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ARTICLE INFO ABSTRACT

Keywords: Generally, a perpetual American strangle option is an investment strategy integrating the
Perpetual American strangle option characteristics of call and put options under an underlying asset with an infinite time horizon.
Constant elasticity of variance Investors commonly use this trading strategy as they anticipate the underlying asset to fluctuate

Fast mean reversion
Asymptotic analysis
Monte-Carlo simulation

considerably but are uncertain about an increase or decrease. In this study, we consider
the perpetual American strangle options under the Stochastic Volatility Constant Elasticity of
Variance (SVCEV) model and examine the approximated option prices and free boundary values

Call option
Pull option using an asymptotic analysis. Moreover, we verify the pricing accuracy of the approximated
Stochastic volatility solutions for perpetual American strangle options under SVCEV by comparing our solutions with

the prices derived from Monte Carlo simulations. Finally, we analyze the price sensitivities of
the options and free boundaries in terms of several model parameters. Our findings emphasize
that the influence of the SV factor on the option price or the optimal exercise boundary is
significant for the effective volatility and the elasticity parameter.

1. Introduction

Option pricing theory is pivotal in the mathematical finance field. Particularly, volatility is considered essential in pricing
derivatives, dynamic hedging, and portfolio management in financial markets. For instance, the price for foreign exchange (FX)
options is commonly quoted in terms of volatility. Moreover, volatility has become a focus of academic research and practical
applications because of its importance in the valuation of financial derivatives.

Meanwhile, methods to model volatility have been under study for many years. The Black-Scholes model [1] is one of the
most popular models. However, for such a model, significant challenges have arisen in modeling volatility to capture and reflect
the accumulated empirical evidence from financial markets. This is because the Black-Scholes model assumes constant implied
volatilities, which contradicts empirical findings revealing that the implied volatilities of equity options often exhibit a smile or skew
pattern. Two major types of volatility models have been proposed to address the assumptions in the Black-Scholes model, which
are unsuitable for real-world financial industries, and to extend it to account for the skew and smile effects: local and Stochastic
volatility (SV) models.

Local volatility models have been developed by Dupire [2] and Derman and Kani [3] for the continuous and discrete cases,
respectively, which are collectively referred to as non-parametric local volatility models. In these models, volatility relies on the asset
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price and time, emphasizing the significance of the correlation between changes in the underlying asset price and the randomness of
volatility in pricing options. Furthermore, Cox and Ross [4] proposed the constant elasticity of variance (CEV) model as a parametric
local volatility model. Tian et al. [5] highlight that the CEV model can generate a U-shaped implied volatility curve, in contrast to
the flat curve assumed in the Black-Scholes model. Nevertheless, in the CEV model proposed by Cox and Ross [4], the volatility
and the underlying asset price correlate perfectly, which is entirely positive or negative, depending on the elasticity parameter. In
contrast, empirical studies, such as that by Ghysels et al. [6], reveal that there is a definite correlation at all times between the
volatility and the risky asset price, displaying the time-varying characteristics of volatility.

Regarding SV models, the extraordinary volatility behaviors observed in financial markets, particularly after the 1987 Financial
Crash, have highlighted the significance of non-flat implied volatility. Consequently, participants in financial transactions have
increasingly focused on models that can predict financial asset movement. Subsequently, the (pure) SV model was proposed to better
describe and reflect real-world financial market conditions after recognizing the SV of an underlying asset. The Heston model (cf.
Heston [7]) and the fast mean-reverting SV model proposed by Fouque et al. [8] have become representative SV models designed
to capture the mean-reversion phenomenon of volatility observed in real markets. Additionally, the Hull and White model [9]
modeled the instantaneous variance process as a geometric Brownian motion. The Heston model [7], with volatility driven by
a Cox-Ingersoll-Ross(CIR) process, has been widely regarded as one of the most popular stochastic models due to its analytical
tractability.

However, local volatility and SV models do not fully capture empirical evidence revealing that the implied volatility of equity
options exhibits smile and skew curves simultaneously. Thus, researchers have proposed a hybrid model that combines these two
approaches, stressing that these mixed models are designed to leverage the advantages of local and stochastic volatility frameworks.
Choi et al. [10] combined the SV and CEV in a multi-factor model — the hybrid stochastic and local volatility model or the Stochastic
Volatility Constant Elasticity of Variance (SVCEV) model — to price the European vanilla options and verify the effectiveness of the
hybrid model, comparing it with other models. The SVCEV model has been widely used to evaluate various contingent claims.
For instance, Kim et al. [11] developed a pricing formula for European vulnerable options using the SVCEV model, while Kim
et al. [12] applied the model to implement the pricing of real options. Choi et al. [13] investigated the analytic pricing formulas
for timer options based on the SVCEV model. However, Choi et al. [14] used a multiscale hybrid model incorporating fast and slow
factors to evaluate an equity-linked annuity under this framework. Furthermore, Choi et al. [15] used the hybrid stochastic and
local volatility model to derive an implied volatility formula for corresponding FX options and conducted calibration experiments
to analyze the implied volatilities in three FX option markets. Recently, Cao et al. [16] examined the pricing challenge of a variance
swap based on a hybrid of the CEV and SV models. Through option calibration, they compared the SVCEV model with the CEV
model and the Heston SV model to evaluate their performance in fitting option data.

In recent years, financial markets have grown more complex and advanced; thus, diverse derivative products designed to
maximize investor interest have emerged. One of the securities is the strangle option, which is an investment strategy constructed
via call and put options with the same expiration date but different strike prices.

This strategy is typically useful for investors who anticipate dramatic fluctuations of the risky asset but cannot predict the
direction. Zaevski [17] revealed that such a phenomenon occurs frequently during periods of high volatility, often supported by
volatility clustering observed in real financial markets. Furthermore, Chaput and Ederington [18] and Hull [19] observed that the
strangle strategy is the best for risk management and volatility trading. Extensive research has focused on applying strangle options
to enhance investment returns or efficiently manage risks associated with sharp price movements in volatile markets. Based on these
characteristics, extensive research has focused on applying strangle options to enhance investment returns or efficiently manage risks
associated with sharp price fluctuations in volatile markets. For example, Fahlenbrach and Sandas [20] analyzed option strategies,
including strangles, in the FTSE-100 index market and studied evidence of order flows in volatility-sensitive strategies. Similarly,
Kownatzki et al. [21] examined the potential of strangle options for managing event-risk environments from the Standard and Poor’s
(S&P) 500 index between 2018 and 2020.

In this article, we investigate the pricing of perpetual American strangle options under the SVCEV model. As previously
mentioned, the SV and CEV models were incorporated into a multi-factor model called the hybrid stochastic and local volatility
model owing to the disadvantage of the SV or CEV model. This model, introduced by Choi et al. [10], captures the leverage effect
to better fit the corresponding market and also addresses the hedging instability caused by the CEV model.

Strangle options, particularly when combined with American options, have been the focus of extensive research. These options
allow investors to efficiently manage volatile market risks by enabling early exercise at an optimal stopping time before maturity,
offering significant advantages. Consequently, studies have explored the pricing and exercise boundaries of American strangle
options. For instance, Chiarella and Ziogas [22] studied the American strangle option as a generalization of McKean’s free boundary
problem [23] for American options, using the Fourier transform technique. Moraux [24] investigate the perpetual American strangles
taking advantage of a nonlinear technique, comparing them with option portfolios. Boyarchenko [25] examined the pricing of
perpetual American strangles under a jump-diffusion model. In contrast, Ma and Zhang [26] addressed optimal exercise boundaries
through numerical methods, introducing a high-order collocation method for pricing. Ha et al. [27] also studied the perpetual
American strangle option pricing using the SV model. In addition, Chang and Sheu [28] considered the pricing of perpetual American
strangle and straddle options using a jump-diffusion model. Furthermore, Chuang [29] proposed a quasi-analytical approach to carry
out the analysis of the perpetual strangles under the early exercise frontier. Nevertheless, no research has been conducted on the
pricing of the perpetual American strangle option (PASO) and its optimal exercise boundary using the hybrid SV and local volatility
model to our knowledge. Therefore, we have conducted an extensional study on the pricing of PASOs with SVCEV, referred to as
PASO-SVCEV.
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The primary contributions of this work are outlined as follows:

Establishing the partial differential equation for PASO-SVCEV: We derive a partial differential equation (PDE) for the value of
PASO-SVCEV. Due to the complexity of PDE, introduced by stochastic volatility and local volatility (SVCEV), obtaining a closed-form
solution for this PDE is nearly impossible. Furthermore, the mathematical problem of American strangle options requires handling
two free boundaries. Thus, we apply the technique of the asymptotic analysis provided by Fouque et al. [8] to derive an approximate
option pricing formula and determine the approximated early exercise boundary for PASO-SVCEV.

Validating the pricing formula: Using Monte Carlo simulations, we validate the accuracy of the derived option prices.
Specifically, we compute the residual, which is the difference between the Monte Carlo price and our approximated option price.
The error between the Monte Carlo price and our approximated option price converges to zero as the number of Monte Carlo paths
increases, verifying our pricing accuracy.

Analyzing the impact of SV: We conduct a numerical analysis to investigate the influence of SV on the option price and free
boundary values under various model parameters, especially elasticity and effective volatility. Our findings highlight the significant
impact of SV on PASO-SVCEV. The effect of the SV factor on the option price and optimal exercise boundary becomes more
pronounced in terms of elasticity and effective volatility. Additionally, the free boundary for put options is more sensitive to the
SV term than that of call options with respect to the correlation between the risky asset and the volatility, market price of risk,
volatility, or elasticity.

The rest of this paper is structured as follows. Section 2 outlines the construction of the model dynamics under the underlying
asset price and obtains the PDE for PASO-SVCEV. In Section 3, we present the first-order approximation of the option price using
asymptotic analysis. Section 4 validates the accuracy of the approximated option prices for PASOSV and examines the sensitivities
of SV factors to the option value with respect to the model parameters. Finally, Section 5 concludes with a summary of key findings
and remarks.

2. Model formulation

In this section, we first design a stochastic model for the price of the perpetual American strangle option. Let .S, be the price of
the underlying asset with stochastic volatility and constant elasticity of variance, considering dividend rate g. Let V, be the volatility
of S, following an OU process. Then, the dynamics of S, and ¥V, under market probability measure P is described using the following
stochastic differential equations (SDEs):

dS, = (u—g)S,dr + f(V)S}"

t

aw;,
’ @1
v, = a(m — V,)dz+ﬁ(pdw,+ 1—p2dz,),

where u denotes the expected return rate, f is a smooth function bounded by positive constants ¢, and ¢,, such that 0 < ¢; < f <
¢, < o0 and 6 is an elasticity parameter. In addition, « and g are positive constants, m is the long-term mean of V;, and p represents
the correlation between the standard Brownian motions W, and Z,, with p satisfying —1 < p < 1.

The OU process V; is an ergodic process with the mean-reverting property and V; is expressed as V, = m + (V, — m)e* +
p fot e~®=9dZ . Thus, V, follows the normal distribution N (m + (V — m)e™®,u?(1 — e72%")). As t — oo, V; is independent to V,

such that ¥, ~ N'(m,u?), where m is the mean and u = —£_ is the standard deviation of the invariant distribution of V,. Suppose

NeT
that the mean reversion rate « is sufficient; in that case, V, returns to the mean of its invariant distribution independently of time.
Therefore, we consider a sufficiently small parameter ¢, defined as the reciprocal of the mean reversion rate a.
Option prices are represented as the expected value of discounted payoffs under a risk-neutral measure and the no-arbitrage
pricing framework. The model’s dynamics (2.1) can be reformulated under the risk-neutral probability measure P* by applying the
Girsanov theorem [30].

dsS, = (r— @S,dt + (VS aw,
2 2 (2.2)
av, = <l(m—V,)—” A(V,)>d1+M(pdVV,*+ 1—p2dz;*),
€ \/Z €

where r is a risk-free interest rate, A is expressed as A(y) = p;‘% +y(») V1 - p? for the market price of volatility risk y(-), and W*
and Z; are transformed standard Brownian motions under the measure P*.

The analytic form of the price of American-style options remains to be revealed; however, the pricing formula for perpetual
American options is well known. Perpetual options are those with no expiry date, signifying that the holder can exercise the option
at any time. The option’s value is independent of time and is defined as follows for a given underlying asset price S, = s.

P(s)= sup E* [e’r(r”)h(s)l(r«x,} IS, =s],
T€I'[t,0)
where I'[1, o) denotes the set of stopping times 7 on [, o0) and determines the execution of the option, E*[-] represents the conditional
value under the risk neutrality measure and the payoff function of perpetual American options, denoted by 4, represents the following
forms, depending on whether the option is a call or put—(S, — K)* for a call option and (K — S,)* for a put option. Moreover, the
optimal execution boundary of the option is defined as # = inf{t, > #; : .S, = s}, representing the earliest time that the price .S,
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of the underlying asset reaches a boundary s,. The price and optimal boundary of the perpetual American option are expressed as
follows:
2r

se\ 52
P(s):(—f> (K-s;) and s, = —%_
$ 1+ 2

where K, r, and o are the strike price of the option, risk-free interest rate, and constant volatility of the underlying asset, respectively.
The above pricing formula and optimal boundary correspond to a perpetual American put option under the classical Black-Scholes
framework, in which the underlying asset follows a geometric Brownian motion with constant volatility.

This characteristic of options provides favorable conditions for investors and expands the possibilities of their use through
different strategies. A typical example is the strangle strategy. A strangle is an option’s investment strategy that combines a long
put and a long call option with strike prices K, and K, respectively, according to Chiarella and Ziogas [22]. Here, the condition
K, < K, has to be satisfied. Then, the payoff function is defined as

h(s) = (K, - St +(s— K. (2.3)
In addition, under the risk-neutral probability measure P*, the PASO’s price, denoted by V(s, v), is written as

V(s,o)= sup EI, [e7 IR )] - 2.4)

T€Il[t,0)

The entire region D = {(s,0)|0 < s < 00,0 < v < oo} is where prices are defined and can be represented as the union of two
regions—¢& and C.

E={(s,0) €D|V(s,0) = (K, — )" + (s — K)"}
C={(s0) €D|V(s,0) > (K, —5)" +(s = K)"}.

Also, & is divided into two subregions £7 and £¢ which are described as

EP = {(5.v) € D| V(s,0) = (K, — 5)* > 0},
& = {(s,v) €D|V(s,v) = (s — K.)* > 0}.

Two boundary values exist because £ and C are regions with no intersection. Both boundary values—s, . and s, ,—can be
represented as follows:

sy ) =sup{s|(s,v) € EP} and s, .(v) =inf{s|(s,v) € £},
which is called the free boundary of PASO. Therefore, the continuous region C can be redefined as follows:
C={(s,0)|sp, <s<sy.}

Subsequently, we can transform the given optimal stopping time problem (2.4) into the following free boundary problem by
applying the methodology of Tao [31],

2
Lrors 2 s —q)——rV+£<f()9/2” <)—) l((m—v)ﬂwzg)ﬂ) @5)
\/‘ € ov ov

for (s,v) € (s7 . 5 f,c) X (—00, +o0), together with the four boundary conditions
V(ssp(0),0) =K, =5/,
V(ss (v),0) = Sf,c -K,,
s p(00) = 26)
s @) =1,

when K, > K. Here, the first and second equations in (2.6) are matching conditions for the put and call, respectively and the third
and fourth equations in (2.6) correspond to the smooth pasting conditions with respect to s. The PDE (2.5) can be described as

<[:2 + L\/_El + é[:o> V(s.0) = 0, @7
€

by defining the operators in the following manner:
£0—(m—u)— +uzaa2
£ = \/_puf(u)s9/2 ‘) \/_uA(U)— (2.8)

L= §f2(v>s"ﬁ +(r— q)sg -l
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where 7 is an identity operator. We use the following new variables to find V, which satisfies the PDE (2.7):
x =lIns, Xpe= In Sfes Xpp= In St op and Q(x,v) = V(s,0).

Then, the PDE (2.7) is converted into

1 1
(112 + ﬁﬂl + EE()) O(x,v) =0

with the operators

£0—(m—v)— +uz;2
£y = Vapuf )" = — /2 uA(u)— 2.9)

L o | (0-2)x i ( 2 (9—2)x) 4
L, == L i(r=g-= s
2=/ e e e 2f(”)e "

Subsequently, the linear complementarity problem with four boundary conditions is obtained as follows:
LO(x,v) =0, (x,v) € (X7, X7 ) X (—00,+00),
O(x ,(v),0) = K, —e*/»,
Q(xf,c(u)’ v) = et — K., (2.10)
20 _
g(x/,,,(v), v)=-—

Ly = e,

where the differential operator £€ is £ = £, + —=L£, + éﬁo.

Ve
3. Option price approximation

Based on the work by Fouque et al. [8], when the option price Q(x, v) and free boundaries—x 7.p® and x 1 e(v)—are asymptotically
expanded in terms of the small parameter \/E for 0 < € < 1, the following formal series expansions can be derived:

O(x,v) = Y e"08(x,v), x7,(0)= Y epi), x;. ()= Y e"cE(w) (3.1)
n=0 n=0 n=0

Substituting (3.1) into the PDE in (2.10) results in
1 € 1 € € € € € € € €
SLoQG + —\/_(EOQI +L£108) + (L£Q5 + L£,05 + £,08) + Ve(Ly0S + £,05 + £,0%) = O(e) (3.2)
€

Furthermore, the matching and smooth pasting conditions in (2.10) can be expanded as follows:
05 (cs ) + /e (

€ Q e (V) ¢ P
05 (i) + Ve S WNP5 (L) + Oy (po (1)) =Y — \fept ) + O(e),

a2Q€ 90} ‘ ”
O(U)) + \/_< (CS(U))CT(U) + 0x1 (cg(u))) =W 4 \/Zcf(v)eco(” + O(e),
0Q8 . 0’05
= )+ \/E< —

According to Section 3.2 of Fouque et al. [8], multiplying Eq. (3.2) by e eliminates the diverging term. Thus, inserting the
expansion (3.1) into the PDE (3.2) results in the following PDEs:

()t (v) + Qe(co(v))> = —K, + 0V 4 \fec! ()¢9 + O(e),

(3.3)

O 0<u))> = =Y — \fept )Y + Oe).

L4058 =0,
L£o0¢ +£,05 =0,
Lo05 + £105 + £,05 =0, (3.4)

L005 + £,05 + £,05 =0,

Qg does not depend on the unobserved variable v because £ only acts on v. Similarly, when the growth conditions are applied to
the second PDE in (3.4), the correction term Qi is consequently independent of v. Thus, the third and fourth equations in (3.4) and
the centering condition yield a homogeneous equation

LepyQ5 =0, (3.5)
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and Lcpy0f = G(x), (3.6)

respectively. Here, the operator (£,) £ Lqgy with effective volatility = 1/(f2) is given by

1_ _2)x 0% 1_ . d
Lcgy = 562(0)6(9 Z)Xﬁ + (r -q- 562(11)6(9 2)x> RS (3.7)

and the non-homogeneous term G is given as

o 02 0 92 0
G(x) = ﬂ<f¢,>e3(9/2—1>x < Qoo 3 Qoo + QO,O) L (p<f¢/>96_3(9/2_1)x _ <A¢/>e(€—2)x) ( Qo _ Qo > (3.8)
V2 V2

0x3 0x2 0x 0x2 0x

1 r¢

2

z
e~ 2 dz represents the expectation under
(5o 2;-[ —0o0

where ¢(v) is a solution of the Poisson equation L¢ = f2(v)—(f*(v)) and (-) = f
the invariant distribution of OU process V,.
We present the leading order, correction term prices, and free boundaries in the subsequent subsections. First, we expand Q¢,

pS,, and ¢S asymptotically with respect to a small parameter § =2 -6 for 0 < 6 < I:

6kcnwk. 3.9

M

o0 o0
= Z San‘k, P = z&kpn’k, and =
k=0 k=0

k=0

As stated by Choi et al. [10] and Kim et al. [32], observations of data (S&P 500 index) from the equity market demonstrate that
the constants elasticity 6 < 2 and 6 ~ 2. We refer to them and assume that § =2 — § for sufficiently small parameter 0 < § < 1.

3.1. The zeroth-order approximation price Qg

We find the hierarchy of PDEs from the PDE (3.5) and an asymptotic expansion (3.9), as follows:
LpsQop =0,

1_ 02Q0,o 900,
LpsQo, = 5‘72)‘ <— vl B

0x2 0x

k )
1o~ (D (0°Q0,;  0Q0 s
c == -
Bs Qo 2° ; i! 0x2 dx

where,
2
Lps(6) = —6 20° + < r—q-— 15'2) 9 —rI. (3.10)
x 2 X

This PDE system can be obtained from the PDE (3.5) using the Taylor expansion of ¢~®* with respect to § and comparing the
coefficients for each 5-order term. In application, we substitute § = 2 — § into PDE (3.5). Then, the PDE (3.5) yields

aZQe
%5_28(0—2)3(?20 + (r —q- 56 e

Using the Taylor expansion of ¢®*, Eq. (3.11) is expressed as

1 Lkxk g2 1 1 0 <
225k( k)'x 22 Qo + r—4-3 ZZ # );x $Z5onyk—’Z5on,k=0- (3.12)
ox k=0 k=0

The coefficients of each §*-order term (k > 0) in Eq. (3.12) are compared, resulting in the following PDE.

rQf =0. (3.11)

.
1_o 9 2)x> 20, —r0
ox 0

» The zero-order term of 6 :

262Q0,0 + (r ;62) 900

2 = Q=0 (3.13)

2 2
1_.,9°Qo.1 1.5\ 9Qo.1 150000 1_, 900
2° 0x2 + (r— a= EG ) ox o= 50X oz 2% ¥ Tox (3.14)
« sk-order term for k > 1
2 k 2
1_,9°00x ( 1_2) Qi 1 oo (- 1)”rl 0°Qos-i  9Q0 s~
- —g—-= = - 1
27 o T\ ) oy =3° Z} o2 ox (3.15)
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Additionally, the matching and smooth pasting conditions presented in (3.3) can be expressed in an expanded form as follows:
900
Qp,0(co0)) + \/— (00 0(©)co 1 (V) + Qg1 (o (V) T(CO,O(U)’ ¥)eg,1 () + Qg1 (cop(v))

= —K, + €000 1 \fecy | ()00 + 8¢y 1 (0)e00® + Oe, §),

90y 90
0Q0,0(Pop (V) + \/z < o (Po,o()po,1 (V) + Qp (Po,()(v))) +4 <F(PO,O(U))POJ )+ 0o, (P(),o(@))

=K, - ePoo® _ \/;po,l(v)epQO(”) — 8py 1 (0)ePro®) — O(e, 5),

9Q0 1 9?00
0x (CO’O(U))> +o ( ox?2

Q

(Co o(V)ep 1 (V) + —(co(0))ep 1 (V) +

90 (3.16)
(coo(u>)+ Ve ( a)‘j’l(co,o(u»>

= 000 1 \feey ()00 + ¢y | ()00 + Oe, 8),

00 020, 90
— 2 (poo@) + Ve ( 2 (Pog(@)po, (0) + —== (po,o<v>>> +6( = (0,0 @)po1 (0) + —— (po,0<v>>>
x ox ox

= —eP0® — \/epy | (0)eP0® — §p | ()P0 + Oe, §).

As demonstrated in Egs. (3.13)-(3.15), the solution for the leading order price Q) and the correction price Q, for k > 1 is
obtained.

Theorem 3.1. We consider the value of PASO Q ((x), which satisfies the following free boundary problem:
LpsQoo(x) =0 for x &€ (py,co0)
Qo o(pop) = K, - ePoo,

Qq(c) = €00 — K,

3.17)
dQy
= — P(]O
dx ——(pg) = —¢
dQ
I (cp0) = e
The solution Q) ((x) is explicitly represented as the solution to the PDE (3.17), as
Qpolx) = Aidy (€M — K ) ieil(xfpo‘o) — Leﬁz(xfﬂom + P00 [eﬁz(xfpo,o) — ell(X*l’o,o)] , (3.18)
' A=A P LA A A=Ay
where A; > 0 and 4, < 0 are two distinct real roots of the quadratic equation:
=2 =2
%12+<r—q—%>ﬂ—r=0. (3.19)
Additionally, the optimal exercise boundaries—py, and c, —are the solutions to the following system of algebraic equations:
414 ePo leﬂl(fo‘o*r'o.n) _ leﬂz(fn,o*rfo.o) + ﬂ(emo -K) [eiz(co.nfpo,o) _ ell(co,O*Po‘o)] + €0 =0,
A=Ay Ay A 1= A ?
(3.20)

M(erfoo -K,) 1 e*1(co0=Poo) _ ieiz(vo,(rpo,o) + e [912(00,0*00‘0) _ eil(co_o*l’o,o)] —e%0 + K. =0.
'11 - '12 l 2 }”l - }”2 ¢

Proof. Ha et al. [27] described the process of solving ODE (3.17). The text methodically guides the reader through solving the
equation and dealing with the boundary conditions. It also explains setting up the boundary conditions and the limitations to easily
understand the steps needed to obtain the solution. []

The following theorems describe the expression for the correction price Q; and correction terms for optimal boundaries c;
and p, for k > 1 for the zero-order term of e.
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Theorem 3.2. The correction term Q) ; satisfies the following PDE:

d?Qq Qg
dx2 dx

1._
LpsQp = 5‘72?5( ) for x € (py,€o0)

dQg .
P (cp0)co,1 + Qo,1(co,1) = o 100,
Qo
& Poo)Por +Qro(Pog) = —pos e (.21)
d2Qy dQy,
2 (o0)co1 + g~ (C01) = cg,1€00,
4’0y dQy
V(Po,o)l’o,l + =g Poo) = —Ppo, 700,
The solution Q) (x) to problem (3.21) is expressed as
Qp 1 (x) = Cie"™ + Cye™2™ + D xe1* + Dyxeh2”, (3.22)

where Ay > 0 and 4, < 0 are two real roots of the quadratic equation (3.19), and the first-order correction terms for the free boundaries—c |
and p,, ,—are determined by

oy = % [(B11 + By A;)Dye*1900 4 (B; + By Ay)Dye?200 4 (B3 + BygAy)Dje?1700 4 (By5 + 314,12)D2e*2pov<>]

1
Poi =7 [(le + Byy A) D1 €190 4 (By; + Byy A2)Dye?209 4 (Byy + ByyAy)Dye?1700 4 (Bys + 324/12)D2e'12”0»0],

where
C = % [(331 + B3y 4,)D;e*190 4 (By, + B3y 4y)D,e?200 4 (Byy + Byy A )Dyet1700 4 (Byy + B34/12)Dze’12”0~0],
C, = % [(341 + ByyA)D;e*190 4 (B, + ByyAy)D,ye?200 4 (Bys + Byyh)Dyet1700 4 (B, + 344/12)D2e‘21’0~0],
20, 20,
D, = , D= 5
Ve R r@r-on -2 0 S2+Qr-6k-2r
I PP o) R S PEPPR i Skt s
172 I (A — ,11)@?0.0/11 277 2 (A — /ll)el’0~0’12
do do
d= < d;’o (o0) — eCo.o) <,1112 ( d;,o (o) — ePo,o) (eM1900+42m00 4 gH1P00+A2600)
&0
+ (TZIJ)(PO,O) — e!’o,o) (Azeilﬂo.oﬂzfo.o — /119/1160,0+/12m.o)>
d2Q do
+ <T21’0(CO’0) — eco.0> << d)lc’o (Pog) = ePo.o) (gleilpo.o+ﬂzCo,0 — gzeilfo,oﬂzpo,o)
szhO Arcoot+i A1po,o+Aac
+ ™) (Poo) — ePoo | (ef1€00th2P00 — pM1PootA200) ) |
In the above,
d2Q00 dQOO d2Q00 dQOO
B, = _/lzeizcn,o+ﬂlpo.o< ™ (Poo) — - (Poo) + et1c0+ 2P0 o~ (Po) — 42 . (Pog) — (,11 — ,12) ePoo ||
d*0y dQ d*Qy dQ
By, = eh%’oﬂlm‘o( dxz’ (Po0) = —5~ oo — ef1cootianoy dxz' (Po) = A2 —5—=(Poo) = (41 = 2g) €0 ),

(A1+47)c d2Q0,0 D
By = et — (Pog) = €™ ) (41 = 42),

dQq
dx

By, = eA1+A2)eo 0 < (Poo) — el’o,o) (11 — 12) ,

(A1+42)po 0 szO'O 0,0
B, =e¢ ; 3 (cg0) — € (/11 —ﬂz),

x2
dQO,O

dx

B,, = —eth1+42)P00 < (co0) — eCo,o) (A'I - 12) ,
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Byy = —dyeti00tharo < QOO( €00) = (Co,o)> = ef2f00thimo <d2d€(2)’0 (cop) — 4 ditc),o (c00) = (41 = 42) €C°’°> ,
Byy = —e*1c00th2r00 < %, 0( 0,0) — (Co,o)> + ef2c00t AP0 <di§;),0 (¢o,0) = 42 di(z,o (c00) = (41 = 4) e”°v°> ,
By = —e*2P00 ( 2(500(000) > < 2Q00(p00) A dg (Poo) = (41 = 4) ep°'0>’

By, = 200 <d§§’0 (co0) = < i 2 (o) = 42 df (Pog) = (41 = 4) ep"*“),

B33 = eh2%0 (dzdi (Poo) — e”OU) (d QOO (cop) — 4o di(:o (co0) = (41 = 42) ec°~0> ,

do
By, = —_e*2¢00 ( d;)'o (Po,o) _ epoo

(co0) — 42

)%

do
di'o (€0,0) = (41 = 42) em‘o> ’

420y, d?Q do
By = #1P00 ( i (Co o) — e > < ) ( 0.0) — d£’0 (P0,0)) s
d2Q do
B42 — _e}»lPOO < (COO) > ( d 00 (po 0) d::,o (Po,o)) )
2 2
:_e/ncoo< Qoo(poo)_epoo)< QOO(OO) 909 (c00)>
dx2

do,
and By = eh100 ( d;]’o (Po) — e”0-0>

QOO

(&

on 0

(Co 0)—

(co 0))

Proof. Theorem 3.1 provides the explicit formula for Q ((x), and using the chain rule leads to

A (K., — eP00) 4 ePo0 —1; (K, — eP00) 4 gP00
Qpo(x) = = (K, ) ehix 1 (K, ) Ay (3.23)
’ (A — Al)e”(m/l‘ (A — ,11)3110.042
We obtain a non-homogeneous ODE for Q(x) by substituting (3.23) into the ODE for Q,;, given by (3.21):

52 4201 (%) 52\ dQp, ()

T et T ) i Qo) = Qe + Oxe (3.24)

where Q, and Q, are
A (K. — eP00) 4 ePoo —1; (K, — eP00) 4 P00
0,=1622,0,-1) 2 (K ) and Q, = +6%4,04y = 1) 1 (K, )
2 (A — ,11)91?0‘011 (A — Al)e”O-U’IZ

respectively.

Furthermore, the solution Q, to (3.24), which is the Cauchy-Euler equation, is obtained as:

001 (x) = Creh™ + Cyeh* +

20,

2
xeA] x Q2 Ay x

8223 + (2r —8)A — 2r

xe
8222+ Qr—8) —2r

for real constants C; and C,. We examine the \/e-order terms in (3.3) to derive the conditions required to determine Q0.1(x), Po1»

and ¢ ;:

(500)501 + Qg1 (co) = cg, 1€

dx
Q

(Poo)Pol + Q0.1 (pop) = po,1€™0,
dZQO’O (co0)Co1 +
2 00Xl

2

0,1
" (eq.0) = cg €00
dx 0,0 0,1 >

2 (000001 + 2 ()
Po,0)Po.1 dx P00

d2

= po,1€™0.
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In other words,

( dQy

(Co,

o) — eCo,o) o1 +C Mo 4 C,e’2¢00

20, 20,

—+
8222+ (2r—8) —2r

a0y
dx2

(

=y Qr—5)Ay, —2r
2 2

(co0) — eC0-0> ¢y + €1 A,eM1900 4 Cy yet200

24,0, 24,0,

xet1€00

G2
dQy
dx

(

24 @r—-6)A —2r G202+ (Q2r —6)dy — 2r

(o) — e” °'°> Po.1 + Cpe?1700 4+ Cyet2poo

20, 20,

xe?Poo 4

+
8222+ Q2r—8)A —2r

&Py,

F (po

(

G222+ Q2r—5)Ay —2r

0) ep°'°> Po,i + CiA €170 + Cy 4ye*2P00

21,0, 21,0,

xe PO 4

8222 +Q2r—8)A = 2r

xel2

G222+ 2r—5)Ay —2r
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xe?200 =0,

xeh20 =0,

(3.25)

xe™2P00 = (),

Poo = ().

To find the four constants C}, C,, ¢, and p, ;, we reformulate the system of Egs. (3.25) as the matrix representation Ax = b, where
A denotes a known 4 x 4 coefficient matrix, and b is the column vector of constant terms. That is,

[ df;).o (co ) — €00 0 21,0 2420, 1
d’Q
dxg*o (cog) — €900 0 A e*1€00 129/1200,0
A= ,
0 dfi’o (Pog) — €0 1200 2000
d’0
| 0 T3’0(1,0’0) — o} ehiPoo /12612”‘)"’7
0,1
_|Pou
X = Cl s
&)
20, eh1c00 4 20, e?2¢00
827 + (2r — 5)Ay — 2r 8202+ Q2r—8)Ay — 2r
24,0, o004 250, 2.0
b 8232+ Q2r—8)A; —2r 8222+ Q2r—8)Ay —2r
20, eAPoo 20, e#2P00
8222+ (2r—8)A —2r 8222+ Q2r—8) —2r
240 eMPoo 4 240, e%2P00
| 5247 + Q2r —5)A; —2r 6222+ Q2r—8)Ay —2r

Note that det(A) # 0, indicating that the inverse of A exists. Consequently, x can be determined by multiplying the matrix equation
Ax = b by the inverse of A. Specifically,

20 100 4 20, 2?2600
8247+ (2r — &)y — 2r 8222+ Q2r—8)Ay — 2r
Co.1 240, o 4 240) %200
ror|_Lip 8222+ Q2r— &) —2r 8222+ Q2r—8)4y —2r
o= 7 WPiilisijsa ,
C d 20, eh1Poo 4 20, e#2P00
G G243+ (2r —5)A = 2r 8222+ Q2r—8)y —2r
24,0 eAPoo 240) e#2P00
8203+ (2r —8)A) — 2r 8202+ Q2r—8)y —2r

where, d is a determinant of A. Thus, the results are obtained. []

10
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Theorem 3.3. For all k > 1, the correction term Q) , satisfies the following ODE system:

k il /2
1. -1 1+1xl d QO,k—' dQO.k—'
LpsQox = 5‘72 Z = < - - - )2 Goi for x € (pyp, o)

~ i! dx? dx

dQq -1

q (co0)cok + Qoxlcop) = core®?

X

dQq

d;c (Po.0)Pok + Qo k(o) = —Po 0 (3.26)
20y, dQ
T(CO'O)CO"‘ + dx (co0) = Co,keco’o
d2Qq dQ
T(Po,o)l’o,k + = (Po0) = —Po ™.

Then, the solution Q ,(x) to problem (3.26) is expressed as

x AZZG x AIZG
Qo = CseM* + Cgel2* — eh1* e—o’kdz + eh? e—o’kdz, (3.27)
, 2 (}»2 _ Al)e(/l]+12)z o (/12 — ll)e(’ll"'h)z

where Ay > 0 and A, < 0 are two real solutions of Eq. (3.19), and the correction terms for the optimal boundaries—c,, and p,,—are
represented by

cox = % [B” (eﬂlco,o D; + eizfo,oD4) + By, (eilpo,oD3 + e#2P00 D)
+B; (—e’llcﬂf’ (/111)3 + Dy) + o0 </12D4 + 134)) +B, (eilpo.o (—/1] Dy + Dy ) + 2o (/lzD4 + 54))] ;
Pok = % [32] (e/llfo,UD3 + elZCU~°D4) + By, (efllmo])3 + eizP0.0D4)

+By; (—e‘lco.o (11D3 + 1’53) + eh200 (/LQD4 + 134)) + By, (e*ll’o.o (—AID3 + 53) + e#2P00 (/12D4 + 54>)] ,
where

Az A A
00 eR2Gy . eM290Gy - e ZPO'OGO,k
Dy =
Po,0

[ —T D= —— ==
1 — A )elAi+A2)z 3 — (A +42)co0 3 — (A1 +42)p00
(A = A1) (Ay — 4))e (A — Ap)e

b /CU»O et 3Gy 4 . e*2¢00 Gox - eh2P00 Goy
4 = o i 4% = =
00 (/12 — lll)e(’ll"'/lZ)z

Cs = % [Bs; (€100 Dy + e*200 D) + By, (eM1700 D5 + e*2700 D)
+By (—e’llc‘m (11D3 + 133) +ef200 (12D4 + ﬁ4)> + By, (e‘lpovo (—/11D3 + 53> + /2P0 (AZD4 + 54))] ,
Ce = 5 [By; (€100 Dy + e*200 D) + By, (eM1P00 D5 + e*2700 D)
+Bys (100 (4D + By ) + €200 (1D + By ) ) + Bug (¢1700 (=2, D5+ Dy ) + e2m0 (4,05 + B, ) )|
Furthermore, d and B, ; for 1 <i,j < 4 are defined in Theorem 3.2.
Proof. The procedure of the proof is similar to that of Theorem 3.2. The ODE in Eq. (3.26) is transformed into the Cauchy-Euler

form. The sum of the first and second terms in (3.27) constitutes the general solution, and the sum of the last two terms is the
specific solution. []

3.2. The first-order correction price Of

As outlined in Section 3.1, the hierarchy of PDEs with Q,, as solutions can be derived from PDE (3.6) and an asymptotic
expansion (3.9). The following is provided to elaborate further: First, the PDE (3.6) is described as

2 e €
15 5979 15 s\ 991 e _
g+ (a0 S 0= G (328)

11
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where the non-homogeneous term G(x) is defined by (3.8). Next, using the Taylor expansion of e™3/2% ¢33/2x and e~%%, Eq. (3.28)
is expressed as

1 (—Dkxk 32 1 (=DFxk ) 0w <
225" o 226"Q1k+ r-q-5 225" o akz,;,éle‘k_rkZ:‘)&kQ”‘

(=3yxk (0 d*0gy  dOyy
=%up(f¢>z e <dx3 It (3.29)

(- 1) x 4?0y d0Qyy
+$u<p(f¢)(2 5)25k2kk, <A¢>Zak >< = o )

The coefficients of each 6*-order term (k > 0) in Eq. (3.29) were compared, resulting in the following PDE being derived.

a0 d?Q do 20 do
£BSQ1,o=iup<f¢’>< 00 300 4» 0’°>+$u(2p<f¢’> <A¢>)< 00 _ ""’),

\/E dx3 dx? dx dx
LpsOy, = %&%dzdf;'o —%azxdi‘c'o 2\/.up<f¢ )x QOO
+éu<§p<f¢/>x—p<f¢’)+<A¢’)X)%—% w( 200015 = o) + (A1) 0,
L BT = e
+$u<ﬂ(f¢’)%+ 1Y) lk,—p<f¢>#—< Ay S 1) x )iQ%
_é< B = T e

where Lq is defined by (3.10).
Furthermore, the matching and smooth pasting conditions in (3.3) can be expressed in their expanded form as:

dQl,O
0, 0(copv) + \/_ ( (Co o(V)e p(V) + Oy p(cy o(U))> (T(CO,O(U)v ey o) + Q1,1(Co,0(l}))>
= —K, + 000 1 \fee, ()00 + Sy o(0)e00® + Oe, §),
do
0,10(Pop) + \/_ < (Po 0P () + O o(po o(U))> (Fm(llo,o(v)s »p1)+ Q1,1(Po,0(U))>

=K, — e?0® — \/eQ, o(0)e?0®) — 5p; | ()eP09V) — Oe, §),

do d’Q do a0 do (3.30)
d;,o (co o)) + \/Z< dle’o (cop(W)er o(v) + d;’o (co,o(U))> +6 ( dx;,o (cop®)er o(v) + d;J (Co,o(”))>

= ¢ 4 \fee, o ()00 + 6e; o ()00 + Oe, 8),

do 42
d;") (Poo()) + \/E< -

do d?0, do
d;"’ <p0,0<v>>> +6 ( 2 (Poo(@)py 1 (0) + d;’l (p0,0<u>>>

0
= (oo @)p1o) + =

= —eP0® — \/ep, ((0)eP0® — §p, | (0)eP9®) + O(e, 5).

The following theorems describe the expression for the correction price Q;; and correction terms for optimal boundaries—c;
and p, ,—for k > 1 for the first-order term of e.

Theorem 3.4. The correction term Q)  satisfies the following ODE:

3 2
Q0 d*0Q dQ
LpsQio=Vs— 5= + (1 = 3V3)— == +@V; — Vo)== for x € (po. cop):
10

e (cg)er o + Q1 o(cop) = ¢19e00,
do, »

Ix (Po.o)P1o *+ Q1 0(Poo) = —p1 ™0, (3.31)
4?0, 10

2 (op)ero + g (C00) = €1 pe 00
d?Q, O1p

dx? (PooIP1o + ax (Pog) = —py0€™0.

12
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where, V, = \/5pu<f(y)¢’(y)) - %u(A(y)q.’)’(y)) and V3 = \/Tipu(f(y)d)'(y)). The solution Q o(x) to problem (3.31) is expressed as
0,9(x) = CseM1* 4 Cge™?™ + DseM1* + Dge2*, (3.32)
and the first-order correction terms for the free boundaries—c, , and p, ;—are determined by

1
o= [(B11 + By A;)Dse*100 4 (B, + By A5) Dge?200 4+ (By3 + BygA;)Dse?1700 4 (B; + Bl4/12)D6e'12”0»0],

PLo= % [(321 + By A1) Dse*100 + (Byy + By, Ay) Dge?2%00 + (Byy + ByyA ) Dse?1700 + (Byy + 324/12)1)6&2']0-0],

where
Cs % [(331 + B3y A1) Ds5e100 + (By; + Byy dy) Dge™200 + (Byy + Byy4y) Dse!1700 + (Byy + 334/12)06&2"0,0],
Co = % [(341 + By A1) Dse*1900 4 (B, + Byy Ay)Dge?200 4 (Bys + Byyh ) Dse?1700 4 (By; + 344/12)06&21’&0],
bs=—% ZQS— » De=—73 2Q67
o /11+(2r—0')/11— G /12+(2r—6)/12—
05 = (V2 + (V= ¥y + 2V~ 1) Ay (A (K, —eP00) + ePo,o)’

(Ag = Ap)ePoot
Ay (=4 (K, — eP00) + ePo0)

(A = dy)eroots
In addition, d and B, ; for 1 < i, j < 4 are defined in Theorem 3.2.

05 = (V345 + (V, = 3V3) Ay +2V5 = 1)

Proof. We can derive the solution of the ODE system (3.31) by following a similar stepwise calculation as outlined in Theorem
3.2, providing a detailed framework for obtaining analytical solutions under comparable conditions. []

Theorem 3.5. The correction term Q, , satisfies the following ODE system:

LgsQ0y =Gy for x € (pyps o)

do, o .
o (Co0)nn + Quilcgp) =y €00
dQ1 ,
(Po.)P11 + Q11(Poo) = =Py 170 (3.33)
dQJ(c T DY)
oz ook I (o0 =cipe
d?Q, do
o2 —— (Pop)P11 + —— ax —— (o) = —py,1e™0.
Where, the non-homogeneous term G, | represented by
2
1, (401 dOyp 3\/— Qoo
Gy =50 X( 2 I pu(f (P ()x
&0 40 (3.34)
1 15 0.0 1 00
b (a5 = W)+ (AW )x) =3 = (30083 = p(19) + (B ) —
v @
The solution Q, (x) to problem (3.33) is expressed as
x eﬁzzG x e/llzG
0, = CreM™ + Cgeh* — e“"/ — M g4 e’lz"/ —l’ldz, (3.35)
' poo (Ay = Ap)ethithz pog (Ag — Apethith)z

where A; > 0 and 4, < 0 are two real roots of the quadratic equation (3.19). Moreover, the correction terms for the optimal boundaries c; |
and p; ; are determined by

1 2 A A A
=g [B“ (#1900 Dy + ¢%2%0 Dg ) + By, (#1700 Dy + %2700 Dy)
+By; (—e’“cﬂvo (11D7 + 57) + /20 (/lzDg + 138)) + By (e*'POD (—AID7 + 57) + ef2P00 (/1208 + 58))] ,
L= % [321 (efhvo,o D, + e*2¢0 Dyg) + By, (eﬂmo,o D, + e*2700 Dg)

+By; (—e*lCO-O (/1107 + f)7) + e#2%0 (,12D8 + ﬁg)) + By, (e’“/’tw (—AID7 + 57) + e*2P00 (/IQDS + 58))] ,

13
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3.5 i " w w 4 w w " w
—0 =198 —0=1.98
gl|---6=199 1 ---0=1.99
—0 =201 2 —0=2.01|1
;2.5,———32202 i E ---0=202
~ ~
o o
+ 27 1 +
< 15} 1 <
[ [
= o ] N
0.5¢ 1
0 : ' ' ' -6 ' ' - :
1 2 3 4 1 2 3 4
Underlying asset price (s) Underlying asset price (s)
(@) Vo =Voo +6Vo, ®) Vi =Vip+6Vi
3 - : : .
—0 =198
- -6=1.99 |
2571 ___p_am
-=-=0=202

0 ‘ ‘ ‘ .
1 2 3 4

Underlying asset price (s)
(€) V0 = Vo + VeV,

Fig. 1. The dynamics of the leading-order term V,, the correction term V,, and the approximated solution V¢’ for the PASO-SVCEV model as a function of the
underlying asset price. The red solid line, red dashed line, blue solid line, and blue dashed line correspond to elasticity values 6 = 1.98, 1.99, 2.01, and 2.02,
respectively.

Notes: The parameters used for this figure are: r = 0.03, ¢ = 0.01, K, =038, K. = 1.0, 6 = 0.15, ¢ = 0.001, p = =02, m = —1.8594, u = 0.5, (f(v)¢'(v)) = 0.1, and
(A()¢' (v)) = 0.8266.

where
0,0 3G, . oG | - eMP00 G,
D7=/ - 4z Dj= ——— | Dj= —Mm8M———,
no (A2 — Apeltith)z (4 = ﬂl)e(ilﬁhz)c(’*o (4 — ﬂ])eul*ﬂz)l?r),o
0,0 MiG . oG | _ eMP00 G,
D8=/ - 4z Dg=——— | Dy= —mM————,
o (Ao = Apethithiz (Ag — Ap)ethitiaeoo (Ay — Apetir+idroo

C; = 5 [331 (ell"0~0D7 + e/lzco.UDS) + By, (6/111’0.0]_)7 + e2P00 Dg)
+By <—e’11c0‘0 <A]D7 + 137) + eha0o (AZDS + 138)> + By, (emo,o (—,111)7 + 57> + eh2P0o (,12D8 + 58))] ,
Cy = % [By; (€%1900 Dy + e*2%00 Dg) + By, (1700 D, + %2700 Dg)
+B, (—eilcovo (,1] D, + 137) +ef200 (/121)8 + 133)) + By, (e’“m0 (—AID7 + 57) + e#2P00 (AZDS + 53))] .
Also, d and B, ; for 1 < i, j < 4 are defined in Theorem 3.2.
Proof. The proof follows a process similar to that of Theorem 3.2. The ODE presented in Eq. (3.33) is reformulated into the

Cauchy-Euler equation. The general solution is derived from the sum of the first two terms in (3.35), while the particular solution
is represented by the sum of the last two terms. []

14
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4.485 T T T 0.21 . ' ;
—0=19 g aa-=- ——60 =198}
- --0=199 r-- ---0=1.99
—0=201 —0=201
- 448\ __ _p_202 ] - 0.21 ---0=2.02
'\)VDC %-"J_‘
o o
+ +
.2 4.475 2019}
w 3
I [ |
% W [T L
4.47 0.18
4.465 ' - - 0.17 - - '
0.75 0.8 0.85 0.9 0.95 0.75 0.8 0.85 0.9 0.95
K, K,
(a) s(‘) = 56,0 + 6s8,1 (b) si = Sio + 6si1
4.49 T
—0 =198
- - -0=199
—6=2.01
o 44851 |- - g =202 1
«w
w
e 4.48 4
Il
® 4.475 1
4.47 : - -
0.75 0.8 0.85 0.9 0.95
KP

€0 _ c
(©) S = 5o+ Vesy

Fig. 2. The behavior of the optimal stopping boundaries of the leading-order s;, the first-order correction s{, and the asymptotic approximation s‘]5 for a call
option under the PASO-SVCEV model, examined with respect to the parameter K,. The red solid line, red dashed line, blue solid line, and blue dashed line

correspond to elasticity values 6 = 1.98, 1.99, 2.01, and 2.02, respectively.
Notes: The underlying asset price is set to the midpoint between p,, and ¢, and all other parameters are identical to those used in Fig. 1, except for the

variation in 6 and K,,.

Theorem 3.6. For all k > 1, the correction term Q, , satisfies the following hierarchy of ODE:

Ls0x =G for x € (pyp. o),

dQ;;{—l (co0)erx + O1x(co) = €1 €00

dQ(i =1 (Po.0)P1x + Q1. (Pog) = —Py 4700 »
dzi;’zkil (cpplery + d;’k (o) = ¢ 400

dzf—]Zkl(pO 0Pkt dg;vk (Poo) = —p1 €9,

where the non-homogeneous term G,  is given by

1 52 Z (- 1)“rl <d2Ql,ki 3 dQl,ki> \/5 L (=B)kxK 0y

+ Tﬂ“(f M’ )

dx? dx KL Ao

k1 ok 1k o\ o

l ( 3) x k_l / (_1) X dQO’o
_%u< o) S+ )2 1k,—p<f¢>m <A¢>T) )
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Fig. 3. The behavior of the optimal stopping boundaries of the leading-order sf, the first-order correction s{, and the asymptotic approximation s fi for a put
option under the PASO-SVCEV model, examined with respect to the parameter K,. The red solid line, red dashed line, blue solid line, and blue dashed line
correspond to elasticity values 6 = 1.98, 1.99, 2.01, and 2.02, respectively.

Notes: All parameters are identical to those used in Fig. 2.

Then, the solution O, of PDE (3.36) is given by

x Arz x Az
O = Cge/l]x + Cloeflzx — M idz 4 ez idz, 337
! oo (A — Ap)ethith)z oo (A — Ap)ethith)z

where A; > 0 and A, < 0 are two real roots of the quadratic equation (3.19). Furthermore, the correction terms for the free boundaries c
1 2 q q Lk
and p; ;. are determined by
= % [By; (€!1900 Dy + %290 D) + By, (1700 Dy + eh2P00 D )
+B,3 (—e‘lcovo (/1] Do + D, ) + P00 (,12D10 + 133)) +By, (eﬂlmo (—,111)9 + 57) +efaPoo (Asz + 58))] ,

)
[By) (#1900 Dy + #2900 D) + By (/1700 Dy + eh2700 D)

1
PLe=7y
+B,; (—e’“cﬂvo (Ang + D, ) + R0 (/12010 + f)g)) + By, (e’“"O«0 (—/11D9 + 57) + e%2P00 (/121310 + 58))] ,
where
D /co,o eizz(;]’k B eizCo,oGLk 5 eizpo,o(;lvk
9 ————————4az, = T 9= >
o (A — Apethiti)z (Ay = Apethithaoo (Ay = Ap)ethitilroo
b /00,0 ehiG 2 ~ eAZCUvOGLk 5 eAZI’OYOGLk
10 ——————dz, 0= T e 0= 7 o’
o (A — Apetiti)z (Ay = Apethithaoo (Ay = Ay)ethiFA2ro0
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Fig. 4. The dynamics of the leading-order term V,, the correction term V,, and the asymptotic approximation Y’ under the PASO-SVCEV model, plotted as
functions of the risky asset price for a given effective volatility. The black solid line, red line, and blue dashed line correspond to effective volatility values

6 =0.15, 0.2, and 0.25, respectively.
Notes: The elasticity parameter is fixed at 0 = 1.99, and all other parameters are identical to those used in Fig. 1, except for variations in & and K,,.

Cy = % [Bs, (¢/1900 Dy + #2900 D) + By, (e/1700 Dy + eh2r00 D)

+Bs;3 (‘ej'co'o <41D9 + 59) + el2%00 (’121)10 + ﬁlo)) + By (ej'po'o ("1109 + 59) + e#2p00 ('12D10 + 510))] ,
Cpo= % [By; (e!1900Dg + €200 D) + By, (€709 Dy + #2700 D)

+B,; (—e’““oiJ (Ang + ﬁ7) + eh2c00 (/lleo + ﬁ10)> + By, (elll’oﬂ (—/lng + 59) + e’200 </12D10 + 510))] .

Also, d and B, ; for 1 < i, j < 4 are defined in Theorem 3.2.

Proof. The proof is similar to that of Theorem 3.2. As mentioned in the previous theorem, the ODE given in Eq. (3.36) is reformulated
as a Cauchy-Euler equation, resulting in the formula Q, , given in (3.37). O

Herein, from Theorems 3.1, 3.2, 3.4, and 3.5, the option price V given by combining (3.18), (3.22), (3.32), and (3.35) can be
approximated by

Vo Ve = VeV i= Voo + 8V + Ve (Vig+6Vy,). (3.38)
Similarly, the free boundaries s I and s 1. 8iven in Theorems 3.1, 3.2, 3.4, and 3.5 can be approximated by

Sy m S = s fest 1= g 4 s+ Ve (554855 ) (3.39)

Spp R sef’i = sg + \/zs’l’ = sg’o + 655’1 + \/Z <s‘1”0 + 5s‘1”1) R (3.40)

respectively. The accuracy of these approximations is theoretically verified in the following theorem.
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Fig. 5. The behavior of the optimal stopping boundaries of the leading-order s, the first-order correction s{, and the asymptotic approximation s‘]i for a call
option under the PASO-SVCEV model, examined with respect to the parameter K, for a given effective volatility. The black solid line, red line, and blue dashed
line correspond to effective volatility values & = 0.15, 0.2, and 0.25, respectively.

Notes : s = (pgg +¢p)/2, 0 = 1.99; all other parameters match those in Fig. 1, except for changes in ¢ and K,.

Theorem 3.7 (Accuracy of Option Price and Free Boundaries). Consider V< as the first-order approximation price of PASO under the
SVCEV framework given by (3.38). Assuming that the payoff function h is smooth everywhere except at the strike prices K, and K, the
accuracy of the price of PASO-SVCEV is expressed as:

|v — Ve8| = (e, §). (3.41)

Similarly, let s, .(v) and s ,(v) denote the respective free boundaries for the call and put options in PASO-SVCEV, as given in PDE (2.5).
First-order approximations for the free boundaries are defined by (3.39) and (3.40). Assuming that the payoff function h is continuously
differentiable and bound; in that case, the accuracy for the free boundaries s, . and s , is described by

|src@ =52 ] =06). and s, @) =52 | = Ofe.6). (3.42)

Proof. The PDE (2.5) can be converted into PDE (2.10) using the same change of variable method introduced in Section 2. We can
derive the first-order term approximation Q(x,v) & Qg o(x) + 6Qg ; (x) + \/E (Ql,o(x) + 5Q1’](x)) by applying the asymptotic method
presented in Section 3, where Q) , represents the leading order price, as defined in (3.18), and Q,;, Q) ;, and Q, ; are the correction
terms provided in Theorems 3.2, 3.4, and 3.5, respectively. Similarly, the first-order approximations of the optimal boundaries x
and x, , are given by x, ,(v) & pyo +6py; + \/E(Pl,o +6py 1) and x; (V) ® ¢ + ey + \/E(CI,O + 8¢y ;). Each term in these expressions
corresponds to specific components derived from theoretical analysis. Then, using the change of variable, x =Ins, x,. =Ins, . and
x;p, =Ins; ,, these results can be reformulated as the approximation price in (3.38), and the approximation of free boundaries in
(3.39) and (3.40). Detailed proofs are provided in [8,33]. [
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Fig. 6. The behavior of the optimal stopping boundaries of the leading-order xg, the first-order correction s’]’, and the asymptotic approximation s‘f‘; for a put
option under the PASO-SVCEV model, examined with respect to the parameter K, for a given effective volatility. The black solid line, red line, and blue dashed
line correspond to effective volatility values 6 = 0.15, 0.2, and 0.25, respectively.

Notes: All parameters are identical to those used in Fig. 5.

4. Numerical implications

In this section, we investigate the price changes of perpetual American strangle options under the SVCEV model (PASO-SVCEV)
with regard to the model parameters. For the numerical analysis, in (3.38)—(3.40), we mentioned the approximated option prices

Ve 1= Vo + VeV 1= Voo + 8V, + VeV + V), (4.1)
and

sefﬁc =58+ yes$ = sgo T 055, + Ve (sio +6s7 ) , (4.2)

S;Ep =yt \/gsll) = Sg,o + 553,1 +v/e (Sllj,o + 5‘?117,1) : (4.3)

In Table 1, as described by Choi et al. [10], the historical data analysis of the volatility of the S&P 500 index reveals that the
elasticities are close to 2. Thus, the corrected price of the PASO under the SVCEV model given by (4.1) is reasonable for the numerical
experiments in this section.

In the numerical analysis, we investigate the pricing accuracy of the approximation formula for PASO-SVCEV using the Monte
Carlo method. Monte Carlo simulations were conducted using 10,000 simulated paths for the underlying asset price. In addition,
according to Ha et al. [27], we select the baseline parameters as follows: s = 0.9, v = 0, K, = 0.8, K. = 1.0, r = 0.03, ¢ = 0.01,
m=-1.8594, u=0.5, p=-0.2, 5 =0.15, (f(v)¢'(©)) = 0.1, and (A(v)¢’ (v)) = 0.8266.

Table 1 presents the results of the Monte-Carlo simulation, comparing Monte Carlo simulated option prices V- and the corrected
approximation formula V¢® with respect to ¢ and 6. Table 1 also highlights the absolute errors | Ve — Vool, [Vmc — V¢4|, and the
relative errors RE,; and RE, for each parameter sets. In addition, time, represents the computation time required for the Monte Carlo
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Fig. 7. The dynamics of the optimal stopping boundaries of the correction terms s{ and s} under the PASO-SVCEV model, shown as functions of the grouped

parameters V, and V;, respectively, for given elasticity values. The red solid line, red dashed line, blue solid line, and blue dashed line correspond to elasticity
values 6 = 1.98, 1.99, 2.01, and 2.02, respectively.
Notes: All parameters are identical to those used in Fig. 1, except for the variation in V,, V;, and 6.

simulation, while time, denotes the time taken by the proposed approximation method. We examine and compare the computational
costs of both approaches, and found that the first-order approximated price can be obtained significantly faster than the Monte
Carlo-based result. As the parameter ¢ decreases, the price difference between the corrected approximation formula V% and the
Monte-Carlo price V;c approaches zero, with the relative error consistently decreasing for each elasticity value 6. Consequently,
with the increasing number of simulations, the numerical solution provided by the Monte-Carlo simulation, which is considered the
best approximation of a real-world solution, approaches the approximated price given by (4.1). This result suggests that the analytic
option price presented in Theorem 3.7 or (4.1) becomes an accurate solution for PASO-SVCEV.

Fig. 1 illustrates the pricing behaviors of the leading-order term V), the correction term V,, and the approximated solution
Yo+ \/Evl for PASO-SVCEV with respect to the underlying asset value for an elasticity parameter 6. Fig. 1(a) reveals that V, exhibits
an increasing trend in option prices as the underlying asset price rises, regardless of the value of 6. In Fig. 1(b), V, displays diffusing
patterns when the risky asset is near the strike price of the call or put option against the value of §. Particularly, for the elasticity
parameter, the price impact of V, remains almost unchanged; however, that of V; tends to be sensitive to the risky asset value near
the strike prices K, and K, . This observation indicates that the price sensitivity for the correction term embedded in the SV exceeds
that of the leading-order term for the elasticity 0 as the underlying asset approaches the strike prices of the call or put option. This
implies that the effect of SV on the option price is substantial in terms of the elasticity value of the underlying asset near the strike
prices of the call or put option. Thus, in Fig. 1(c), the price difference between the approximated option values for the elasticity
parameter becomes larger than that of the leading-order values.

Figs. 2 and 3 present the pricing behaviors of the leading order term (s or s ), the correction term (s or s”), and the
approximated value (s’ Fe o1 54 p) for the optimal stopping boundaries of the call or put option on PASO- SVCEV w1th regards to
K, for a given elasticity value. In both figures, the price effect of the correction terms increases more than that of the leading order
terms against the given elasticity parameter. This implies that the free-boundary values for the call or put option for PASO-SVCEV
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Fig. 8. The dynamics of the optimal stopping boundaries of the correction terms s{ and s} under the PASO-SVCEV model, shown as functions of the grouped

parameters V, and V;, respectively, for given effective volatility. The black solid line, red line, and blue dashed line correspond to effective volatility values
6 =0.15, 0.2, and 0.25, respectively.
Notes: s = (pyg + ¢o)/2, 0 = 1.99; all other parameters match those in Fig. 1, except for changes in V5, V3, and 5.

are significantly influenced by the SV factor for the elasticity value. The pricing impact of the correction-order term s‘l’ is more
substantial than that of the correction-order value s{ for the elasticity parameter. Consequently, the effect of SV on the option
price is substantial in the optimal boundaries of the put option rather than those of the call option. This indicates that for both
approximated prices of the optimal boundary, the price gap of the corrected value for the put option is larger than that for the call
option.

Fig. 4 illustrates the pricing changes of the leading-order term V), the correction term V,, and the approximated value V¢ for
PASO-SVCEV in terms of the risky asset price for a given effective volatility. The Figures reveal that the correction-order term price
V, is more sensitive than the leading-order term price V, with respect to the effective volatility. This suggests that the impact of
the correction term, which is closely related to the SV on the option price, is highly sensitive to the influence of the leading-order
term with respect to the volatility value. In addition, the price influence of the correction term becomes substantial with decreasing
volatility. Furthermore, the payoff of a strangle option can generate substantial returns from the investment, regardless of whether
the underlying asset price rises or falls drastically because it combines the characteristics of call and put options. Thus, suppose
that the volatility is low; in that case, the potential profits from the investment decrease, ultimately resulting in a relatively higher
investment risk. Consequently, as volatility decreases, the price influence on the option becomes more sensitive to the underlying
asset.

Figs. 5 and 6 display the pricing sensitivities of the leading order term (s or sg), the correction term (s{ or s‘l’) and the
approximated price (s;’i or s?i) for the free boundaries of the call or put options on PASO-SVCEV in terms of K, for a given effective

volatility. Comparing the optimal stopping boundaries of the call and put options, the volatility of the free boundaries of the call
option exhibits minimal changes in the prices for 505 595 and se‘i. However, the price changes for sg, s’l’ , and s$° are substantial and
more prominent than those of the free-boundaries of the call option. Furthermore, as opposed to the optimal stopping boundaries

of the call option, the price impact of the correction term increases more than that of the leading order term in the free boundary of
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Table 1
The error comparison between the Monte-Carlo price for (denoted by Vy) and the corrected formula (V%) with respect to e and simulation number 10,000.
Notes: The parameters used for this table are: s = 0.9,0 = 0,r = 0.03,g = 001,6 = 0.15,K, = 1.0,K, = 08,u = 0.5,m = —1.8594,p_, = -0.2,(f(v)¢'(v)) =
0.1, (A(v)' (v)) = 0.8266.

0 € Vuc CI Voo yesd Vme =Yool [Vme — V|  RE; [%] RE, [%] time, [s] time, [s]

0.0100 0.429093 [0.425957, 0.432229] 0.485250 0.393425 0.056157 0.035668 13.087482 8.312429 0.031478 122.069102
0.0050 0.442743 [0.439106, 0.446381] 0.485250 0.418232 0.042507 0.024512 9.600775 5.536291 0.031478 120.966143
2.02 0.0010 0.456751 [0.452484, 0.461017] 0.485250 0.451338 0.028499 0.005413 6.239575 1.185078 0.031478 120.307276
0.0005 0.463099 [0.458500, 0.467697] 0.485250 0.459183 0.022152 0.003916 4.783364 0.845562 0.031478 107.702800
0.0001  0.471550 [0.466525, 0.476576] 0.485250 0.469652 0.013700 0.001899 2.905278 0.402614 0.031478 101.953143

0.0100 0.439964 [0.436744, 0.443184] 0.485250 0.409496 0.045286 0.030468 10.293180 6.925126 0.032315 107.077780
0.0050 0.456705 [0.452939, 0.460471] 0.485250 0.430640 0.028545 0.026065 6.250218 5.707252 0.032315 113.686849
2.01 0.0010 0.466031 [0.461602, 0.470459] 0.485250 0.458857 0.019220 0.007173 4.124141 1.539186 0.032315 119.882369
0.0005 0.469497 [0.464893, 0.474101] 0.485250 0.465544 0.015753 0.003953 3.355369 0.842001 0.032315 108.879134
0.0001 0.477757 [0.472652, 0.482862] 0.485250 0.474467 0.007493 0.003290 1.568453 0.688625 0.032315 101.816397

0.0100 0.457836 [0.451519, 0.461153] 0.485250 0.441638 0.027414 0.016198 5.987804 3.537897 0.031322 119.504278
0.0050 0.462787  [0.459030, 0.466544] 0.485250 0.455456 0.022463 0.007331 4.853838 1.584201 0.031322 111.977774
1.99 0.0010 0.477945 [0.473505, 0.482386] 0.485250 0.473896 0.007305 0.004049 1.528441 0.847176  0.031322  115.045335
0.0005 0.480434 [0.475705, 0.485162] 0.485250 0.478266 0.004817 0.002168 1.002565 0.451251 0.031322 102.098709
0.0001 0.484617 [0.479522, 0.489711] 0.485250 0.484097 0.000634 0.000520 0.130762 0.107219 0.031322 101.089543

0.0100 0.465610 [0.462543, 0.469686] 0.485250 0.457709 0.019640 0.007901 4.218092 1.696929 0.030702 106.738700
0.0050 0.474827 [0.471194, 0.478460] 0.485250 0.467864 0.010423 0.006963 2.195130 1.466507 0.030702 111.583636
1.98 0.0010 0.476667 [0.472232, 0.481103] 0.485250 0.481415 0.008583 0.004748 1.800625 0.996121 0.030702 122.092209
0.0005 0.481150 [0.476459, 0.485841] 0.485250 0.484627 0.004100 0.003477 0.852163 0.722542  0.030702 113.935380
0.0001  0.488279 [0.486995, 0.496261] 0.485250 0.488912 0.003029 0.000633 0.620293 0.129634  0.030702 113.516048

the put option for effective volatility. This implies that the free boundaries on the option value are more influenced by the volatility
in the optimal boundaries for the put options than for call options. This highlights that the effect of SV on the free boundary is
highly sensitive to the volatility in the optimal boundaries of the put option rather than those of the call option.

Fig. 7 exhibits the pricing changes of the correction terms s{ and s’l’ for PASO-SVCEV with respect to the group parameters

V, or V; for the elasticity parameter, where the group parameters are defined as V, := \/Epu( FP' ) - %u(A(y)d)’ (y)) and
_ V2
vy =

S oulf ¢ (»). The group parameter V; involves the correlation between the underlying asset and volatility, p, and the
group parameter V, involves the market price of risk A, indicating that ¥, and V; are closely linked to p and A, respectively. Fig.
7 illustrates that the correction term price of the optimal stopping boundary of the put option increases more than that of the call
option against the group parameters V, or V; as the elasticity varies. This implies that the effect of SV on the optimal-boundary
price for the put option is greater compared to that of the call option with respect to the group parameter V, or V;.

Fig. 8 displays the price changes of the correction terms s¢ and s* for PASO-SVCEV in terms of the group parameters V; or V;

1 1
for the given effective volatility. Similar to Fig. 7, when the correction term value s¢ and the correction term price s’l’ are compared,

the pricing sensitivities of the correction term of the free boundary for the put 1option exceed those of the correction term for
the call option for the given effective volatility. Thus, most investors in the financial market react more sensitively to declines in
underlying assets than to increases. In such cases, investors holding strangle options can still expect to benefit considerably from
the put option embedded in the payoff, even during a bear market. Therefore, the free-boundary value of the put option with the
value of the relatively high expectation in the bear market may have greater impacts than those of the call option of the relatively
low expectation. Therefore, the effect of SV on the optimal boundary price for the put option is greater than that of the call option
against the group parameters V, or V; for the volatility. Moreover, the price sensitivity of the correction term for the put option is
drastically larger compared to that for the call option as the volatility decreases.

5. Conclusion

This study examines the approximated formulas of the prices of the perpetual American strangle options with the SVCEV model
(PASO-SVCEV) and their free-boundaries, highlighting the features of SV given by Fouque et al. [8]. First, the PDEs for the value
of the PASO-SVCEV under the risky asset models were determined, and analytic formulas for the approximated option price for the
PASO-SVCEV were obtained using a singular perturbation method. Second, based on the analytical solutions, we demonstrate that
our first-approximated solution corresponds to an accurate formula of the PASO-SVCEV, comparing our solution with the Monte
Carlo price. Based on the approximation prices, we compared our analytical solutions with the solution derived via the Monte
Carlo simulation and demonstrated that it closely corresponds to an accurate formula for the PASO-SVCEV. Third, the numerical
experiments revealed the quantitative and qualitative influence of our approximated formulas by analyzing the fast mean-reverting
factor embedded in the SV model on the option price and the free-boundary value across various model parameters. This emphasizes
that the influence of the SV factor on the option price or the optimal exercise boundary is significant for the effective volatility and
the elasticity parameter. Particularly, the impact of the SV factor on the optimal exercise boundary for a put option is more sensitive
to the correlation between the risky asset and the volatility or the market price of risk than that on the free boundary for a call
option. Finally, the American options or exotic options under diverse models, except for the SV model, are being extensively studied,
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even for higher-dimensional model dynamics in financial mathematics. Future studies can extend our selected perpetual American
strangle options to a more complicated American option with other types.
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