𝑐0,0

)

(

𝜆1 − 𝜆2
)

,

d𝑥

8 
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𝐵23 = −𝜆2𝑒𝜆1𝑐0,0+𝜆2𝑝0,0
(

d2𝑄0,0

d𝑥2
(𝑐0,0) −

d𝑄0,0

d𝑥
(𝑐0,0)

)

− 𝑒𝜆2𝑐0,0+𝜆1𝑝0,0
(

d2𝑄0,0

d𝑥2
(𝑐0,0) − 𝜆2

d𝑄0,0

d𝑥
(𝑐0,0) −

(

𝜆1 − 𝜆2
)

𝑒𝑐0,0
)

,

𝐵24 = −𝑒𝜆1𝑐0,0+𝜆2𝑝0,0
(

d2𝑄0,0

d𝑥2
(𝑐0,0) −

d𝑄0,0

d𝑥
(𝑐0,0)

)

+ 𝑒𝜆2𝑐0,0+𝜆1𝑝0,0
(

d2𝑄0,0

d𝑥2
(𝑐0,0) − 𝜆2

d𝑄0,0

d𝑥
(𝑐0,0) −

(

𝜆1 − 𝜆2
)

𝑒𝑐0,0
)

,

𝐵31 = −𝑒𝜆2𝑝0,0
(

d2𝑄0,0

d𝑥2
(𝑐0,0) − 𝑒𝑐0,0

)(

d2𝑄0,0

d𝑥2
(𝑝0,0) − 𝜆2

d𝑄0,0

d𝑥
(𝑝0,0) −

(

𝜆1 − 𝜆2
)

𝑒𝑝0,0
)

,

𝐵32 = 𝑒𝜆2𝑝0,0
(d𝑄0,0

d𝑥
(𝑐0,0) − 𝑒𝑐0,0

)

(

d2𝑄0,0

d𝑥2
(𝑝0,0) − 𝜆2

d𝑄0,0

d𝑥
(𝑝0,0) −

(

𝜆1 − 𝜆2
)

𝑒𝑝0,0
)

,

𝐵33 = 𝑒𝜆2𝑐0,0
(

d2𝑄0,0

d𝑥2
(𝑝0,0) − 𝑒𝑝0,0

)(

d2𝑄0,0

d𝑥2
(𝑐0,0) − 𝜆2

d𝑄0,0

d𝑥
(𝑐0,0) −

(

𝜆1 − 𝜆2
)

𝑒𝑐0,0
)

,

𝐵34 = −𝑒𝜆2𝑐0,0
(d𝑄0,0

d𝑥
(𝑝0,0) − 𝑒𝑝0,0

)

(

d2𝑄0,0

d𝑥2
(𝑐0,0) − 𝜆2

d𝑄0,0

d𝑥
(𝑐0,0) −

(

𝜆1 − 𝜆2
)

𝑒𝑐0,0
)

,

𝐵41 = 𝑒𝜆1𝑝0,0
(

d2𝑄0,0

d𝑥2
(𝑐0,0) − 𝑒𝑐0,0

)(

d2𝑄0,0

d𝑥2
(𝑝0,0) −

d𝑄0,0

d𝑥
(𝑝0,0)

)

,

𝐵42 = −𝑒𝜆1𝑝0,0
(d𝑄0,0

d𝑥
(𝑐0,0) − 𝑒𝑐0,0

)

(

d2𝑄0,0

d𝑥2
(𝑝0,0) −

d𝑄0,0

d𝑥
(𝑝0,0)

)

,

𝐵43 = −𝑒𝜆1𝑐0,0
(

d2𝑄0,0

d𝑥2
(𝑝0,0) − 𝑒𝑝0,0

)(

d2𝑄0,0

d𝑥2
(𝑐0,0) −

d𝑄0,0

d𝑥
(𝑐0,0)

)

,

and 𝐵44 = 𝑒𝜆1𝑐0,0
(d𝑄0,0

d𝑥
(𝑝0,0) − 𝑒𝑝0,0

)

(

d2𝑄0,0

d𝑥2
(𝑐0,0) −

d𝑄0,0

d𝑥
(𝑐0,0)

)

.

Proof. Theorem  3.1 provides the explicit formula for 𝑄0,0(𝑥), and using the chain rule leads to 

𝑄0,0(𝑥) =
𝜆2

(

𝐾𝑝 − 𝑒𝑝0,0
)

+ 𝑒𝑝0,0

(𝜆2 − 𝜆1)𝑒𝑝0,0𝜆1
𝑒𝜆1𝑥 +

−𝜆1
(

𝐾𝑝 − 𝑒𝑝0,0
)

+ 𝑒𝑝0,0

(𝜆2 − 𝜆1)𝑒𝑝0,0𝜆2
𝑒𝜆2𝑥. (3.23)

We obtain a non-homogeneous ODE for 𝑄0,1(𝑥) by substituting (3.23) into the ODE for 𝑄0,1, given by (3.21): 

𝜎̄2

2
d2𝑄0,1(𝑥)

d𝑥2
+
(

𝑟 − 𝑞 − 𝜎̄2

2

) d𝑄0,1(𝑥)
d𝑥

− 𝑟𝑄0,1(𝑥) = 𝑄1𝑥𝑒
𝜆1𝑥 +𝑄2𝑥𝑒

𝜆2𝑥, (3.24)

where 𝑄1 and 𝑄2 are

𝑄1 =
1
2
𝜎̄2𝜆1(𝜆1 − 1)

𝜆2
(

𝐾𝑝 − 𝑒𝑝0,0
)

+ 𝑒𝑝0,0

(𝜆2 − 𝜆1)𝑒𝑝0,0𝜆1
and 𝑄2 =

1
2
𝜎̄2𝜆2(𝜆2 − 1)

−𝜆1
(

𝐾𝑝 − 𝑒𝑝0,0
)

+ 𝑒𝑝0,0

(𝜆2 − 𝜆1)𝑒𝑝0,0𝜆2
,

respectively.
Furthermore, the solution 𝑄0,1 to (3.24), which is the Cauchy-Euler equation, is obtained as:

𝑄0,1(𝑥) = 𝐶1𝑒
𝜆1𝑥 + 𝐶2𝑒

𝜆2𝑥 +
2𝑄1

𝜎̄2𝜆21 + (2𝑟 − 𝜎̄)𝜆1 − 2𝑟
𝑥𝑒𝜆1𝑥 +

2𝑄2

𝜎̄2𝜆22 + (2𝑟 − 𝜎̄)𝜆2 − 2𝑟
𝑥𝑒𝜆2𝑥

for real constants 𝐶1 and 𝐶2. We examine the 
√

𝜖-order terms in (3.3) to derive the conditions required to determine 𝑄0,1(𝑥), 𝑝0,1, 
and 𝑐0,1:

d𝑄0,0

d𝑥
(𝑐0,0)𝑐0,1 +𝑄0,1(𝑐0,0) = 𝑐0,1𝑒

𝑐0,0 ,

d𝑄0,0

d𝑥
(𝑝0,0)𝑝0,1 +𝑄0,1(𝑝0,0) = 𝑝0,1𝑒

𝑝0,0 ,

d2𝑄0,0

d𝑥2
(𝑐0,0)𝑐0,1 +

d𝑄0,1

d𝑥
(𝑐0,0) = 𝑐0,1𝑒

𝑐0,0 ,

d2𝑄0,0

d𝑥2
(𝑝0,0)𝑝0,1 +

d𝑄0,1

d𝑥
(𝑝0,0) = 𝑝0,1𝑒

𝑝0,0 .
9 
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In other words, 
(d𝑄0,0

d𝑥
(𝑐0,0) − 𝑒𝑐0,0

)

𝑐0,1 + 𝐶1𝑒
𝜆1𝑐0,0 + 𝐶2𝑒

𝜆2𝑐0,0

+
2𝑄1

𝜎̄2𝜆21 + (2𝑟 − 𝜎̄)𝜆1 − 2𝑟
𝑥𝑒𝜆1𝑐0,0 +

2𝑄2

𝜎̄2𝜆22 + (2𝑟 − 𝜎̄)𝜆2 − 2𝑟
𝑥𝑒𝜆2𝑐0,0 = 0,

(

d2𝑄0,0

d𝑥2
(𝑐0,0) − 𝑒𝑐0,0

)

𝑐0,1 + 𝐶1𝜆1𝑒
𝜆1𝑐0,0 + 𝐶2𝜆2𝑒

𝜆2𝑐0,0

+
2𝜆1𝑄1

𝜎̄2𝜆21 + (2𝑟 − 𝜎̄)𝜆1 − 2𝑟
𝑥𝑒𝜆1𝑐0,0 +

2𝜆2𝑄2

𝜎̄2𝜆22 + (2𝑟 − 𝜎̄)𝜆2 − 2𝑟
𝑥𝑒𝜆2𝑐0,0 = 0,

(d𝑄0,0

d𝑥
(𝑝0,0) − 𝑒𝑝0,0

)

𝑝0,1 + 𝐶1𝑒
𝜆1𝑝0,0 + 𝐶2𝑒

𝜆2𝑝0,0

+
2𝑄1

𝜎̄2𝜆21 + (2𝑟 − 𝜎̄)𝜆1 − 2𝑟
𝑥𝑒𝜆1𝑝0,0 +

2𝑄2

𝜎̄2𝜆22 + (2𝑟 − 𝜎̄)𝜆2 − 2𝑟
𝑥𝑒𝜆2𝑝0,0 = 0,

(

d2𝑃0,0

d𝑥2
(𝑝0,0) − 𝑒𝑝0,0

)

𝑝0,1 + 𝐶1𝜆1𝑒
𝜆1𝑝0,0 + 𝐶2𝜆2𝑒

𝜆2𝑝0,0

+
2𝜆1𝑄1

𝜎̄2𝜆21 + (2𝑟 − 𝜎̄)𝜆1 − 2𝑟
𝑥𝑒𝜆1𝑝0,0 +

2𝜆2𝑄2

𝜎̄2𝜆22 + (2𝑟 − 𝜎̄)𝜆2 − 2𝑟
𝑥𝑒𝜆2𝑝0,0 = 0.

(3.25)

To find the four constants 𝐶1, 𝐶2, 𝑐0,1, and 𝑝0,1, we reformulate the system of Eqs. (3.25) as the matrix representation 𝐀𝐱 = 𝐛, where 
𝐀 denotes a known 4 × 4 coefficient matrix, and 𝐛 is the column vector of constant terms. That is,

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d𝑄0,0

d𝑥
(𝑐0,0) − 𝑒𝑐0,0 0 𝑒𝜆1𝑐0,0 𝑒𝜆2𝑐0,0

d2𝑄0,0

d𝑥2
(𝑐0,0) − 𝑒𝑐0,0 0 𝜆1𝑒𝜆1𝑐0,0 𝜆2𝑒𝜆2𝑐0,0

0
d𝑄0,0

d𝑥
(𝑝0,0) − 𝑒𝑝0,0 𝑒𝜆1𝑝0,0 𝑒𝜆2𝑝0,0

0
d2𝑄0,0

d𝑥2
(𝑝0,0) − 𝑒𝑝0,0 𝜆1𝑒𝜆1𝑝0,0 𝜆2𝑒𝜆2𝑝0,0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐱 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑐0,1
𝑝0,1
𝐶1
𝐶2

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐛 = −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2𝑄1

𝜎̄2𝑞21 + (2𝑟 − 𝜎̄)𝜆1 − 2𝑟
𝑒𝜆1𝑐0,0 +

2𝑄2

𝜎̄2𝜆22 + (2𝑟 − 𝜎̄)𝜆2 − 2𝑟
𝑒𝜆2𝑐0,0

2𝜆1𝑄1

𝜎̄2𝜆21 + (2𝑟 − 𝜎̄)𝜆1 − 2𝑟
𝑒𝜆1𝑐0,0 +

2𝜆2𝑄2

𝜎̄2𝜆22 + (2𝑟 − 𝜎̄)𝜆2 − 2𝑟
𝑒𝜆2𝑐0,0

2𝑄1

𝜎̄2𝜆21 + (2𝑟 − 𝜎̄)𝜆1 − 2𝑟
𝑒𝜆1𝑝0,0 +

2𝑄2

𝜎̄2𝜆22 + (2𝑟 − 𝜎̄)𝜆2 − 2𝑟
𝑒𝜆2𝑝0,0

2𝜆1𝑄1

𝜎̄2𝜆21 + (2𝑟 − 𝜎̄)𝜆1 − 2𝑟
𝑒𝜆1𝑝0,0 +

2𝜆2𝑄2

𝜎̄2𝜆22 + (2𝑟 − 𝜎̄)𝜆2 − 2𝑟
𝑒𝜆2𝑝0,0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Note that det(𝐀) ≠ 0, indicating that the inverse of 𝐀 exists. Consequently, 𝐱 can be determined by multiplying the matrix equation 
𝐀𝐱 = 𝐛 by the inverse of 𝐀. Specifically,

⎡

⎢

⎢

⎢

⎢

⎣

𝑐0,1
𝑝0,1
𝐶1
𝐶2

⎤

⎥

⎥

⎥

⎥

⎦

= 1
𝑑
[𝐵𝑖𝑗 ]1≤𝑖,𝑗≤4

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2𝑄1

𝜎̄2𝑞21 + (2𝑟 − 𝜎̄)𝜆1 − 2𝑟
𝑒𝜆1𝑐0,0 +

2𝑄2

𝜎̄2𝜆22 + (2𝑟 − 𝜎̄)𝜆2 − 2𝑟
𝑒𝜆2𝑐0,0

2𝜆1𝑄1

𝜎̄2𝜆21 + (2𝑟 − 𝜎̄)𝜆1 − 2𝑟
𝑒𝜆1𝑐0,0 +

2𝜆2𝑄2

𝜎̄2𝜆22 + (2𝑟 − 𝜎̄)𝜆2 − 2𝑟
𝑒𝜆2𝑐0,0

2𝑄1

𝜎̄2𝜆21 + (2𝑟 − 𝜎̄)𝜆1 − 2𝑟
𝑒𝜆1𝑝0,0 +

2𝑄2

𝜎̄2𝜆22 + (2𝑟 − 𝜎̄)𝜆2 − 2𝑟
𝑒𝜆2𝑝0,0

2𝜆1𝑄1

𝜎̄2𝜆21 + (2𝑟 − 𝜎̄)𝜆1 − 2𝑟
𝑒𝜆1𝑝0,0 +

2𝜆2𝑄2

𝜎̄2𝜆22 + (2𝑟 − 𝜎̄)𝜆2 − 2𝑟
𝑒𝜆2𝑝0,0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where, 𝑑 is a determinant of 𝐀. Thus, the results are obtained. □
10 
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Theorem 3.3.  For all 𝑘 > 1, the correction term 𝑄0,𝑘 satisfies the following ODE system: 

BS𝑄0,𝑘 = 1
2
𝜎̄2

𝑘
∑

𝑖=1

(−1)𝑖+1𝑥𝑖

𝑖!

(

d2𝑄0,𝑘−𝑖

d𝑥2
−

d𝑄0,𝑘−𝑖

d𝑥

)

≜ 𝐺0,𝑘 for 𝑥 ∈ (𝑝0,0, 𝑐0,0),

d𝑄0,𝑘−1

d𝑥
(𝑐0,0)𝑐0,𝑘 +𝑄0,𝑘(𝑐0,0) = 𝑐0,𝑘𝑒

𝑐0,0

d𝑄0,𝑘−1

d𝑥
(𝑝0,0)𝑝0,𝑘 +𝑄0,𝑘(𝑝0,0) = −𝑝0,𝑘𝑒𝑝0,0

d2𝑄0,𝑘−1

d𝑥2
(𝑐0,0)𝑐0,𝑘 +

d𝑄0,𝑘

d𝑥
(𝑐0,0) = 𝑐0,𝑘𝑒

𝑐0,0

d2𝑄0,𝑘−1

d𝑥2
(𝑝0,0)𝑝0,𝑘 +

d𝑄0,𝑘

d𝑥
(𝑝0,0) = −𝑝0,𝑘𝑒𝑝0,0 .

(3.26)

Then, the solution 𝑄0,𝑘(𝑥) to problem (3.26) is expressed as 

𝑄0,𝑘 = 𝐶5𝑒
𝜆1𝑥 + 𝐶6𝑒

𝜆2𝑥 − 𝑒𝜆1𝑥 ∫

𝑥

𝑝0

𝑒𝜆2𝑧𝐺0,𝑘

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑧
d𝑧 + 𝑒𝜆2𝑧 ∫

𝑥

𝑝0

𝑒𝜆1𝑧𝐺0,𝑘

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑧
d𝑧, (3.27)

where 𝜆1 > 0 and 𝜆2 < 0 are two real solutions of Eq.  (3.19), and the correction terms for the optimal boundaries—𝑐0,𝑘 and 𝑝0,𝑘—are 
represented by

𝑐0,𝑘 = 1
𝑑
[

𝐵11
(

𝑒𝜆1𝑐0,0𝐷3 + 𝑒𝜆2𝑐0,0𝐷4
)

+ 𝐵12
(

𝑒𝜆1𝑝0,0𝐷3 + 𝑒𝜆2𝑝0,0𝐷4
)

+𝐵13

(

−𝑒𝜆1𝑐0,0
(

𝜆1𝐷3 + 𝐷̂3

)

+ 𝑒𝜆2𝑐0,0
(

𝜆2𝐷4 + 𝐷̂4

))

+ 𝐵14

(

𝑒𝜆1𝑝0,0
(

−𝜆1𝐷3 + 𝐷̃3

)

+ 𝑒𝜆2𝑝0,0
(

𝜆2𝐷4 + 𝐷̃4

))]

,

𝑝0,𝑘 = 1
𝑑
[

𝐵21
(

𝑒𝜆1𝑐0,0𝐷3 + 𝑒𝜆2𝑐0,0𝐷4
)

+ 𝐵22
(

𝑒𝜆1𝑝0,0𝐷3 + 𝑒𝜆2𝑝0,0𝐷4
)

+𝐵23

(

−𝑒𝜆1𝑐0,0
(

𝜆1𝐷3 + 𝐷̂3

)

+ 𝑒𝜆2𝑐0,0
(

𝜆2𝐷4 + 𝐷̂4

))

+ 𝐵24

(

𝑒𝜆1𝑝0,0
(

−𝜆1𝐷3 + 𝐷̃3

)

+ 𝑒𝜆2𝑝0,0
(

𝜆2𝐷4 + 𝐷̃4

))]

,

where

𝐷3 = ∫

𝑐0,0

𝑝0,0

𝑒𝜆2𝑧𝐺0,𝑘

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑧
d𝑧, 𝐷̂3 =

𝑒𝜆2𝑐0,0𝐺0,𝑘

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑐0,0
, 𝐷̃3 =

𝑒𝜆2𝑝0,0𝐺0,𝑘

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑝0,0
,

𝐷4 = ∫

𝑐0,0

𝑝0,0

𝑒𝜆1𝑧𝐺0,𝑘

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑧
d𝑧, 𝐷̂4 =

𝑒𝜆2𝑐0,0𝐺0,𝑘

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑐0,0
, 𝐷̃4 =

𝑒𝜆2𝑝0,0𝐺0,𝑘

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑝0,0
,

𝐶5 =
1
𝑑
[

𝐵31
(

𝑒𝜆1𝑐0,0𝐷3 + 𝑒𝜆2𝑐0,0𝐷4
)

+ 𝐵32
(

𝑒𝜆1𝑝0,0𝐷3 + 𝑒𝜆2𝑝0,0𝐷4
)

+𝐵33

(

−𝑒𝜆1𝑐0,0
(

𝜆1𝐷3 + 𝐷̂3

)

+ 𝑒𝜆2𝑐0,0
(

𝜆2𝐷4 + 𝐷̂4

))

+ 𝐵34

(

𝑒𝜆1𝑝0,0
(

−𝜆1𝐷3 + 𝐷̃3

)

+ 𝑒𝜆2𝑝0,0
(

𝜆2𝐷4 + 𝐷̃4

))]

,

𝐶6 =
1
𝑑
[

𝐵41
(

𝑒𝜆1𝑐0,0𝐷3 + 𝑒𝜆2𝑐0,0𝐷4
)

+ 𝐵42
(

𝑒𝜆1𝑝0,0𝐷3 + 𝑒𝜆2𝑝0,0𝐷4
)

+𝐵43

(

−𝑒𝜆1𝑐0,0
(

𝜆1𝐷3 + 𝐷̂3

)

+ 𝑒𝜆2𝑐0,0
(

𝜆2𝐷4 + 𝐷̂4

))

+ 𝐵44

(

𝑒𝜆1𝑝0,0
(

−𝜆1𝐷3 + 𝐷̃3

)

+ 𝑒𝜆2𝑝0,0
(

𝜆2𝐷4 + 𝐷̃4

))]

.

Furthermore, 𝑑 and 𝐵𝑖,𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 4 are defined in Theorem  3.2.

Proof.  The procedure of the proof is similar to that of Theorem  3.2. The ODE in Eq.  (3.26) is transformed into the Cauchy-Euler 
form. The sum of the first and second terms in (3.27) constitutes the general solution, and the sum of the last two terms is the 
specific solution. □

3.2. The first-order correction price 𝑄𝜖
1

As outlined in Section 3.1, the hierarchy of PDEs with 𝑄1,𝑘 as solutions can be derived from PDE (3.6) and an asymptotic 
expansion (3.9). The following is provided to elaborate further: First, the PDE (3.6) is described as 

1 𝜎̄2𝑒−𝛿𝑥
𝜕2𝑄𝜖

1 +
(

𝑟 − 𝑞 − 1 𝜎̄2𝑒−𝛿𝑥
) 𝜕𝑄𝜖

1 − 𝑟𝜖 = 𝐺(𝑥), (3.28)

2 𝜕𝑥2 2 𝜕𝑥 1

11 
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where the non-homogeneous term 𝐺(𝑥) is defined by (3.8). Next, using the Taylor expansion of 𝑒−3𝛿∕2𝑥, 𝑒3𝛿∕2𝑥, and 𝑒−𝛿𝑥, Eq.  (3.28) 
is expressed as 

1
2
𝜎̄2

∞
∑

𝑘=0
𝛿𝑘

(−1)𝑘𝑥𝑘

𝑘!
𝜕2

𝜕𝑥2

∞
∑

𝑘=0
𝛿𝑘𝑄1,𝑘 +

(

𝑟 − 𝑞 − 1
2
𝜎̄2

∞
∑

𝑘=0
𝛿𝑘

(−1)𝑘𝑥𝑘

𝑘!

)

𝜕
𝜕𝑥

∞
∑

𝑘=0
𝛿𝑘𝑄1,𝑘 − 𝑟

∞
∑

𝑘=0
𝛿𝑘𝑄1,𝑘

= 1
√

2
𝑢𝜌⟨𝑓𝜙′

⟩

∞
∑

𝑘=0
𝛿𝑘

(−3)𝑘𝑥𝑘

2𝑘𝑘!

(

d3𝑄0,0

d𝑥3
− 3

d2𝑄0,0

d𝑥2
+

d𝑄0,0

d𝑥

)

+ 1
√

2
𝑢

(

𝜌⟨𝑓𝜙′
⟩(2 − 𝛿)

∞
∑

𝑘=0
𝛿𝑘 3

𝑘𝑥𝑘

2𝑘𝑘!
− ⟨𝛬𝜙′

⟩

∞
∑

𝑘=0
𝛿𝑘

(−1)𝑘𝑥𝑘

𝑘!

)(

d2𝑄0,0

d𝑥2
−

d𝑄0,0

d𝑥

)

.

(3.29)

The coefficients of each 𝛿𝑘-order term (𝑘 ≥ 0) in Eq.  (3.29) were compared, resulting in the following PDE being derived.

BS𝑄1,0 =
1
√

2
𝑢𝜌⟨𝑓𝜙′

⟩

(

d3𝑄0,0

d𝑥3
− 3

d2𝑄0,0

d𝑥2
+ 2

d𝑄0,0

d𝑥

)

+ 1
√

2
𝑢
(

2𝜌⟨𝑓𝜙′
⟩ − ⟨𝛬𝜙′

⟩

)

(

d2𝑄0,0

d𝑥2
−

d𝑄0,0

d𝑥

)

,

BS𝑄1,1 =
1
2
𝜎̄2𝑥

d2𝑄1,0

d𝑥2
− 1

2
𝜎̄2𝑥

d𝑄1,0

d𝑥
− 3

2
√

2
𝑢𝜌⟨𝑓𝜙′

⟩𝑥
d3𝑄0,0

d𝑥3

+ 1
√

2
𝑢
( 15
2
𝜌⟨𝑓𝜙′

⟩𝑥 − 𝜌⟨𝑓𝜙′
⟩ + ⟨𝛬𝜙′

⟩𝑥
) d2𝑄0,0

d𝑥2
− 1

√

2
𝑢
( 9
2
𝜌⟨𝑓𝜙′

⟩𝑥 − 𝜌⟨𝑓𝜙′
⟩ + ⟨𝛬𝜙′

⟩𝑥
) d𝑄0,0

d𝑥
,

⋯ ,

BS𝑄1,𝑘 = 1
2
𝜎̄2

𝑘
∑

𝑖=1

(−1)𝑖+1𝑥𝑖

𝑖!

(

𝜕2𝑄1,𝑘−𝑖

𝜕𝑥2
−

𝜕𝑄1,𝑘−𝑖

𝜕𝑥

)

+ 1
√

2
𝑢𝜌⟨𝑓𝜙′

⟩

(−3)𝑘𝑥𝑘

2𝑘𝑘!
d3𝑄0,0

d𝑥3

+ 1
√

2
𝑢
(

𝜌⟨𝑓𝜙′
⟩

(−3)𝑘+1𝑥𝑘

2𝑘𝑘!
+ 𝜌⟨𝑓𝜙′

⟩

3𝑘𝑥𝑘

2𝑘−1𝑘!
− 𝜌⟨𝑓𝜙′

⟩

3𝑘−1𝑥𝑘−1

2𝑘−1(𝑘 − 1)!
− ⟨𝛬𝜙′

⟩

(−1)𝑘𝑥𝑘

𝑘!

) d2𝑄0,0

d𝑥2

− 1
√

2
𝑢
(

−𝜌⟨𝑓𝜙′
⟩

(−3)𝑘𝑥𝑘

2𝑘𝑘!
+ 𝜌⟨𝑓𝜙′

⟩

3𝑘𝑥𝑘

2𝑘−1𝑘!
− 𝜌⟨𝑓𝜙′

⟩

3𝑘−1𝑥𝑘−1

2𝑘−1(𝑘 − 1)!
− ⟨𝛬𝜙′

⟩

(−1)𝑘𝑥𝑘

𝑘!

) d𝑄0,0

d𝑥
,

where BS is defined by (3.10).
Furthermore, the matching and smooth pasting conditions in (3.3) can be expressed in their expanded form as: 

𝑄1,0(𝑐0,0(𝑣)) +
√

𝜖
(d𝑄1,0

d𝑥
(𝑐0,0(𝑣))𝑐1,0(𝑣) +𝑄1,0(𝑐0,0(𝑣))

)

+ 𝛿
(d𝑄1,0

d𝑥
(𝑐0,0(𝑣), 𝑦)𝑐1,0(𝑣) +𝑄1,1(𝑐0,0(𝑣))

)

= −𝐾𝑐 + 𝑒𝑐0,0(𝑣) +
√

𝜖𝑐1,0(𝑣)𝑒𝑐0,0(𝑣) + 𝛿𝑐1,0(𝑣)𝑒𝑐0,0(𝑣) + (𝜖, 𝛿),

𝑄1,0(𝑝0,0(𝑣)) +
√

𝜖
(d𝑄1,0

d𝑥
(𝑝0,0(𝑣))𝑝1,0(𝑣) +𝑄1,0(𝑝0,0(𝑣))

)

+ 𝛿
(d𝑄1,0

d𝑥
(𝑝0,0(𝑣), 𝑦)𝑝1,1(𝑣) +𝑄1,1(𝑝0,0(𝑣))

)

= 𝐾𝑝 − 𝑒𝑝0,0(𝑣) −
√

𝜖𝑄1,0(𝑣)𝑒𝑝0,0(𝑣) − 𝛿𝑝1,1(𝑣)𝑒𝑝0,0(𝑣) − (𝜖, 𝛿),

d𝑄1,0

d𝑥
(𝑐0,0(𝑣)) +

√

𝜖

(

d2𝑄1,0

d𝑥2
(𝑐0,0(𝑣))𝑐1,0(𝑣) +

d𝑄1,0

d𝑥
(𝑐0,0(𝑣))

)

+ 𝛿

(

d2𝑄1,0

d𝑥2
(𝑐0,0(𝑣))𝑐1,0(𝑣) +

d𝑄1,1

d𝑥
(𝑐0,0(𝑣))

)

= 𝑒𝑐0,0(𝑣) +
√

𝜖𝑐1,0(𝑣)𝑒𝑐0,0(𝑣) + 𝛿𝑐1,0(𝑣)𝑒𝑐0,0(𝑣) + (𝜖, 𝛿),

d𝑄1,0

d𝑥
(𝑝0,0(𝑣)) +

√

𝜖

(

d2𝑄1,0

d𝑥2
(𝑝0,0(𝑣))𝑝1,0(𝑣) +

d𝑄1,0

d𝑥
(𝑝0,0(𝑣))

)

+ 𝛿

(

d2𝑄1,0

d𝑥2
(𝑝0,0(𝑣))𝑝1,1(𝑣) +

d𝑄1,1

d𝑥
(𝑝0,0(𝑣))

)

= −𝑒𝑝0,0(𝑣) −
√

𝜖𝑝1,0(𝑣)𝑒𝑝0,0(𝑣) − 𝛿𝑝1,1(𝑣)𝑒𝑝0,0(𝑣) + (𝜖, 𝛿).

(3.30)

The following theorems describe the expression for the correction price 𝑄1,𝑘 and correction terms for optimal boundaries—𝑐1,𝑘
and 𝑝1,𝑘—for 𝑘 ≥ 1 for the first-order term of 𝜖.

Theorem 3.4.  The correction term 𝑄1,0 satisfies the following ODE: 

BS𝑄1,0 = 𝑉3
d3𝑄0,0

d𝑥3
+ (𝑉2 − 3𝑉3)

d2𝑄0,0

d𝑥2
+ (2𝑉3 − 𝑉2)

d𝑄0,0

d𝑥
for 𝑥 ∈ (𝑝0,0, 𝑐0,0),

d𝑄1,0

d𝑥
(𝑐0,0)𝑐1,0 +𝑄1,0(𝑐0,0) = 𝑐1,0𝑒

𝑐0,0 ,

d𝑄1,0

d𝑥
(𝑝0,0)𝑝1,0 +𝑄1,0(𝑝0,0) = −𝑝1,0𝑒𝑝0,0 ,

d2𝑄1,0

d𝑥2
(𝑐0,0)𝑐1,0 +

d𝑄1,0

d𝑥
(𝑐0,0) = 𝑐1,0𝑒

𝑐0,0

d2𝑄1,0 (𝑝 )𝑝 +
d𝑄1,0 (𝑝 ) = −𝑝 𝑒𝑝0,0 .

(3.31)
d𝑥2 0,0 1,0 d𝑥 0,0 1,0

12 
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where, 𝑉2 =
√

2𝜌𝑢⟨𝑓 (𝑦)𝜙′(𝑦)⟩ −
√

2
2 𝑢⟨𝛬(𝑦)𝜙′(𝑦)⟩ and 𝑉3 =

√

2
2 𝜌𝑢⟨𝑓 (𝑦)𝜙′(𝑦)⟩. The solution 𝑄1,0(𝑥) to problem (3.31) is expressed as 

𝑄1,0(𝑥) = 𝐶5𝑒
𝜆1𝑥 + 𝐶6𝑒

𝜆2𝑥 +𝐷5𝑒
𝜆1𝑥 +𝐷6𝑒

𝜆2𝑥, (3.32)

and the first-order correction terms for the free boundaries—𝑐1,0 and 𝑝1,0—are determined by

𝑐1,0 =
1
𝑑

[

(𝐵11 + 𝐵12𝜆1)𝐷5𝑒
𝜆1𝑐0,0 + (𝐵11 + 𝐵12𝜆2)𝐷6𝑒

𝜆2𝑐0,0 + (𝐵13 + 𝐵14𝜆1)𝐷5𝑒
𝜆1𝑝0,0 + (𝐵13 + 𝐵14𝜆2)𝐷6𝑒

𝜆2𝑝0,0
]

,

𝑝1,0 =
1
𝑑

[

(𝐵21 + 𝐵22𝜆1)𝐷5𝑒
𝜆1𝑐0,0 + (𝐵21 + 𝐵22𝜆2)𝐷6𝑒

𝜆2𝑐0,0 + (𝐵23 + 𝐵24𝜆1)𝐷5𝑒
𝜆1𝑝0,0 + (𝐵23 + 𝐵24𝜆2)𝐷6𝑒

𝜆2𝑝0,0
]

,

where

𝐶5 =
1
𝑑

[

(𝐵31 + 𝐵32𝜆1)𝐷5𝑒
𝜆1𝑐0,0 + (𝐵31 + 𝐵32𝜆2)𝐷6𝑒

𝜆2𝑐0,0 + (𝐵33 + 𝐵34𝜆1)𝐷5𝑒
𝜆1𝑝0,0 + (𝐵33 + 𝐵34𝜆2)𝐷6𝑒

𝜆2𝑝0,0
]

,

𝐶6 =
1
𝑑

[

(𝐵41 + 𝐵42𝜆1)𝐷5𝑒
𝜆1𝑐0,0 + (𝐵41 + 𝐵42𝜆2)𝐷6𝑒

𝜆2𝑐0,0 + (𝐵43 + 𝐵44𝜆1)𝐷5𝑒
𝜆1𝑝0,0 + (𝐵43 + 𝐵44𝜆2)𝐷6𝑒

𝜆2𝑝0,0
]

,

𝐷5 =
2𝑄5

𝜎̄2𝜆21 + (2𝑟 − 𝜎̄)𝜆1 − 2𝑟
, 𝐷6 =

2𝑄6

𝜎̄2𝜆22 + (2𝑟 − 𝜎̄)𝜆2 − 2𝑟
,

𝑄5 =
(

𝑉3𝜆
2
1 + (𝑉2 − 3𝑉3)𝜆1 + 2𝑉3 − 𝑉2

)
𝜆1

(

𝜆2
(

𝐾𝑝 − 𝑒𝑝0,0
)

+ 𝑒𝑝0,0
)

(𝜆2 − 𝜆1)𝑒𝑝0,0𝜆1
,

𝑄6 =
(

𝑉3𝜆
2
2 + (𝑉2 − 3𝑉3)𝜆2 + 2𝑉3 − 𝑉2

)
𝜆2

(

−𝜆1
(

𝐾𝑝 − 𝑒𝑝0,0
)

+ 𝑒𝑝0,0
)

(𝜆2 − 𝜆1)𝑒𝑝0,0𝜆2
.

In addition, 𝑑 and 𝐵𝑖,𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 4 are defined in Theorem  3.2.

Proof.  We can derive the solution of the ODE system (3.31) by following a similar stepwise calculation as outlined in Theorem 
3.2, providing a detailed framework for obtaining analytical solutions under comparable conditions. □

Theorem 3.5.  The correction term 𝑄1,1 satisfies the following ODE system: 

BS𝑄1,1 = 𝐺1,1 for 𝑥 ∈ (𝑝0,0, 𝑐0,0),
d𝑄1,0

d𝑥
(𝑐0,0)𝑐1,1 +𝑄1,1(𝑐0,0) = 𝑐1,1𝑒

𝑐0,0

d𝑄1,0

d𝑥
(𝑝0,0)𝑝1,1 +𝑄1,1(𝑝0,0) = −𝑝1,1𝑒𝑝0,0

d2𝑄1,0

d𝑥2
(𝑐0,0)𝑐1,1 +

d𝑄1,1

d𝑥
(𝑐0,0) = 𝑐1,1𝑒

𝑐0,0

d2𝑄1,0

d𝑥2
(𝑝0,0)𝑝1,1 +

d𝑄1,1

d𝑥
(𝑝0,0) = −𝑝1,1𝑒𝑝0,0 .

(3.33)

Where, the non-homogeneous term 𝐺1,1 represented by 

𝐺1,1 =
1
2
𝜎̄2𝑥

(

d2𝑄1,0

d𝑥2
−

d𝑄1,0

d𝑥

)

−
3
√

2
4

𝜌𝑢⟨𝑓 (𝑦)𝜙′(𝑦)⟩𝑥
d3𝑄0,0

d𝑥3

+ 1
√

2
𝑢
( 15
2
𝜌⟨𝑓𝜙′

⟩𝑥 − 𝜌⟨𝑓𝜙′
⟩ + ⟨𝛬𝜙′

⟩𝑥
) d2𝑄0,0

d𝑥2
− 1

√

2
𝑢
( 9
2
𝜌⟨𝑓𝜙′

⟩𝑥 − 𝜌⟨𝑓𝜙′
⟩ + ⟨𝛬𝜙′

⟩𝑥
) d𝑄0,0

d𝑥
.

(3.34)

The solution 𝑄1,1(𝑥) to problem (3.33) is expressed as 

𝑄1,1 = 𝐶7𝑒
𝜆1𝑥 + 𝐶8𝑒

𝜆2𝑥 − 𝑒𝜆1𝑥 ∫

𝑥

𝑝0,0

𝑒𝜆2𝑧𝐺1,1

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑧
d𝑧 + 𝑒𝜆2𝑥 ∫

𝑥

𝑝0,0

𝑒𝜆1𝑧𝐺1,1

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑧
d𝑧, (3.35)

where 𝜆1 > 0 and 𝜆2 < 0 are two real roots of the quadratic equation (3.19). Moreover, the correction terms for the optimal boundaries 𝑐1,1
and 𝑝1,1 are determined by

𝑐1,1 =
1
𝑑
[

𝐵11
(

𝑒𝜆1𝑐0,0𝐷7 + 𝑒𝜆2𝑐0,0𝐷8
)

+ 𝐵12
(

𝑒𝜆1𝑝0,0𝐷7 + 𝑒𝜆2𝑝0,0𝐷8
)

+𝐵13

(

−𝑒𝜆1𝑐0,0
(

𝜆1𝐷7 + 𝐷̂7

)

+ 𝑒𝜆2𝑐0,0
(

𝜆2𝐷8 + 𝐷̂8

))

+ 𝐵14

(

𝑒𝜆1𝑝0,0
(

−𝜆1𝐷7 + 𝐷̃7

)

+ 𝑒𝜆2𝑝0,0
(

𝜆2𝐷8 + 𝐷̃8

))]

,

𝑝1,1 =
1
𝑑
[

𝐵21
(

𝑒𝜆1𝑐0,0𝐷7 + 𝑒𝜆2𝑐0,0𝐷8
)

+ 𝐵22
(

𝑒𝜆1𝑝0,0𝐷7 + 𝑒𝜆2𝑝0,0𝐷8
)

+𝐵23

(

−𝑒𝜆1𝑐0,0
(

𝜆1𝐷7 + 𝐷̂7

)

+ 𝑒𝜆2𝑐0,0
(

𝜆2𝐷8 + 𝐷̂8

))

+ 𝐵24

(

𝑒𝜆1𝑝0,0
(

−𝜆1𝐷7 + 𝐷̃7

)

+ 𝑒𝜆2𝑝0,0
(

𝜆2𝐷8 + 𝐷̃8

))]

,
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Fig. 1. The dynamics of the leading-order term 0, the correction term 1, and the approximated solution 𝜖,𝛿 for the PASO-SVCEV model as a function of the 
underlying asset price. The red solid line, red dashed line, blue solid line, and blue dashed line correspond to elasticity values 𝜃 = 1.98, 1.99, 2.01, and 2.02, 
respectively.
Notes: The parameters used for this figure are: 𝑟 = 0.03, 𝑞 = 0.01, 𝐾𝑝 = 0.8, 𝐾𝑐 = 1.0, 𝜎̄ = 0.15, 𝜖 = 0.001, 𝜌 = −0.2, 𝑚 = −1.8594, 𝑢 = 0.5, ⟨𝑓 (𝑣)𝜙′(𝑣)⟩ = 0.1, and 
⟨𝛬(𝑣)𝜙′(𝑣)⟩ = 0.8266.

where

𝐷7 = ∫

𝑐0,0

𝑝0,0

𝑒𝜆2𝑧𝐺1,1

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑧
d𝑧, 𝐷̂7 =

𝑒𝜆2𝑐0,0𝐺1,1

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑐0,0
, 𝐷̃7 =

𝑒𝜆2𝑝0,0𝐺1,1

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑝0,0
,

𝐷8 = ∫

𝑐0,0

𝑝0,0

𝑒𝜆1𝑧𝐺1,1

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑧
d𝑧, 𝐷̂8 =

𝑒𝜆2𝑐0,0𝐺1,1

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑐0,0
, 𝐷̃8 =

𝑒𝜆2𝑝0,0𝐺1,1

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑝0,0
,

𝐶7 =
1
𝑑
[

𝐵31
(

𝑒𝜆1𝑐0,0𝐷7 + 𝑒𝜆2𝑐0,0𝐷8
)

+ 𝐵32
(

𝑒𝜆1𝑝0,0𝐷7 + 𝑒𝜆2𝑝0,0𝐷8
)

+𝐵33

(

−𝑒𝜆1𝑐0,0
(

𝜆1𝐷7 + 𝐷̂7

)

+ 𝑒𝜆2𝑐0,0
(

𝜆2𝐷8 + 𝐷̂8

))

+ 𝐵34

(

𝑒𝜆1𝑝0,0
(

−𝜆1𝐷7 + 𝐷̃7

)

+ 𝑒𝜆2𝑝0,0
(

𝜆2𝐷8 + 𝐷̃8

))]

,

𝐶8 =
1
𝑑
[

𝐵41
(

𝑒𝜆1𝑐0,0𝐷7 + 𝑒𝜆2𝑐0,0𝐷8
)

+ 𝐵42
(

𝑒𝜆1𝑝0,0𝐷7 + 𝑒𝜆2𝑝0,0𝐷8
)

+𝐵43

(

−𝑒𝜆1𝑐0,0
(

𝜆1𝐷7 + 𝐷̂7

)

+ 𝑒𝜆2𝑐0,0
(

𝜆2𝐷8 + 𝐷̂8

))

+ 𝐵44

(

𝑒𝜆1𝑝0,0
(

−𝜆1𝐷7 + 𝐷̃7

)

+ 𝑒𝜆2𝑝0,0
(

𝜆2𝐷8 + 𝐷̃8

))]

.

Also, 𝑑 and 𝐵𝑖,𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 4 are defined in Theorem  3.2.

Proof.  The proof follows a process similar to that of Theorem  3.2. The ODE presented in Eq.  (3.33) is reformulated into the 
Cauchy-Euler equation. The general solution is derived from the sum of the first two terms in (3.35), while the particular solution 
is represented by the sum of the last two terms. □
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Fig. 2. The behavior of the optimal stopping boundaries of the leading-order 𝑠𝑐0, the first-order correction 𝑠𝑐1, and the asymptotic approximation 𝑠𝜖,𝛿𝑓 ,𝑐 for a call 
option under the PASO-SVCEV model, examined with respect to the parameter 𝐾𝑝. The red solid line, red dashed line, blue solid line, and blue dashed line 
correspond to elasticity values 𝜃 = 1.98, 1.99, 2.01, and 2.02, respectively.
Notes: The underlying asset price is set to the midpoint between 𝑝0,0 and 𝑐0,0, and all other parameters are identical to those used in Fig.  1, except for the 
variation in 𝜃 and 𝐾𝑝.

Theorem 3.6.  For all 𝑘 ≥ 1, the correction term 𝑄1,𝑘 satisfies the following hierarchy of ODE: 
BS𝑄1,𝑘 = 𝐺1,𝑘 for 𝑥 ∈ (𝑝0,0, 𝑐0,0),
d𝑄1,𝑘−1

d𝑥
(𝑐0,0)𝑐1,𝑘 +𝑄1,𝑘(𝑐0,0) = 𝑐1,𝑘𝑒

𝑐0,0

d𝑄1,𝑘−1

d𝑥
(𝑝0,0)𝑝1,𝑘 +𝑄1,𝑘(𝑝0,0) = −𝑝1,𝑘𝑒𝑝0,0

d2𝑄1,𝑘−1

d𝑥2
(𝑐0,0)𝑐1,𝑘 +

d𝑄1,𝑘

d𝑥
(𝑐0,0) = 𝑐1,𝑘𝑒

𝑐0,0

d2𝑄1,𝑘−1

d𝑥2
(𝑝0,0)𝑝1,𝑘 +

d𝑄1,𝑘

d𝑥
(𝑝0,0) = −𝑝1,𝑘𝑒𝑝0,0 ,

(3.36)

where the non-homogeneous term 𝐺1,𝑘 is given by

𝐺1,𝑘 =1
2
𝜎̄2

𝑘
∑

𝑖=1

(−1)𝑖+1𝑥𝑖

𝑖!

(

d2𝑄1,𝑘−𝑖

d𝑥2
−

d𝑄1,𝑘−𝑖

d𝑥

)

+

√

2
2

𝜌𝑢⟨𝑓 (𝑦)𝜙′(𝑦)⟩
(−3)𝑘𝑥𝑘

2𝑘𝑘!
d3𝑄0,0

d𝑥3

+ 1
√

2
𝑢
(

𝜌⟨𝑓𝜙′
⟩

(−3)𝑘+1𝑥𝑘

2𝑘𝑘!
+ 𝜌⟨𝑓𝜙′

⟩

3𝑘𝑥𝑘

2𝑘−1𝑘!
− 𝜌⟨𝑓𝜙′

⟩

3𝑘−1𝑥𝑘−1

2𝑘−1(𝑘 − 1)!
− ⟨𝛬𝜙′

⟩

(−1)𝑘𝑥𝑘

𝑘!

) d2𝑄0,0

d𝑥2

− 1
√

𝑢
(

−𝜌⟨𝑓𝜙′
⟩

(−3)𝑘𝑥𝑘
𝑘 + 𝜌⟨𝑓𝜙′

⟩

3𝑘𝑥𝑘
𝑘−1

− 𝜌⟨𝑓𝜙′
⟩

3𝑘−1𝑥𝑘−1
𝑘−1

− ⟨𝛬𝜙′
⟩

(−1)𝑘𝑥𝑘
) d𝑄0,0 .
2 2 𝑘! 2 𝑘! 2 (𝑘 − 1)! 𝑘! d𝑥
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Fig. 3. The behavior of the optimal stopping boundaries of the leading-order 𝑠𝑝0, the first-order correction 𝑠𝑝1, and the asymptotic approximation 𝑠𝜖,𝛿𝑓 ,𝑝 for a put 
option under the PASO-SVCEV model, examined with respect to the parameter 𝐾𝑝. The red solid line, red dashed line, blue solid line, and blue dashed line 
correspond to elasticity values 𝜃 = 1.98, 1.99, 2.01, and 2.02, respectively.
Notes: All parameters are identical to those used in Fig.  2.

Then, the solution 𝑄1,𝑘 of PDE (3.36) is given by 

𝑄1,𝑘 = 𝐶9𝑒
𝜆1𝑥 + 𝐶10𝑒

𝜆2𝑥 − 𝑒𝜆1𝑥 ∫

𝑥

𝑝0,0

𝑒𝜆2𝑧𝐺1,𝑘

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑧
d𝑧 + 𝑒𝜆2𝑧 ∫

𝑥

𝑝0,0

𝑒𝜆1𝑧𝐺1,𝑘

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑧
d𝑧, (3.37)

where 𝜆1 > 0 and 𝜆2 < 0 are two real roots of the quadratic equation (3.19). Furthermore, the correction terms for the free boundaries 𝑐1,𝑘
and 𝑝1,𝑘 are determined by

𝑐1,𝑘 = 1
𝑑
[

𝐵11
(

𝑒𝜆1𝑐0,0𝐷9 + 𝑒𝜆2𝑐0,0𝐷10
)

+ 𝐵12
(

𝑒𝜆1𝑝0,0𝐷9 + 𝑒𝜆2𝑝0,0𝐷10
)

+𝐵13

(

−𝑒𝜆1𝑐0,0
(

𝜆1𝐷9 + 𝐷̂7

)

+ 𝑒𝜆2𝑐0,0
(

𝜆2𝐷10 + 𝐷̂8

))

+ 𝐵14

(

𝑒𝜆1𝑝0,0
(

−𝜆1𝐷9 + 𝐷̃7

)

+ 𝑒𝜆2𝑝0,0
(

𝜆2𝐷10 + 𝐷̃8

))]

,

𝑝1,𝑘 = 1
𝑑
[

𝐵21
(

𝑒𝜆1𝑐0,0𝐷9 + 𝑒𝜆2𝑐0,0𝐷10
)

+ 𝐵22
(

𝑒𝜆1𝑝0,0𝐷9 + 𝑒𝜆2𝑝0,0𝐷10
)

+𝐵23

(

−𝑒𝜆1𝑐0,0
(

𝜆1𝐷9 + 𝐷̂7

)

+ 𝑒𝜆2𝑐0,0
(

𝜆2𝐷10 + 𝐷̂8

))

+ 𝐵24

(

𝑒𝜆1𝑝0,0
(

−𝜆1𝐷9 + 𝐷̃7

)

+ 𝑒𝜆2𝑝0,0
(

𝜆2𝐷10 + 𝐷̃8

))]

,

where

𝐷9 = ∫

𝑐0,0

𝑝0,0

𝑒𝜆2𝑧𝐺1,𝑘

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑧
d𝑧, 𝐷̂9 =

𝑒𝜆2𝑐0,0𝐺1,𝑘

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑐0,0
, 𝐷̃9 =

𝑒𝜆2𝑝0,0𝐺1,𝑘

(𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑝0,0
,

𝐷10 =
𝑐0,0 𝑒𝜆1𝑧𝐺1,𝑘

(𝜆 +𝜆 )𝑧
d𝑧, 𝐷̂10 =

𝑒𝜆2𝑐0,0𝐺1,𝑘
(𝜆 +𝜆 )𝑐

, 𝐷̃10 =
𝑒𝜆2𝑝0,0𝐺1,𝑘

(𝜆 +𝜆 )𝑝
,
∫𝑝0,0 (𝜆2 − 𝜆1)𝑒 1 2 (𝜆2 − 𝜆1)𝑒 1 2 0,0 (𝜆2 − 𝜆1)𝑒 1 2 0,0
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Fig. 4. The dynamics of the leading-order term 0, the correction term 1, and the asymptotic approximation 𝜖,𝛿 under the PASO-SVCEV model, plotted as 
functions of the risky asset price for a given effective volatility. The black solid line, red line, and blue dashed line correspond to effective volatility values 
𝜎̄ = 0.15, 0.2, and 0.25, respectively.
Notes: The elasticity parameter is fixed at 𝜃 = 1.99, and all other parameters are identical to those used in Fig.  1, except for variations in 𝜎̄ and 𝐾𝑝.

𝐶9 =
1
𝑑
[

𝐵31
(

𝑒𝜆1𝑐0,0𝐷9 + 𝑒𝜆2𝑐0,0𝐷10
)

+ 𝐵32
(

𝑒𝜆1𝑝0,0𝐷9 + 𝑒𝜆2𝑝0,0𝐷10
)

+𝐵33

(

−𝑒𝜆1𝑐0,0
(

𝜆1𝐷9 + 𝐷̂9

)

+ 𝑒𝜆2𝑐0,0
(

𝜆2𝐷10 + 𝐷̂10

))

+ 𝐵34

(

𝑒𝜆1𝑝0,0
(

−𝜆1𝐷9 + 𝐷̃9

)

+ 𝑒𝜆2𝑝0,0
(

𝜆2𝐷10 + 𝐷̃10

))]

,

𝐶10 =
1
𝑑
[

𝐵41
(

𝑒𝜆1𝑐0,0𝐷9 + 𝑒𝜆2𝑐0,0𝐷10
)

+ 𝐵42
(

𝑒𝜆1𝑝0,0𝐷9 + 𝑒𝜆2𝑝0,0𝐷10
)

+𝐵43

(

−𝑒𝜆1𝑐0,0
(

𝜆1𝐷9 + 𝐷̂7

)

+ 𝑒𝜆2𝑐0,0
(

𝜆2𝐷10 + 𝐷̂10

))

+ 𝐵44

(

𝑒𝜆1𝑝0,0
(

−𝜆1𝐷9 + 𝐷̃9

)

+ 𝑒𝜆2𝑝0,0
(

𝜆2𝐷10 + 𝐷̃10

))]

.

Also, 𝑑 and 𝐵𝑖,𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 4 are defined in Theorem  3.2.

Proof.  The proof is similar to that of Theorem  3.2. As mentioned in the previous theorem, the ODE given in Eq.  (3.36) is reformulated 
as a Cauchy–Euler equation, resulting in the formula 𝑄1,𝑘 given in (3.37). □

Herein, from Theorems  3.1, 3.2, 3.4, and 3.5, the option price  given by combining (3.18), (3.22), (3.32), and (3.35) can be 
approximated by 

 ≈ 𝜖,𝛿 ∶= 0 +
√

𝜖1 ∶= 0,0 + 𝛿0,1 +
√

𝜖
(

1,0 + 𝛿1,1
)

. (3.38)

Similarly, the free boundaries 𝑠𝑓,𝑐 and 𝑠𝑓,𝑝 given in Theorems  3.1, 3.2, 3.4, and 3.5 can be approximated by

𝑠𝑓,𝑐 ≈ 𝑠𝜖,𝛿𝑓 ,𝑐 ∶= 𝑠𝑐0 +
√

𝜖𝑠𝑐1 ∶= 𝑠𝑐0,0 + 𝛿𝑠𝑐0,1 +
√

𝜖
(

𝑠𝑐1,0 + 𝛿𝑠𝑐1,1
)

, (3.39)

𝑠𝑓,𝑝 ≈ 𝑠𝜖,𝛿𝑓 ,𝑝 ∶= 𝑠𝑝0 +
√

𝜖𝑠𝑝1 ∶= 𝑠𝑝0,0 + 𝛿𝑠𝑝0,1 +
√

𝜖
(

𝑠𝑝1,0 + 𝛿𝑠𝑝1,1
)

, (3.40)

respectively. The accuracy of these approximations is theoretically verified in the following theorem. 
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Fig. 5. The behavior of the optimal stopping boundaries of the leading-order 𝑠𝑐0, the first-order correction 𝑠𝑐1, and the asymptotic approximation 𝑠𝜖,𝛿𝑓 ,𝑐 for a call 
option under the PASO-SVCEV model, examined with respect to the parameter 𝐾𝑝 for a given effective volatility. The black solid line, red line, and blue dashed 
line correspond to effective volatility values 𝜎̄ = 0.15, 0.2, and 0.25, respectively.
Notes : 𝑠 = (𝑝0,0 + 𝑐0,0)∕2, 𝜃 = 1.99; all other parameters match those in Fig.  1, except for changes in 𝜎̄ and 𝐾𝑝.

Theorem 3.7 (Accuracy of Option Price and Free Boundaries). Consider 𝜖,𝛿 as the first-order approximation price of PASO under the 
SVCEV framework given by (3.38). Assuming that the payoff function ℎ is smooth everywhere except at the strike prices 𝐾𝑝 and 𝐾𝑐 , the 
accuracy of the price of PASO-SVCEV is expressed as: 

|

|

|

 − 𝜖,𝛿|
|

|

= (𝜖, 𝛿). (3.41)

Similarly, let 𝑠𝑓,𝑐 (𝑣) and 𝑠𝑓,𝑝(𝑣) denote the respective free boundaries for the call and put options in PASO-SVCEV, as given in PDE (2.5). 
First-order approximations for the free boundaries are defined by (3.39) and (3.40). Assuming that the payoff function ℎ is continuously 
differentiable and bound; in that case, the accuracy for the free boundaries 𝑠𝑓,𝑐 and 𝑠𝑓,𝑝 is described by 

|

|

|

𝑠𝑓,𝑐 (𝑣) − 𝑠𝜖,𝛿𝑓 ,𝑐
|

|

|

= (𝜖, 𝛿), and |

|

|

𝑠𝑓,𝑝(𝑣) − 𝑠𝜖,𝛿𝑓 ,𝑝
|

|

|

= (𝜖, 𝛿). (3.42)

Proof.  The PDE (2.5) can be converted into PDE (2.10) using the same change of variable method introduced in Section 2. We can 
derive the first-order term approximation 𝑄(𝑥, 𝑣) ≈ 𝑄0,0(𝑥) + 𝛿𝑄0,1(𝑥) +

√

𝜖
(

𝑄1,0(𝑥) + 𝛿𝑄1,1(𝑥)
) by applying the asymptotic method 

presented in Section 3, where 𝑄0,0 represents the leading order price, as defined in (3.18), and 𝑄0,1, 𝑄1,1, and 𝑄1,1 are the correction 
terms provided in Theorems  3.2, 3.4, and 3.5, respectively. Similarly, the first-order approximations of the optimal boundaries 𝑥𝑓,𝑐
and 𝑥𝑓,𝑝 are given by 𝑥𝑓,𝑝(𝑣) ≈ 𝑝0,0 + 𝛿𝑝0,1 +

√

𝜖(𝑝1,0 + 𝛿𝑝1,1) and 𝑥𝑓,𝑐 (𝑣) ≈ 𝑐0,0 + 𝛿𝑐0,1 +
√

𝜖(𝑐1,0 + 𝛿𝑐1,1). Each term in these expressions 
corresponds to specific components derived from theoretical analysis. Then, using the change of variable, 𝑥 = ln 𝑠, 𝑥𝑓,𝑐 = ln 𝑠𝑓,𝑐 and 
𝑥𝑓,𝑝 = ln 𝑠𝑓,𝑝, these results can be reformulated as the approximation price in (3.38), and the approximation of free boundaries in 
(3.39) and (3.40). Detailed proofs are provided in [8,33]. □
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Fig. 6. The behavior of the optimal stopping boundaries of the leading-order 𝑠𝑝0, the first-order correction 𝑠𝑝1, and the asymptotic approximation 𝑠𝜖,𝛿𝑓 ,𝑝 for a put 
option under the PASO-SVCEV model, examined with respect to the parameter 𝐾𝑝 for a given effective volatility. The black solid line, red line, and blue dashed 
line correspond to effective volatility values 𝜎̄ = 0.15, 0.2, and 0.25, respectively.
Notes: All parameters are identical to those used in Fig.  5.

4. Numerical implications

In this section, we investigate the price changes of perpetual American strangle options under the SVCEV model (PASO-SVCEV) 
with regard to the model parameters. For the numerical analysis, in (3.38)–(3.40), we mentioned the approximated option prices 

𝜖,𝛿 ∶= 0 +
√

𝜖1 ∶= 0,0 + 𝛿0,1 +
√

𝜖(1,0 + 𝛿1,1), (4.1)

and

𝑠𝜖,𝛿𝑓 ,𝑐 ∶= 𝑠𝑐0 +
√

𝜖𝑠𝑐1 ∶= 𝑠𝑐0,0 + 𝛿𝑠𝑐0,1 +
√

𝜖
(

𝑠𝑐1,0 + 𝛿𝑠𝑐1,1
)

, (4.2)

𝑠𝜖,𝛿𝑓 ,𝑝 ∶= 𝑠𝑝0 +
√

𝜖𝑠𝑝1 ∶= 𝑠𝑝0,0 + 𝛿𝑠𝑝0,1 +
√

𝜖
(

𝑠𝑝1,0 + 𝛿𝑠𝑝1,1
)

. (4.3)

In Table  1, as described by Choi et al. [10], the historical data analysis of the volatility of the S&P 500 index reveals that the 
elasticities are close to 2. Thus, the corrected price of the PASO under the SVCEV model given by (4.1) is reasonable for the numerical 
experiments in this section.

In the numerical analysis, we investigate the pricing accuracy of the approximation formula for PASO-SVCEV using the Monte 
Carlo method. Monte Carlo simulations were conducted using 10,000 simulated paths for the underlying asset price. In addition, 
according to Ha et al. [27], we select the baseline parameters as follows: 𝑠 = 0.9, 𝑣 = 0, 𝐾𝑝 = 0.8, 𝐾𝑐 = 1.0, 𝑟 = 0.03, 𝑞 = 0.01, 
𝑚 = −1.8594, 𝑢 = 0.5, 𝜌 = −0.2, 𝜎̄ = 0.15, ⟨𝑓 (𝑣)𝜙′(𝑣)⟩ = 0.1, and ⟨𝛬(𝑣)𝜙′(𝑣)⟩ = 0.8266.

Table  1 presents the results of the Monte-Carlo simulation, comparing Monte Carlo simulated option prices MC and the corrected 
approximation formula 𝜖,𝛿 with respect to 𝜖 and 𝜃. Table  1 also highlights the absolute errors |MC − 0,0|, |MC − 𝜖,𝛿

|, and the 
relative errors RE  and RE  for each parameter sets. In addition, time  represents the computation time required for the Monte Carlo 
1 2 1
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Fig. 7. The dynamics of the optimal stopping boundaries of the correction terms 𝑠𝑐1 and 𝑠𝑝1 under the PASO-SVCEV model, shown as functions of the grouped 
parameters 𝑉2 and 𝑉3, respectively, for given elasticity values. The red solid line, red dashed line, blue solid line, and blue dashed line correspond to elasticity 
values 𝜃 = 1.98, 1.99, 2.01, and 2.02, respectively.
Notes: All parameters are identical to those used in Fig.  1, except for the variation in 𝑉2, 𝑉3, and 𝜃.

simulation, while time2 denotes the time taken by the proposed approximation method. We examine and compare the computational 
costs of both approaches, and found that the first-order approximated price can be obtained significantly faster than the Monte 
Carlo-based result. As the parameter 𝜖 decreases, the price difference between the corrected approximation formula 𝜖,𝛿 and the 
Monte-Carlo price MC approaches zero, with the relative error consistently decreasing for each elasticity value 𝜃. Consequently, 
with the increasing number of simulations, the numerical solution provided by the Monte-Carlo simulation, which is considered the 
best approximation of a real-world solution, approaches the approximated price given by (4.1). This result suggests that the analytic 
option price presented in Theorem  3.7 or (4.1) becomes an accurate solution for PASO-SVCEV.

Fig.  1 illustrates the pricing behaviors of the leading-order term 0, the correction term 1, and the approximated solution 
0+

√

𝜖1 for PASO-SVCEV with respect to the underlying asset value for an elasticity parameter 𝜃. Fig.  1(a) reveals that 0 exhibits 
an increasing trend in option prices as the underlying asset price rises, regardless of the value of 𝜃. In Fig.  1(b), 1 displays diffusing 
patterns when the risky asset is near the strike price of the call or put option against the value of 𝜃. Particularly, for the elasticity 
parameter, the price impact of 0 remains almost unchanged; however, that of 1 tends to be sensitive to the risky asset value near 
the strike prices 𝐾𝑝 and 𝐾𝑐 . This observation indicates that the price sensitivity for the correction term embedded in the SV exceeds 
that of the leading-order term for the elasticity 𝜃 as the underlying asset approaches the strike prices of the call or put option. This 
implies that the effect of SV on the option price is substantial in terms of the elasticity value of the underlying asset near the strike 
prices of the call or put option. Thus, in Fig.  1(c), the price difference between the approximated option values for the elasticity 
parameter becomes larger than that of the leading-order values.

Figs.  2 and 3 present the pricing behaviors of the leading order term (𝑠𝑐0 or 𝑠
𝑝
0), the correction term (𝑠𝑐1 or 𝑠

𝑝
1), and the 

approximated value (𝑠𝜖,𝛿𝑓 ,𝑐 or 𝑠
𝜖,𝛿
𝑓 ,𝑝) for the optimal stopping boundaries of the call or put option on PASO-SVCEV with regards to 

𝐾𝑝 for a given elasticity value. In both figures, the price effect of the correction terms increases more than that of the leading order 
terms against the given elasticity parameter. This implies that the free-boundary values for the call or put option for PASO-SVCEV 
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Fig. 8. The dynamics of the optimal stopping boundaries of the correction terms 𝑠𝑐1 and 𝑠𝑝1 under the PASO-SVCEV model, shown as functions of the grouped 
parameters 𝑉2 and 𝑉3, respectively, for given effective volatility. The black solid line, red line, and blue dashed line correspond to effective volatility values 
𝜎̄ = 0.15, 0.2, and 0.25, respectively.
Notes: 𝑠 = (𝑝0,0 + 𝑐0,0)∕2, 𝜃 = 1.99; all other parameters match those in Fig.  1, except for changes in 𝑉2, 𝑉3, and 𝜎̄.

are significantly influenced by the SV factor for the elasticity value. The pricing impact of the correction-order term 𝑠𝑝1 is more 
substantial than that of the correction-order value 𝑠𝑐1 for the elasticity parameter. Consequently, the effect of SV on the option 
price is substantial in the optimal boundaries of the put option rather than those of the call option. This indicates that for both 
approximated prices of the optimal boundary, the price gap of the corrected value for the put option is larger than that for the call 
option.

Fig.  4 illustrates the pricing changes of the leading-order term 0, the correction term 1, and the approximated value 𝜖,𝛿 for 
PASO-SVCEV in terms of the risky asset price for a given effective volatility. The Figures reveal that the correction-order term price 
1 is more sensitive than the leading-order term price 0 with respect to the effective volatility. This suggests that the impact of 
the correction term, which is closely related to the SV on the option price, is highly sensitive to the influence of the leading-order 
term with respect to the volatility value. In addition, the price influence of the correction term becomes substantial with decreasing 
volatility. Furthermore, the payoff of a strangle option can generate substantial returns from the investment, regardless of whether 
the underlying asset price rises or falls drastically because it combines the characteristics of call and put options. Thus, suppose 
that the volatility is low; in that case, the potential profits from the investment decrease, ultimately resulting in a relatively higher 
investment risk. Consequently, as volatility decreases, the price influence on the option becomes more sensitive to the underlying 
asset.

Figs.  5 and 6 display the pricing sensitivities of the leading order term (𝑠𝑐0 or 𝑠
𝑝
0), the correction term (𝑠𝑐1 or 𝑠

𝑝
1) and the 

approximated price (𝑠𝜖,𝛿𝑓 ,𝑐 or 𝑠
𝜖,𝛿
𝑓 ,𝑝) for the free boundaries of the call or put options on PASO-SVCEV in terms of 𝐾𝑝 for a given effective 

volatility. Comparing the optimal stopping boundaries of the call and put options, the volatility of the free boundaries of the call 
option exhibits minimal changes in the prices for 𝑠𝑐0, 𝑠𝑐1, and 𝑠

𝜖,𝛿
𝑓 ,𝑐 . However, the price changes for 𝑠

𝑝
0, 𝑠

𝑝
1, and 𝑠

𝜖,𝛿
𝑓 ,𝑝 are substantial and 

more prominent than those of the free-boundaries of the call option. Furthermore, as opposed to the optimal stopping boundaries 
of the call option, the price impact of the correction term increases more than that of the leading order term in the free boundary of 
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Table 1
The error comparison between the Monte-Carlo price for (denoted by MC) and the corrected formula (𝜖,𝛿) with respect to 𝜖 and simulation number 10,000.
Notes: The parameters used for this table are: 𝑠 = 0.9, 𝑣 = 0, 𝑟 = 0.03, 𝑞 = 0.01, 𝜎̄ = 0.15, 𝐾𝑐 = 1.0, 𝐾𝑝 = 0.8, 𝑢 = 0.5, 𝑚 = −1.8594, 𝜌𝑥𝑣 = −0.2, ⟨𝑓 (𝑣)𝜙′(𝑣)⟩ =
0.1, ⟨𝛬(𝑣)𝜙′(𝑣)⟩ = 0.8266.
 𝜃 𝜖 MC CI 0,0 𝜖,𝛿

|

|

MC − 0,0
|

|

|

|

MC − 𝜖,𝛿
|

|

RE1 [%] RE2 [%] time1 [s] time2 [s]  
 

2.02

0.0100 0.429093 [0.425957, 0.432229] 0.485250 0.393425 0.056157 0.035668 13.087482 8.312429 0.031478 122.069102 
 0.0050 0.442743 [0.439106, 0.446381] 0.485250 0.418232 0.042507 0.024512 9.600775 5.536291 0.031478 120.966143 
 0.0010 0.456751 [0.452484, 0.461017] 0.485250 0.451338 0.028499 0.005413 6.239575 1.185078 0.031478 120.307276 
 0.0005 0.463099 [0.458500, 0.467697] 0.485250 0.459183 0.022152 0.003916 4.783364 0.845562 0.031478 107.702800 
 0.0001 0.471550 [0.466525, 0.476576] 0.485250 0.469652 0.013700 0.001899 2.905278 0.402614 0.031478 101.953143 
 

2.01

0.0100 0.439964 [0.436744, 0.443184] 0.485250 0.409496 0.045286 0.030468 10.293180 6.925126 0.032315 107.077780 
 0.0050 0.456705 [0.452939, 0.460471] 0.485250 0.430640 0.028545 0.026065 6.250218 5.707252 0.032315 113.686849 
 0.0010 0.466031 [0.461602, 0.470459] 0.485250 0.458857 0.019220 0.007173 4.124141 1.539186 0.032315 119.882369 
 0.0005 0.469497 [0.464893, 0.474101] 0.485250 0.465544 0.015753 0.003953 3.355369 0.842001 0.032315 108.879134 
 0.0001 0.477757 [0.472652, 0.482862] 0.485250 0.474467 0.007493 0.003290 1.568453 0.688625 0.032315 101.816397 
 

1.99

0.0100 0.457836 [0.451519, 0.461153] 0.485250 0.441638 0.027414 0.016198 5.987804 3.537897 0.031322 119.504278 
 0.0050 0.462787 [0.459030, 0.466544] 0.485250 0.455456 0.022463 0.007331 4.853838 1.584201 0.031322 111.977774 
 0.0010 0.477945 [0.473505, 0.482386] 0.485250 0.473896 0.007305 0.004049 1.528441 0.847176 0.031322 115.045335 
 0.0005 0.480434 [0.475705, 0.485162] 0.485250 0.478266 0.004817 0.002168 1.002565 0.451251 0.031322 102.098709 
 0.0001 0.484617 [0.479522, 0.489711] 0.485250 0.484097 0.000634 0.000520 0.130762 0.107219 0.031322 101.089543 
 

1.98

0.0100 0.465610 [0.462543, 0.469686] 0.485250 0.457709 0.019640 0.007901 4.218092 1.696929 0.030702 106.738700 
 0.0050 0.474827 [0.471194, 0.478460] 0.485250 0.467864 0.010423 0.006963 2.195130 1.466507 0.030702 111.583636 
 0.0010 0.476667 [0.472232, 0.481103] 0.485250 0.481415 0.008583 0.004748 1.800625 0.996121 0.030702 122.092209 
 0.0005 0.481150 [0.476459, 0.485841] 0.485250 0.484627 0.004100 0.003477 0.852163 0.722542 0.030702 113.935380 
 0.0001 0.488279 [0.486995, 0.496261] 0.485250 0.488912 0.003029 0.000633 0.620293 0.129634 0.030702 113.516048 

the put option for effective volatility. This implies that the free boundaries on the option value are more influenced by the volatility 
in the optimal boundaries for the put options than for call options. This highlights that the effect of SV on the free boundary is 
highly sensitive to the volatility in the optimal boundaries of the put option rather than those of the call option.

Fig.  7 exhibits the pricing changes of the correction terms 𝑠𝑐1 and 𝑠
𝑝
1 for PASO-SVCEV with respect to the group parameters 

𝑉2 or 𝑉3 for the elasticity parameter, where the group parameters are defined as 𝑉2 ∶=
√

2𝜌𝑢⟨𝑓 (𝑦)𝜙′(𝑦)⟩ −
√

2
2 𝑢⟨𝛬(𝑦)𝜙′(𝑦)⟩ and 

𝑉3 ∶=
√

2
2 𝜌𝑢⟨𝑓 (𝑦)𝜙′(𝑦)⟩. The group parameter 𝑉3 involves the correlation between the underlying asset and volatility, 𝜌, and the 

group parameter 𝑉2 involves the market price of risk 𝛬, indicating that 𝑉2 and 𝑉3 are closely linked to 𝜌 and 𝛬, respectively. Fig. 
7 illustrates that the correction term price of the optimal stopping boundary of the put option increases more than that of the call 
option against the group parameters 𝑉2 or 𝑉3 as the elasticity varies. This implies that the effect of SV on the optimal-boundary 
price for the put option is greater compared to that of the call option with respect to the group parameter 𝑉2 or 𝑉3.

Fig.  8 displays the price changes of the correction terms 𝑠𝑐1 and 𝑠
𝑝
1 for PASO-SVCEV in terms of the group parameters 𝑉2 or 𝑉3

for the given effective volatility. Similar to Fig.  7, when the correction term value 𝑠𝑐1 and the correction term price 𝑠𝑝1 are compared, 
the pricing sensitivities of the correction term of the free boundary for the put option exceed those of the correction term for 
the call option for the given effective volatility. Thus, most investors in the financial market react more sensitively to declines in 
underlying assets than to increases. In such cases, investors holding strangle options can still expect to benefit considerably from 
the put option embedded in the payoff, even during a bear market. Therefore, the free-boundary value of the put option with the 
value of the relatively high expectation in the bear market may have greater impacts than those of the call option of the relatively 
low expectation. Therefore, the effect of SV on the optimal boundary price for the put option is greater than that of the call option 
against the group parameters 𝑉2 or 𝑉3 for the volatility. Moreover, the price sensitivity of the correction term for the put option is 
drastically larger compared to that for the call option as the volatility decreases.

5. Conclusion

This study examines the approximated formulas of the prices of the perpetual American strangle options with the SVCEV model 
(PASO-SVCEV) and their free-boundaries, highlighting the features of SV given by Fouque et al. [8]. First, the PDEs for the value 
of the PASO-SVCEV under the risky asset models were determined, and analytic formulas for the approximated option price for the 
PASO-SVCEV were obtained using a singular perturbation method. Second, based on the analytical solutions, we demonstrate that 
our first-approximated solution corresponds to an accurate formula of the PASO-SVCEV, comparing our solution with the Monte 
Carlo price. Based on the approximation prices, we compared our analytical solutions with the solution derived via the Monte 
Carlo simulation and demonstrated that it closely corresponds to an accurate formula for the PASO-SVCEV. Third, the numerical 
experiments revealed the quantitative and qualitative influence of our approximated formulas by analyzing the fast mean-reverting 
factor embedded in the SV model on the option price and the free-boundary value across various model parameters. This emphasizes 
that the influence of the SV factor on the option price or the optimal exercise boundary is significant for the effective volatility and 
the elasticity parameter. Particularly, the impact of the SV factor on the optimal exercise boundary for a put option is more sensitive 
to the correlation between the risky asset and the volatility or the market price of risk than that on the free boundary for a call 
option. Finally, the American options or exotic options under diverse models, except for the SV model, are being extensively studied, 
22 
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even for higher-dimensional model dynamics in financial mathematics. Future studies can extend our selected perpetual American 
strangle options to a more complicated American option with other types.
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