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Accurate segmentation of the paranasal sinuses, including the frontal sinus (FS), ethmoid sinus (ES), 
sphenoid sinus (SS), and maxillary sinus (MS), plays an important role in supporting image-guided 
surgery (IGS) for sinusitis, facilitating safer intraoperative navigation by identifying anatomical 
variations and delineating surgical landmarks on CT imaging. To the best of our knowledge, no 
comparative studies of convolutional neural networks (CNNs), vision transformers (ViTs), and hybrid 
networks for segmenting each paranasal sinus in patients with sinusitis have been conducted. 
Therefore, the objective of this study was to compare the segmentation performance of CNNs, ViTs, 
and hybrid networks for individual paranasal sinuses with varying degrees of anatomical complexity 
and morphological and textural variations caused by sinusitis on CT images. The performance of CNNs, 
ViTs, and hybrid networks was compared using Jaccard Index (JI), Dice similarity coefficient (DSC), 
precision (PR), recall (RC), and 95% Hausdorff Distance (HD95) for segmentation accuracy metrics 
and the number of parameters (Params) and inference time (IT) for computational efficiency. The 
Swin UNETR hybrid network outperformed the other networks, achieving the highest segmentation 
scores, with a JI of 0.719, a DSC of 0.830, a PR of 0.935, and a RC of 0.758, and the lowest HD95 value 
of 10.529 with the smallest number of the model architectural parameter, with 15.705 M Params. 
Also, CoTr, another hybrid network, demonstrated superior segmentation performance compared to 
CNNs and ViTs, and achieved the fastest inference time with 0.149 IT. Compared with CNNs and ViTs, 
hybrid networks significantly reduced false positives and enabled more precise boundary delineation, 
effectively capturing anatomical relationships among the sinuses and surrounding structures. This 
resulted in the lowest segmentation errors near critical surgical landmarks. In conclusion, hybrid 
networks may provide a more balanced trade-off between segmentation accuracy and computational 
efficiency, with potential applicability in clinical decision support systems for sinusitis.
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The paranasal sinuses, comprising the frontal sinus (FS), ethmoid sinus (ES), sphenoid sinus (SS), and maxillary 
sinus (MS), play a central role in thermoregulation during rapid temperature fluctuations, facilitate ventilation 
and drainage, and provide structural protection against facial trauma1,2. Sinusitis refers to inflammation of the 
mucosal lining of the paranasal sinuses and is commonly classified as either acute or chronic based on duration 
and clinical characteristics2. Chronic rhinosinusitis (CRS), in particular, is defined as a persistent inflammatory 
condition lasting longer than 12 weeks, and is primarily characterized by mucosal thickening and impaired 
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sinus drainage2. CRS can lead to epithelial remodeling and periosteal inflammation, particularly affecting 
the ethmoid bone3. Although CRS may present with mucopurulent rhinorrhea in some cases, this finding is 
more characteristic of acute sinusitis. In contrast, CRS typically involves nasal congestion, facial pressure, and 
postnasal drip. Prolonged inflammation can result in mucosal hypertrophy and bony remodeling3. Because 
the paranasal sinuses are anatomically close to critical structures such as the orbit and cranial nerves, accurate 
assessment of sinus inflammation is clinically important, particularly in chronic cases where mucosal thickening 
and anatomical variations may complicate treatment planning1–3.

CT scans are an essential tool for diagnosing sinusitis, as they can detect inflammation in the sinus cavities. 
After identifying inflammation, clinicians consider a combination of imaging findings, symptom severity, and 
anatomical extent to determine the appropriate medical or surgical treatment4,5. Segmentation of sinus structures 
on CT images can provide valuable support during surgical planning by helping identify anatomical variations 
and guide safer, more efficient navigation, particularly when used in conjunction with image guidance systems6,7. 
Importantly, preoperative segmentation has been shown to improve surgical efficiency by reducing the time 
required to identify critical anatomical landmarks during navigation-assisted procedures, thereby facilitating 
faster and safer intraoperative decision-making7. In addition to improving surgical workflow efficiency, the 
clinical applicability of segmentation tools may also depend on technical considerations such as computational 
efficiency, memory requirements, inference latency7 and the technical feasibility of deploying models in clinical 
environments8. In addition to surgical planning, automated segmentation can also support 3D volumetric 
staging of chronic rhinosinusitis (CRS), which quantitatively assesses the extent of sinus opacification and helps 
evaluate the effectiveness of therapeutic interventions9. This volumetric assessment, based on the percentage of 
disease involvement across paranasal sinuses, has been used for over a decade and is gaining attention as a more 
sensitive and reproducible method compared to traditional scoring systems10, while subsequent studies have 
introduced 3D image-based staging frameworks to enhance its clinical utility11.

Among various surgical approaches, Endoscopic sinus surgery (ESS) is a common treatment method for 
sinusitis. Accurate visualization of the patient’s internal anatomy is essential for surgeons during ESS12. To better 
visualize the surgical target and anatomical structures, image-guided surgery (IGS) has become a popular visual 
aid13. IGS provides continuous and enhanced visualization of anatomical structures using three-dimensional 
(3D) virtual structures fused with endoscopic images12–14. In ESS based on an IGS system, the accuracy of 
the surgery depends largely on the registration between the patient’s anatomical structures and the endoscopic 
image13,15. Consequently, automatic segmentation can enhance pre-operative planning, and when used in 
conjunction with IGS can provide improvements in the execution of the sinus surgery by providing accurate 
anatomical registration and detailed 3D representations of patient-specific structures15.

As the popularity of deep learning has grown in the field of medical imaging, several studies of automatic 
segmentation of the paranasal sinuses using deep learning have been reported16–20. The paranasal sinus regions, 
which are closely arranged within the skull, add complexity to segmentation tasks due to their intricate spatial 
configuration. The adjacent nasal cavity, cranial nerves, and optic nerve are close to these sinuses, contributing to 
their functional and anatomical complexity2. Given these characteristics, Kuo et al. segmented the ES into anterior 
and posterior sections for more precise analysis using CNNs16. Iwamoto et al. achieved refined segmentation 
outcomes for each sinus area by combining a fully convolution network (FCN) with a probability atlas to refine 
the FCN’s outputs17. Subsequent studies have extended such approaches into 3D volumetric staging frameworks. 
Kuo et al. employed semi-supervised CNNs with pseudo-label self-training for volumetric segmentation and 
scoring18, while Massey et al. demonstrated strong correlations between automated CT metrics and established 
clinical scores19. Most recently, Whangbo et al. compared the multi-class segmentation performance of several 
U-Net architectures, including 3D U-Net, Residual 3D U-Net, Dense 3D U-Net, and Residual-Dense 3D 
U-Net on CT imagery20. In medical imaging domains, further architectural advancements of U-Net have been 
proposed, such as the integration of depthwise convolution and residual connections21, squeeze-and-excition 
module22, hierarchical skip fusion with deep supervision23, or the combination of recurrent convolutional 
blocks with residual and attention mechanisms24. These developments motivate the expansion and exploration 
of anatomically complex regions, including the paranasal sinuses.

In parallel with advancements in CNN-based segmentation, transformer-based architectures have recently 
gained momentum in the medical imaging domain due to their superior capacity for global context modeling 
and data-driven representation learning25. Unlike CNNs, which are inherently limited in modeling long-
range dependencies due to their local receptive fields, Transformers offer a global self-attention mechanism 
that enables more comprehensive integration of contextual information25. The introduction of the Vision 
Transformer (ViT) marked a shift in architectural design by applying Transformer principles directly to image 
data, leading to a growing number of ViT-based models in medical image analysis26. With their self-attention 
mechanism and ability to process entire images as token sequences, ViTs offer a fundamentally different approach 
to representation learning. This has led to their application in various medical segmentation tasks, including 
volumetric image segmentation27.While CNNs rely on a sequence of layers to capture information about the 
anatomical structures due to their limited receptive fields28,29, ViTs can achieve a significantly greater degree of 
freedom due to their minimal inductive bias toward input data, allowing for comprehensive integration of input 
data information within a single layer29,30. However, ViTs face an inherent limitation due to local information 
loss in the image-patch generation step to form a token26,29. To compensate, an approach based on learning 
the fused feature information from two models by mixing and configuring CNNs and a ViT has led to the 
development of hybrid networks such as TransUNet31, UNETR32, and Swin UNETR33. These hybrid networks 
capitalize on the deep and contextual understanding of images by integrating the local processing capabilities of 
CNNs with the long-range dependency modeling of ViTs34–36.

The research hypothesis of this study is as follows. CNNs, Vision Transformers (ViTs), and hybrid networks 
demonstrate significantly different segmentation performances in anatomically complex and morphologically 
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variable regions of the paranasal sinuses, and among them, certain architectures can achieve an optimal trade-
off between segmentation accuracy and computational efficiency suitable for clinical deployment. Therefore, 
the objective of this study was to compare the segmentation performance of CNNs, ViTs, and hybrid networks 
for the paranasal sinuses of the FS, ES, SS, and MS on CT images. Our main contributions are as follows: 
(1) we compared CNNs, ViTs, and hybrid networks comprehensively for the segmentation of the paranasal 
sinuses with differing levels of anatomical complexity and showing inflammation-induced morphological and 
textural changes, and (2) we also analyzed the performance of the networks in terms of segmentation accuracy 
and computational efficiency, demonstrating their suitability for clinical deployment in precision-guided 
interventions and decision support systems for sinusitis.

Materials and methods
Data acquisition and preparation
We included 200 patients (66 females and 134 males; mean age 49 ± 17.22 years) who were diagnosed with sinusitis 
(176) or normal (24) at the Gachon University Gil Medical Center (2021–2022). Patient data were obtained 
using a SOMATOM Definition CT scanner (Siemens Healthcare, Munich, Germany) operating at 120 kVp and 
180 mAs. The CT images dimensions of 512 × 512 × 195 voxels, with voxel spacing of 0.367 × 0.367 × 0.750 mm³ 
and a 16-bit depth. This study was performed with the approval of the Institutional Review Board (IRB) of 
Gachon University Gil Medical Center (GAIRB2020-339), and in accordance with the Declaration of Helsinki. 
We obtained informed consent from all participants and their legal guardians, and no identifying information 
of participants was included in this study.

The ground truth annotations for the paranasal sinuses, including the frontal sinus (FS), ES, SS, and 
MS, were manually performed using 3D Slicer (Windows 10 version, MIT, USA) by two board-certified 
otorhinolaryngologists (Fig. 1)37. Annotations were conducted across axial, sagittal, and coronal planes, and final 

Fig. 1.  (A) Three-dimensional visualization of the paranasal sinuses consisting of the frontal sinus (FS), 
ethmoid sinus (ES), sphenoid sinus (SS), and maxillary sinus (MS) regions, represented in yellow, red, blue, 
and green colors, respectively. (B) A two-dimensional visualization of the sinuses in axial, sagittal, and coronal 
views with binary masks delineating each sinus in the CT image. (Created with 3D Slicer, 5.6.1, ​h​t​t​p​s​:​/​/​w​w​w​.​s​l​
i​c​e​r​.​o​r​g​/​​​​ ).
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segmentation boundaries were determined through consensus between the two physicians to ensure anatomical 
consistency. In regions with complex structural overlap, such as the interface between FS and anterior ethmoid 
cells or the inferior boundary of the ES, bony landmarks and standard anatomical planes were used as reference. 
For training the deep learning models, we allocated 117 volumes to the training set and 39 to the validation set. 
The test set was composed exclusively of 40 volumes from patients diagnosed with sinusitis. Four volumes were 
excluded due to low image quality. All CT volumes were resized to 256 × 256 × 128 voxels to accommodate GPU 
memory limitations.

We estimated an appropriate dataset size for comparing segmentation accuracy across CNNs, ViTs, and 
hybrid networks through a power analysis based on a repeated-measures ANOVA. As all six networks were 
applied to the same set of test subjects, we assumed a within-subject design. The analysis was performed using 
G*Power (Version 3.1.9.4; Universität Düsseldorf, Germany), assuming a mean accuracy difference of 0.05 and a 
standard deviation of 0.10. Considering the potential variability in CT acquisition across patients, we considered 
factors such as differences in patient positioning, image noise, and contrast levels. Based on this consideration, 
we set the statistical parameters to a correlation of 0.3 among repeated measures, a nonsphericity correction 
factor of ε = 0.7, a significance level of 0.05, a statistical power of 0.80, and an effect size of 0.25. Based on these 
parameters, the estimated minimum required sample size was N = 37. Accordingly, we retained the dataset 
composition of 117, 39, and 40 volumes for training, validation, and testing, respectively.

3D convolutional neural networks for volumetric image segmentation
We utilized two 3D CNNs, 3D U-Net38 and V-Net39, for volumetric image segmentation (Fig. 2). The 3D U-Net, 
an extension of the original 2D U-Net, incorporated 3D convolutions while maintaining the core architecture 
of the 2D U-Net, enabling processing of 3D images effectively38,40. Similarly, V-Net39 was designed to enhance 
volumetric learning through residual connections and 5 × 5 × 5 convolutional kernels in the encoder. It replaced 
max pooling with convolutional downsampling and maintained an overall structure similar to the 3D U-Net39.

Vision transformers for volumetric image segmentation
Accordingly, Vision Transformers (ViTs) have emerged, applying the principles of transformers to overcome 
this limitation can be operated by dividing input images into patches, each supplemented with positional 
information26. We used the VT-UNet41 and D-Former42 ViTs for volumetric image segmentation (Fig.  2). 
VT-UNet adopted a hierarchical transformer architecture inspired by the Swin Transformer, using window-
based and shifted-window attention mechanisms at each stage to preserve spatial locality and enhance context 
modeling41,43. The decoder mirrored the encoder’s hierarchical structure but introduced parallel cross-attention 
and self-attention at equivalent stages, with skip connections transferring key and value information to ensure 
continuity in the information flow41.

Fig. 2.  The architectures of convolutional neural networks (CNNs) of (A) 3D U-Net and V-Net, vision 
transformers (ViTs) of (B) VT-UNet and (C) D-Former, and hybrid networks of (D) Swin UNETR, and (E) 
CoTr.
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The D-Former distinguished itself from typical ViT architectures by employing depth-wise convolution for 
positional encoding, enabling dynamic acquisition of positional information while reducing computational 
overhead and enhancing translation invariance42. It also incorporated a multi-head self-attention mechanism 
that evaluated adjacent and distant patches to gather dense contextual information for the predicted target, 
allowing for efficient encoding with fewer parameters42.

Hybrid networks for volumetric image segmentation
Recent advancements in image segmentation have seen the convergence of CNN and ViT architectures, each 
with unique strengths and limitations in processing structural and long-range dependency information35,36. To 
leverage the complementary strengths of both architectures, hybrid networks have emerged, combining CNNs 
and transformers to overcome their individual limitations44. Representative examples include TransUNet and 
UNETR, which integrate the strengths of CNNs and ViTs: TransUNet employs a CNN–transformer encoder 
followed by a CNN decoder31, while UNETR uses a transformer encoder with a CNN decoder32. We used two 
hybrid networks, Swin UNETR25 and CoTr45, for volumetric image segmentation (Fig.  2). Swin UNETR33 
employed a Swin Transformer encoder within a U-shaped architecture derived from UNETR32, integrating 
window-based attention with CNN-based decoding. It included residual convolutional blocks and instance 
normalization at each skip-connection stage to enhance the transfer of information from the encoder from 
decoder25,30.

By comparison, CoTr45, building on the integration concept of TransUNet31, implemented a cascaded 
encoder structure consisting of a CNN followed by a deformable transformer46–48. The CNN encoder first 
extracted high-resolution features, which were then refined by the transformer using a sparse query-key attention 
mechanism focused on spatially relevant regions, thereby reducing computational and spatial complexity45–48. 
The decoder, fully CNN-based, upsampled the encoded features and employed skip connections to retain low-
level detail with minimal loss. Through cascaded sequence, CoTr effectively preserved both local and global 
information throughout the segmentation process. Table 1 provided a comparative overview of the architectural 
characteristics of CNNs, ViTs, and hybrid networks, including encoder–decoder design, positional encoding 
strategies, attention mechanisms, skip connections, and main structural features.

Implementation details
To compare the segmentation performance of networks, we conducted multi-class segmentation of the 
background, FS, ES, SS, and MS. We adopted an equal ratio of a dice similarity coefficient (DSC) score49,50 and 
cross-entropy loss51 for multi-class loss functions. All networks were implemented in PyTorch and trained on 
a single NVIDIA RTX A6000 48GB GPU using the default hyperparameter values provided in their official 
GitHub repositories (https://github.com/faustomilletari/VNet, https://github.com/himashi92/vt-unet, ​h​t​t​p​s​:​/​/​g​
i​t​h​u​b​.​c​o​m​/​k​k​k​5​5​5​9​6​/​D​-​F​o​r​m​e​r​​​​​, ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​P​r​o​j​e​​c​t​-​M​O​​N​A​I​/​r​e​​s​e​a​r​c​h​​-​c​o​n​t​r​​i​b​u​t​i​o​n​s​/​t​r​e​e​/​m​a​i​n​/​S​w​i​n​U​
N​E​T​R, and https://github.com/YtongXie/CoTr) and original papers33,38,39,41,42,46.

The detailed hyperparameter configurations are as follows. Both 3D U-Net and V-Net employed a four-stage 
encoder–decoder structure, with feature channels doubling from 32 to 256 across stages. 3D U-Net used 3 × 3 × 3 
convolutional kernels and max pooling with a stride of 2 for downsampling, while V-Net adopted 5 × 5 × 5 
convolutions, with strided convolutions for downsampling and transposed convolutions for upsampling. 
Transformer-based variants utilized architecture-specific patch embeddings and attention mechanisms. VT-

Network Architecture Encoder Encoder Details Decoder

3D U-Net CNNs CNN Hierarchical features with convolution and pooling operations Symmetric to the Encoder

V-Net CNNs CNN Residual blocks with 5 × 5 × 5 conv Symmetric to the Encoder

VT-UNet ViTs Transformer Hierarchical window features with Swin Transformer encoder
Encoder-based decoder 
with parallel cross 
attention

D-Former ViTs Transformer Transformer encoder with depthwise convolution Symmetric to the Encoder

Swin UNETR Hybrid Transformer Hierarchical window features with Swin Transformer encoder CNN with residual blocks

CoTr Hybrid CNN-Transformer 
Cascade

Cascaded encoder structure combining CNN and deformable transformer 
modules CNN

Positional Encoding Attention Type Skip Connections Structural Features

- - Stage-wise Skip Connections Extension of U-Net to volumetric data

- - Stage-wise Skip Connections Equivalent to 3D U-Net with enlarged 5 × 5 × 5 kernels

Relative Positional Encoding Window & Shifted Window Attention Stage-wise Skip Connections via shared key/
value Cross/Self Attention Fusion at Decoder Stages

Depthwise Convolution-based 
Positional Encoding

Multi-head attention capturing local 
and global contexts Stage-wise Skip Connections Lightweight ViT with Local and Global Attention

Relative Positional Encoding Window & Shifted Window Attention InstanceNorm-Enhanced Skip Connections Swin Transformer encoder fused with CNN-based 
decoding

Sparse key-based guidance 
Positional Encoding CNN + Transformer Skip connections from CNN encoder to CNN 

decoder CNN-Transformer cascaded with deformable attention

Table 1.  Architectural comparison of cnns, vision transformers, and hybrid networks, categorized by encoder 
and decoder designs, positional encoding and attention types, skip connections, and architectural features.
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UNet was configured with a patch size of (64, 192, 160) and 30 feature channels, and D-Former adopted a 
hierarchical Transformer architecture with a patch size of (4, 4, 4) and an embedding dimension of 96. Depths, 
attention heads, and group size of D-Former were set to (2, 2, 6, 2), (3, 6, 12, 24), and (2, 7, 7), respectively. 
In hybrid networks, convolutional and Transformer modules were integrated while maintaining comparable 
architectural scales. Swin UNETR used a patch size of 96, embedding dimension 192, and window size 7 × 7 × 7, 
with stage depths (2, 2, 6, 2) and attention heads (3, 6, 12, 24). CoTr employed a ResNet-50 encoder with 4 
attention layers, each containing 8 heads and a hidden dimension of 512. The patch size for Transformer input 
was set to one-eighth of the input resolution. All networks were trained for 200 epochs with a batch size of 1.

During training, we applied augmentation using TorchIO, focusing on contrastive transformations including 
RandomBiasField, RandomGamma with a log-gamma range of (–0.3, 0.3), and RescaleIntensity to a range of 
(0, 1). Spatial transformations such as flipping or rotation were not applied in order to preserve the anatomical 
orientation of the 3D CT volumes and avoid disrupting inter-slice spatial consistency52.

Performance evaluation of segmentation
To evaluate the segmentation performance for the paranasal sinuses, we used six evaluation metrics: the Jaccard 
Index ( JI = T P

T P +F N+F P ), Dice similarity score (DSC = 2T P
2T P +F N+F P ), precision ( PR = T P

T P +F P ), recall 
( RC = T P

T P +F N ), and 95% Hausdorff Distance (HD95). Overlap-based evaluation metrics such as the JI, DSC, 
PR, and RC can be seen as metrics tailored to evaluate the areas of segmentation results. Specifically, HD95 
(Eq. 1) served as a distance-based evaluation metric for evaluating segmented boundaries and provided a robust 
and reliable way to evaluate how well the boundaries of a segmentation result matched the boundaries of the 
ground truth53,54, which can be defined as:

	 HD95 (G, P) = max
{
supg∈ Gd(g, P ), supp∈ P d(G, p)

}
� (1)

In clinical settings for automatic paranasal sinus segmentation, learning outcomes, the efficiency of the learning 
process, and the scalability of learning across various variations are required collectively55. Accordingly, 
computational efficiency has become an increasingly important consideration for evaluating the practicality of 
deep learning models in real-world clinical settings56. To address this, we assessed the learning efficiency of each 
network by comparing the number of parameters (Params) and inference time (IT). The IT was measured as the 
average processing time per 3D volume in seconds.

We conducted repeated-measures ANOVA tests to evaluate segmentation performance differences among 
CNNs, ViTs, and hybrid networks. Bonferroni-corrected post hoc tests were then performed to conduct pairwise 
comparisons among the six networks. All statistical analyses were conducted using Python (version 3.8.16) with 
the SciPy (version 1.10.1), with the Statsmodels (version 0.12.2) and Pingouin (version 0.5.5), and Scikit-learn 
(version 1.2.2) libraries. Statistical significance was defined as 0.05.

Results
We compared the segmentation performance and model complexity of the 3D U-Net and V-Net CNNs and VT-
UNet and D-Former ViTs, and hybrid networks of Swin UNETR and CoTr for the paranasal sinuses from patients 
with sinusitis. Table 2 presents the mean segmentation performance metrics (JI, DSC, PR, RC, and HD95) for 
the networks across all paranasal sinuses. The results in Table 2 indicate that the Swin UNETR outperformed 
other networks in most segmentation metrics. Except PR of 0.935, Swin UNETR achieved the highest mean 
segmentation scores, with a JI of 0.719, a DSC of 0.830, and an RC of 0.758, and the lowest HD95 value of 
10.529 for the paranasal sinuses, along with the smallest number of its architectural parameter. Notably, Swin 
UNETR exhibited statistically significant differences in JI, DSC, PR, and RC metrics compared to ViT-based 

Network JI ↑ DSC ↑ PR ↑ RC ↑ HD95 ↓ Params(M) ↓ IT (Sec) ↓

3D U-Net 0.692
± 0.148

0.808
± 0.117†

0.934
± 0.085

0.728
± 0.149

12.485
± 10.948 35.971 0.232

 ± 0.001

V-Net 0.696
± 0.159

0.808
± 0.140†

0.946
± 0.102

0.722
± 0.158‡

10.947
± 11.604 45.616 0.646

 ± 0.004

VT-UNet 0.633
± 0.165*

0.761
± 0.144†

0.875
± 0.147

0.695
± 0.161‡

14.336
± 9.569 20.751 0.275

 ± 0.148

D-Former 0.684
± 0.148*

0.802
± 0.121†

0.917
± 0.109

0.726
± 0.138‡

13.841
± 13.289 50.551 0.203

 ± 0.001

Swin UNETR 0.719
± 0.123

0.830
± 0.097

0.935
± 0.116

0.758
± 0.099

10.529
± 9.017 15.705 0.376

 ± 0.001

CoTr 0.707
± 0.139

0.820
± 0.110

0.934
± 0.107

0.741
± 0.129

11.618
± 12.005 41.866 0.149

 ± 0.002

Table 2.  The mean segmentation performance of the Jaccard index (JI), dice similarity coefficient (DSC), 
precision (PR), recall (RC), and 95% hausdorff distance (HD95) with the number of parameters (Params) for 
the paranasal sinuses using CNNs (3D U-Net and V-Net), vision Transformers (VT-UNet and D-Former), 
and hybrid networks (Swin UNETR and CoTr) (*statistically significant difference in JI from Swin UNETR 
(p < 0.05), †Statistically significant difference in DSC from Swin UNETR (p < 0.05), and ‡Statistically significant 
difference in RC from Swin UNETR (p < 0.05)).
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networks (p < 0.05), and similar significant differences were also observed in DSC and RC metrics compared to 
CNN-based networks (p < 0.05). CoTr achieved a performance comparable to that of the Swin UNETR with a 
JI of 0.707, a DSC of 0.820, a PR of 0.934, an RC of 0.741, and an HD95 value of 11.618. The V-Net achieved a 
performance similar to that of Swin UNETR (a JI of 0.696, PR of 0.946, and HD95 value of 10.947). CoTr also 
showed the shortest inference time (IT) at 0.149 s per volume across networks, with the largest gap observed 
against V-Net, which recorded the slowest IT of 0.646 s (Table 2). However, both CoTr and V-Net had the larger 
number of its architectural parameter, while the VT-UNet and D-Former showed the lowest performance for all 
metrics (Table 2).

Table 3 provides detailed performance metrics (JI, DSC, PR, RC, and HD95) for each individual paranasal 
sinus of the FS, ES, SS, and MS with sinusitis. The results in Table 3 indicate that all networks achieved the best 
segmentation performance in the MS, which has the least anatomical complexity of the paranasal sinuses; the 
lowest performance in the ES, which has the highest anatomical complexity; and moderate performance in 
the FS and SS, which exhibit intermediate anatomical complexity (Table  3). The Swin UNETR achieved the 
highest segmentation accuracies of 0.710 and 0.647 for the JI and 0.825 and 0.783 for the DSC in the FS and ES, 
respectively, indicating a relatively high degree of anatomical complexity of the paranasal sinuses. Accordingly, 
Swin UNETR showed statistically significant differences in all metrics except PR in the FS region (p < 0.05). 
Specifically, significant differences in JI and HD95 were found compared to both CNNs and the ViTs (p < 0.05). 
For DSC, significant differences were observed compared to CNNs and VT-UNet, and for RC, compared to all 
networks except CoTr (p < 0.05). In the ES region, Swin UNETR exhibited significant differences in JI, DSC, and 
RC across all networks (p < 0.05). However, the comparable performance of 0.726 and 0.794 of the JI and 0.832 
and 0.880 of the DSC in the SS and MS, respectively, with 3D U-Net’s 0.727 and 0.799 JI and 0.835 and 0.885 
DSC in the SS and MS, respectively, indicating a relatively low anatomical complexity (Table 3). When evaluating 
segmentation boundaries, the Swin UNETR achieved the lowest error of the HD95 of 10.552 in the FS, and the 
CoTr the HD95 of 6.906 in the MS, while V-Net achieved the lowest HD95 of 10.954 and 10.409 in the ES and SS, 
respectively. Based on Table 3, A statistically significant difference in HD95 was observed between Swin UNETR 
and CNNs and VT-UNet in the FS (p < 0.05), and CoTr exhibiting a significant difference compared to the ViTs 
in the MS (p < 0.05).

For qualitative evaluation, we visualized the segmentation results of the paranasal sinuses using CNNs, ViTs, 
and hybrid networks for patients with sinusitis (Fig. 3). The hybrid networks produced fewer false positives and 
false negatives overall compared with the CNNs and ViTs for sinuses with morphological and textural variations 

Network

JI ↑ DSC ↑

FS ES SS MS FS ES SS MS

3D U-Net 0.660
 ± 0.158*

0.582
 ± 0.106†

0.727
 ± 0.126

0.799
 ± 0.096

0.782
 ± 0.138*

0.730
 ± 0.092†

0.835
 ± 0.095

0.885
 ± 0.069

V-Net 0.679
 ± 0.156*

0.627
 ± 0.101

0.699
 ± 0.196

0.779
 ± 0.129

0.797
 ± 0.132

0.765
 ± 0.090

0.802
 ± 0.189

0.868
 ± 0.107

VT-UNet 0.589
 ± 0.172*

0.575
 ± 0.100†

0.618
 ± 0.197

0.748
 ± 0.110*

0.725
 ± 0.160*

0.725
 ± 0.083†

0.743
 ± 0.179

0.850
 ± 0.084

D-Former 0.664
 ± 0.154*

0.604
 ± 0.087†

0.683
 ± 0.173

0.786
 ± 0.098

0.786
 ± 0.132*

0.749
 ± 0.071†

0.797
 ± 0.144

0.876
 ± 0.080

Swin UNETR 0.710
 ± 0.110

0.647
 ± 0.075

0.726
 ± 0.142

0.794
 ± 0.106

0.825
 ± 0.086

0.783
 ± 0.057

0.832
 ± 0.117

0.880
 ± 0.091

CoTr 0.695
 ± 0.123

0.612
 ± 0.085†

0.712
 ± 0.161

0.810
 ± 0.095

0.813
 ± 0.095

0.756
 ± 0.068†

0.819
 ± 0.143*

0.892
 ± 0.073

PR ↑ RC ↑ HD95 ↓
FS ES SS MS FS ES SS MS FS ES SS MS

0.930
 ± 0.112

0.910
 ± 0.069

0.933
 ± 0.074

0.962
 ± 0.066

0.696
 ± 0.156*

0.623
 ± 0.126†

0.772
 ± 0.135

0.822
 ± 0.086

14.497
 ± 12.135*

12.953
 ± 4.948

12.862
 ± 11.735

9.629
 ± 12.547

0.942
 ± 0.101

0.920
 ± 0.062

0.951
 ± 0.129

0.971
 ± 0.099

0.709
 ± 0.152*

0.669
 ± 0.118

0.717
 ± 0.203

0.792
 ± 0.116

14.818
 ± 18.902*

10.954
 ± 4.440

10.409
 ± 9.672

7.606
 ± 6.455

0.928
 ± 0.137

0.820
 ± 0.105

0.844
 ± 0.195

0.907
 ± 0.104

0.614
 ± 0.173*

0.665
 ± 0.112†

0.696
 ± 0.186

0.805
 ± 0.083

13.414
 ± 10.113*

12.737
 ± 4.874

17.484
 ± 11.799

13.708
 ± 9.345‡

0.929
 ± 0.123

0.895
 ± 0.063

0.907
 ± 0.126

0.938
 ± 0.108

0.701
 ± 0.140*

0.652
 ± 0.098†

0.725
 ± 0.166

0.826
 ± 0.063

11.309
 ± 9.991

11.295
 ± 4.422

16.492
 ± 18.154

16.267
 ± 15.219‡

0.943
 ± 0.117

0.902
 ± 0.072

0.928
 ± 0.141

0.965
 ± 0.113

0.746
 ± 0.088

0.699
 ± 0.083

0.772
 ± 0.109

0.812
 ± 0.078

10.552
 ± 8.627

11.171
 ± 5.249

13.124
 ± 12.944

7.269
 ± 6.159

0.935
 ± 0.104

0.902
 ± 0.068

0.938
 ± 0.142

0.962
 ± 0.093

0.732
 ± 0.112

0.660
 ± 0.099†

0.740
 ± 0.157

0.834
 ± 0.066

13.225
 ± 13.540

11.421
 ± 3.933

14.922
 ± 17.459

6.906
 ± 6.095

Table 3.  Segmentation performance of the Jaccard index (JI), dice similarity coefficient (DSC), precision 
(PR), recall (RC), and 95% hausdorff distance (HD95) for the frontal sinus (FS), ethmoid sinus (ES), sphenoid 
sinus (SS), and maxillary sinus (MS) using CNNs (3D U-Net and V-Net), vision Transformers (VT-UNet 
and D-Former), and hybrid networks (Swin UNETR and CoTr) (*significant difference in all metrics except 
PR in Swin UNETR in FS (p-value < 0.05), †Significant difference in JI, DSC, RC in Swin UNETR in ES 
(p-value < 0.05), ‡Significant difference in HD95 in CoTr in MS (p-value < 0.05)).
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by sinusitis. Specifically, CNNs showed more false negatives in the FS and ES, resulting in a lower RC compared 
with the hybrid networks, while ViTs produced more false positives in the SS and MS, resulting in a lower 
PR than the hybrid (Fig. 3; Table 2). We also emphasized the segmentation boundaries in the visualizations, 
particularly between the FS and ES, the ES and SS, and the ES and MS for patients with sinusitis (Fig. 4). The 
hybrid networks most accurately delineated these boundaries, closely matching the ground truth (Fig. 4). In 
contrast, CNNs showed more confusion in segmenting sinus areas, with one region encroaching into another 
(white arrow), and ViTs more often failing to clearly distinguish the boundaries between paranasal sinuses (white 
arrow), and between paranasal sinuses and adjacent structures (brown arrow) (Fig.  4). These segmentation 
errors by CNNs and ViTs were more pronounced between the FS and ES. More segmentation errors were made 
by ViTs in distinguishing between ES and the nasal cavity, with over-segmentation causing ES to extend beyond 
its boundary (Fig. 4).

The 3D visualization of predictions for the four paranasal sinuses show that the volume predicted by the Swin 
UNETR has fewer false positive (red circle) and fewer false negative (blue circle) volumes compared with the 
CNNs and ViTs (Fig. 5). The CNNs of 3D U-Net and V-Net misidentified some global relational characteristics 
of the repetitive structures leading to more false negatives in the FS and ES, while the ViTs of VT-UNet and 
D-Former tended to fail to capture the local continuity leading to more false positives in the FS, ES, SS, and MS. 
Therefore, the Swin UNETR provided superior 3D segmentation results, showing the lowest false-positive and 
false-negative volumes across all sinuses. With respect to overall performance, hybrid networks demonstrated 
more balanced and robust performance compared to CNNs and ViTs. Figures 6 and 7 illustrate the segmentation 
performance distributions based on DSC (Fig. 6) and HD95 (Fig. 7), respectively. In both metrics, Swin UNETR 
showed consistently higher median values with smaller interquartile ranges, shorter whiskers, and fewer outliers 
across most sinus regions (Figs. 6 and 7). CoTr similarly exhibited a trend of reduced HD95 variability, especially 
in the MS region (Fig. 7).

Figure 8 provides a bubble chart overview of the trade-offs between segmentation performance, inference time 
per volume, and the number of parameters across all networks. Among the evaluated models, CoTr exhibited 
the most balanced performance tendency across segmentation accuracy, inference time, and parameter count. 
It consistently showed above-average segmentation performance, with the fastest inference time among all 
models and a mid-sized parameter count (41.9 M). Notably, V-Net showed comparable segmentation accuracy 
to 3D U-Net but exhibited the longest inference time among all models, indicating a clear disadvantage in 
computational efficiency. ViTs and 3D U-Net demonstrated inference times between those of CoTr and Swin 
UNETR. However, they consistently exhibited lower segmentation performance than the hybrid models. Swin 

Fig. 3.  Segmentation results of the paranasal sinuses by CNNs (3D U-Net and V-Net), ViTs (VT-UNet and 
D-Former), and hybrid networks (Swin UNETR and CoTr) for patients with sinusitis. The rows from top to 
bottom represent the frontal sinus (A) and (B), ethmoid sinus (C) and (D), sphenoid sinus (E) and (F), and 
maxillary sinus (G) and (H). True positives, false negatives, and false positives by segmentation result are in 
yellow, green, and red, respectively.
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Fig. 5.  A three-dimensional visualization of the frontal sinus (yellow), ethmoid sinus (red), sphenoid sinus 
(blue), and maxillary sinus (green) from ground truth and segmentation results by 3D U-Net, V-Net, VT-
UNet, D-Former, Swin UNETR, and CoTr for patients with sinusitis (A-F). Red and blue circles represent false 
positives and false negatives, respectively. (Created with 3D Slicer, 5.6.1, https://www.slicer.org/ ).

 

Fig. 4.  A 2D visualization of segmentation results for the frontal sinus (yellow), ethmoid sinus (red), sphenoid 
sinus (blue), and maxillary sinus (green) with a focus on boundary areas for the frontal sinus and ethmoid 
sinus (A and B), ethmoid sinus and sphenoid sinus (C and D), and ethmoid sinus and maxillary sinus (E and 
F) for patients with sinusitis. White and brown arrows indicate failures to accurately delineate boundaries 
between sinuses, and between sinuses and adjacent structures, respectively.
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UNETR exhibited a longer inference time compared to other models, but simultaneously demonstrated the 
highest segmentation accuracy with the lowest number of parameters (15.7 M) (Table 2; Fig. 8).

In conclusion, the segmentation performance and results indicated that hybrid networks combining CNNs 
and ViTs demonstrated the most accurate segmentation of the paranasal sinuses, effectively learning the 
anatomical complexity as well as the morphological and textural variations related to sinusitis, compared with 
other networks for patients with sinusitis.

Discussion
Chronic rhinosinusitis (CRS) often leads to complex anatomical and pathological variations in the paranasal 
sinuses, including mucosal thickening, bony remodeling, and obscured sinus boundaries2,3. These variations 
pose significant challenges for accurate CT-based segmentation, which is valuable for applications such as 
image-guided surgery and 3D volumetric staging6,9,12–14. Although previous studies have primarily explored 
CNN-based models for the automatic segmentation of the paranasal sinuses16–20, to our knowledge, no prior 
study has conducted a systematic comparison of CNNs, ViTs, and hybrid networks across sinuses with varying 
anatomical complexity. To address this research gap, we comparatively evaluated six representative architectures 
including two CNNs, two ViTs, and two hybrid networks for automatic segmentation of the paranasal sinuses.

Considering the anatomical complexity of the paranasal sinuses and their interwoven relationships with 
surrounding structures57, segmentation errors from CNNs and ViTs were frequently observed in regions 
adjacent to surgical landmarks that are critical for maintaining anatomical validity in ESS planning. CNNs 
tended to under-segment the FS and ES (Fig. 3), particularly near transition zones such as the ethmoido-frontal 
junction, where anatomical boundaries may be ambiguous due to interleaved ethmoidal air cells or agger nasi 
variants58. These regions are often delineated in clinical practice using landmarks such as the ground lamella or 
fovea ethmoidalis58, and the resulting boundary ambiguity was qualitatively illustrated in Fig. 4, where CNN 
predictions blurred the FS–ES boundaries. In contrast, ViTs produced more false positives in the SS and MS regions 

Fig. 6.  Boxplots of the Dice Similarity Coefficient (DSC) values for 3D U-Net, V-Net, VT-UNet, D-Former, 
Swin UNETR, and CoTr. From top to bottom, each row denotes the values for (A) average performance, (B) 
frontal sinus, (C) ethmoid sinus, (D) sphenoid sinus, and (E) maxillary sinus. Each boxplot contains the first 
and third quartiles of data, with medians located inside the boxes and visualized as red lines. The whiskers 
extend above and below each box by 1.5 times the interquartile range (IQR), and outliers are visualized as red 
plus marks indicating values 1.5 IQR away from the box. A significant difference between Swin UNETR and 
3D U-Net, V-Net, VT-UNet and D-Former in (A) (p < 0.05). A significant difference between Swin UNETR 
and 3D U-Net, VT-UNet and D-Former in (B) (p < 0.05). A significant difference between Swin UNETR and 
3D U-Net, VT-UNet, D-Former and CoTr in (C) (p < 0.05).
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(Fig. 3), often extending beyond sinus boundaries into adjacent non-sinus structures. These oversegmentations 
frequently occurred near anatomical landmarks such as the posterior ethmoid wall or orbital floor, which serve 
as key reference points for segmenting the ES, SS, and MS regions58. Additionally, oversegmentation observed 
in the anterior FS and ES (Figs. 3 and 4) was frequently located near regions anatomically adjacent to the agger 
nasi cells, a key anatomical site involved in frontal recess drainage and often implicated in early sinonasal 
obstruction or inflammation58. In comparison, hybrid networks showed fewer segmentation errors in these 
clinically sensitive regions, suggesting improved robustness in preserving anatomical boundaries critical for 
safe surgical planning. Their performance more reflected anatomical complexity and spatial continuity, both of 
which are essential for the reliability of automated assistance during ESS57,58. Collectively, segmentation errors 
from CNNs and ViTs tended to occur near surgically relevant regions, whereas hybrid networks demonstrated 
superior boundary preservation and robustness in anatomically complex areas.

The ViT-based models were not always superior to CNNs in paranasal sinus segmentation, likely due to 
two main factors. First, the VT-UNet and D-Former ViTs captured some global context but struggled with 
finer anatomical details, particularly in the FS and ES, which have relatively high anatomical complexity of the 
paranasal sinuses. They also had difficulty maintaining local continuity in the FS and ES, which led to more 
segmentation errors, this is likely due to ViTs’ lack of inductive biases, such as locality and translation invariance, 
limiting their ability to accurately capture smaller, detailed structures25. Our relatively small dataset may have 
contributed to these results, as ViTs generally need a larger dataset to effectively learn global and local patterns. 
With a limited dataset, the ViT models may have struggled to converge, leading to overfitting or missing finer 
anatomical details25,30,59. In ViT models, the lack of inductive biases make convergence difficult in small datasets 
resulting in the loss of 3D information, challenging the learning of representations for the paranasal sinuses of 
anatomical complexity and variations related to sinusitis in our study25,59,60.

The 3D CNNs in our study demonstrated segmentation tendencies consistent with those reported in previous 
studies on CNN-based sinus segmentation. 3D CNNs have some inherent limitations, as highlighted in previous 
studies16–20. Although architectures like 3D U-Net and V-Net have shown effective performance, their restricted 
locality causes a loss of global context, particularly in anatomically complex regions such as the FS and ES. Kuo 

Fig. 7.  Boxplots of the 95% Hausdorff Distance (HD95) values for 3D U-Net, V-Net, VT-UNet, D-Former, 
Swin UNETR, and CoTr. From top to bottom, each row denotes the values for (A) average performance, (B) 
frontal sinus, (C) ethmoid sinus, (D) sphenoid sinus, and (E) maxillary sinus. Each boxplot contains the first 
and third quartiles of data, with medians located inside the boxes and visualized as red lines. The whiskers 
extend above and below each box by 1.5 times the interquartile range (IQR), and outliers are visualized as red 
plus marks indicating values 1.5 IQR away from the box. A significant difference between Swin UNETR and 
3D U-Net, V-Net, and VT-UNet in (B) (p < 0.05). A significant difference between CoTr and VT-UNet and 
D-Former in (E) (p < 0.05).
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et al. observed that CNN-based models struggle to capture anatomical variability, particularly in closely packed 
structures16. Whangbo et al. also reported that CNN-based models exhibited incomplete boundary delineation 
in morphologically complex or inflamed sinus regions such as the frontal and ethmoid sinuses20. Our results 
confirm these findings. Specifically, CNNs misidentified structures in the FS and failed to fully capture elongated 
patterns in the ES, leading to segmentation errors of more false negatives. These errors were also observed in 
the MS, where CNNs showed incomplete segmentation of the superior and lateral regions of the MS. These 
failures indicate CNNs’ continued difficulty in fully interpreting the complex anatomical relationships within the 
paranasal sinuses of morphological and textural variations related to sinusitis.

Hybrid networks demonstrated a balanced trade-off between segmentation accuracy and computational 
efficiency compared to CNNs and ViTs. Among them, Swin UNETR achieved the highest segmentation accuracy 
across all metrics with the smallest number of parameters (15.7 M), suggesting its potential for deployment in 
resource-constrained clinical settings. The number of parameters, as an indicator of model size, is a critical factor 
for clinical deployment, particularly in relation to flexibility and scalability across low-resource environments 
and heterogeneous surgical settings61,62. In this context, Swin UNETR not only achieved superior segmentation 
performance, but also demonstrated deployment advantages due to its compact architecture. The combination of 
a U-shaped framework within a Swin transformer encoder allowed Swin UNETR to efficiently capture complex 
anatomical relationships in the paranasal sinuses with fewer architectural parameters. Swin UNETR also reduces 
the need to process an entire volume at once by focusing computational resources within localized windows33,43. 
These design characteristics support hierarchical feature extraction and multi-scale feature fusion, preserving 
segmentation accuracy without increasing computational loads43,59.

In contrast, CoTr achieved comparable segmentation accuracy to CNNs and ViTs but demonstrated the 
fastest inference time (0.149 s/volume) and a moderate parameter count among all models (Table 2; Fig. 8). 
Considering the increasing demand for real-time decision-making tools in surgical environments, rapid 
computation times are a critical factor for clinical feasibility62,63. In particular, therapeutic decisions often need 
to be made within minutes63, and in real-time surgeries that require both immediacy and spatial–temporal 
coherence, even latencies within seconds may pose procedural risks, depending on task complexity, anatomical 
constraints, and intraoperative environmental conditions63–65. In terms of CoTr, by restricting global attention 
to a subset of spatially meaningful tokens, CoTr significantly reduces redundant computations and memory 
overhead, thereby accelerating inference speed without sacrificing segmentation accuracy46,48. This architectural 
design explains how CoTr achieves a unique balance between structural simplicity and contextual richness, a 
trade-off essential for real-time clinical integration. Taken together, these results suggest that hybrid networks 
may offer greater clinical applicability than standalone CNNs or ViTs by balancing segmentation performance 
with architectural efficiency.

This study had several limitations This study had several limitations. First, we used an internal dataset 
from a single institution with a limited number of dataset. Although the study was designed with statistical 
validity, the complexity and high-dimensional variability involved in volumetric segmentation may not be 
comprehensively reflected by a dataset from a single institution. This uncertainty is particularly relevant in the 
presence of anatomical variation due to disease severity and inter-individual differences across a broader patient 
population. Additionally, the use of a limited dataset from a single institution may restrict the generalizability 
of the segmentation networks. Therefore, external validation of CNNs, ViTs, and hybrid networks on larger 

Fig. 8.  Bubble charts visualizing the trade-off between inference time and segmentation accuracy metrics for 
each network, including 3D U-Net, V-Net, VT-UNet, D-Former, Swin UNETR, and CoTr. The x-axis indicates 
the average inference time per volume, and the y-axis denotes each performance metric: (A) Jaccard Index (JI), 
(B) Dice Similarity Coefficient (DSC), (C) Precision (PR), (D) Recall (RC), and (E) 95% Hausdorff Distance 
(HD95). All values represent average performance across all sinuses, and the bubble size reflects the number of 
trainable parameters in each model.
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and more diverse datasets from multiple organizations is essential to complement the current experimental 
setting. Second, all networks were trained using default hyperparameter values as provided by their original 
papers and their official GitHub repositories33,38,39,41,42,45. However, fine-tuning task-specific hyperparameters 
for each network is crucial to achieving optimal segmentation performance for paranasal sinuses in terms of CT 
volumes for fair comparison27. Lastly, based on the above limitations, validation of the real-world applicability 
of automatic segmentation using CNNs, ViTs, and hybrid networks is warranted. This includes evaluating their 
potential integration into preoperative planning systems or automated reporting tools in otolaryngology practice. 
Future studies building on these directions may bridge the gap between experimental model performance and 
clinical applicability through real-world validation and integration.

In conclusion, among CNNs, ViTs, and hybrid networks, the hybrid models showed the most consistent 
segmentation across anatomically complex sinuses and achieved the best tradeoff between accuracy and 
computational efficiency, supporting their potential for clinical deployment.

Conclusions
In this study, we compared the segmentation performance and model complexity of CNNs, ViTs, and hybrid 
networks for the paranasal sinuses, comprising the FS, ES, SS, and MS, which exhibit varying anatomical 
complexity and sinusitis-related variation on CT images. Among the hybrid networks, Swin UNETR 
demonstrated the highest segmentation accuracy with minimal architectural parameters, reflecting its strength 
in performance and efficiency. CoTr achieved faster inference speed and better accuracy than CNNs and ViTs, 
suggesting its potential utility in time-sensitive applications. Additionally, hybrid networks more accurately 
delineated anatomical boundaries across sinus transition zones and adjacent structures, which are closely 
associated with surgical landmarks. By integrating both local and global contextual features, hybrid networks 
achieved a favorable balance between segmentation accuracy and computational efficiency, indicating their 
potential utility in image-guided surgery and preoperative planning.

Data availability
The datasets generated and analyzed during the current study are not publicly available due to restrictions set by 
the Institutional Review Board of the Gachon University Gil Medical Center to protect patients privacy but are 
available from the corresponding author on reasonable request.
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