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Abstract

Background: Gliomas are among the most complex and lethal primary brain tumors,
necessitating precise evaluation of both anatomical subregions and molecular alterations
for effective clinical management. Methods: To find a solution to the disconnected nature
of current bioimage analysis pipelines, where anatomical segmentation based on MRI and
molecular biomarker prediction are done as separate tasks, we use here Molecular-Genomic
and Multi-Task (MGMT-Net), a one deep learning scheme that carries out the task of the
multi-modal MRI data without any conversion. MGMT-Net incorporates a novel Cross-
Modality Attention Fusion (CMAF) module that dynamically integrates diverse imaging
sequences and pairs them with a hybrid Transformer–Convolutional Neural Network
(CNN) encoder to capture both global context and local anatomical detail. This architecture
supports dual-task decoders, enabling concurrent voxel-wise tumor delineation and subject-
level classification of key genomic markers, including the IDH gene mutation, the 1p/19q
co-deletion, and the TERT gene promoter mutation. Results: Extensive validation on
the Brain Tumor Segmentation (BraTS 2024) dataset and the combined Cancer Genome
Atlas/Erasmus Glioma Database (TCGA/EGD) datasets demonstrated high segmentation
accuracy and robust biomarker classification performance, with strong generalizability
across external institutional cohorts. Ablation studies further confirmed the importance
of each architectural component in achieving overall robustness. Conclusions: MGMT-
Net presents a scalable and clinically relevant solution that bridges radiological imaging
and genomic insights, potentially reducing diagnostic latency and enhancing precision
in neuro-oncology decision-making. By integrating spatial and genetic analysis within a
single model, this work represents a significant step toward comprehensive, AI-driven
glioma assessment.
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1. Introduction
Gliomas are the most frequent malignant primary brain tumors in adults, representing

a high percentage of the central nervous system neoplasms [1]. In both their anatomical
presentation and molecular composition they have been found to display excessive het-
erogeneity, thus becoming very difficult in the case of accurate diagnosis and treatment
planning [2]. The correct performance of clinical therapies relies greatly on the exact identi-
fication of the extent of the tumor as well as the accurate recognition of the main molecular
biomarkers like the isocitrate dehydrogenase (IDH) mutation, 1p/19q co-deletion, and
telomerase reverse transcriptase (TERT) promoter mutation [3]. These biomarkers are core
elements of the World Health Organization (WHO) classification of central nervous system
tumors and have a great impact on the prognosis and therapy; therefore, the right surgical
approach, radiotherapy protocol, and targeted drug treatment are the ones that would be
selected [4]. Nevertheless, the present diagnostic pipelines still segregate the tumor anatom-
ical segmentation from molecular profiling as two separate, independent tasks, although
the advancements in neuro-oncological research are considerable [5]. Such a separation not
only causes redundant data processing, increases computational overhead, and decreases
clinical integration [6], but also fails to recognize the spatial–genomic interplay in which
Gliomas are inherent [7].

Human brain scans by Magnetic Resonance Imaging (MRI) continue to be the leading
method for non-invasive diagnosis of glioma because of their outstanding capability to dif-
ferentiate soft tissues and the multi-planar imaging feature [8]. Usually, MRI is performed
in multiple sequences, each sequence representing a certain acquisition protocol aimed at
making a certain tissue characteristic more evident [9]. As for glioma diagnostics, the four
most significant sequences are T1-weighted (T1), contrast-enhanced T1-weighted (T1ce),
T2-weighted (T2), and Fluid-Attenuated Inversion Recovery (FLAIR) [10]. T1ce allows
for the clear visualization of the actively enhancing tumor areas and neovascularization,
T2 discloses the presence of edema and necrosis, and FLAIR is quite sensitive in show-
ing the infiltrative tumor margins as well as the peritumoral swelling [11]. Anatomical
segmentation as well as molecular marker prediction therapies are heavily reliant on this
multi-sequence data [12]. In addition, different MRI sequences give different pieces of the
diagnostic puzzle that complement each other, and their relative use can be different in
different regions of the tumor depending on the pathology and microenvironment [13].

Generally, although there have been big steps in both the imaging and the computa-
tional parts [14], routine clinical and computational methods still treat tumor segmentation
and molecular prediction as separate processes [15]. In most cases, voxel-wise segmen-
tation is carried out by U-Net-based convolutional neural networks (CNNs) or similar
structures [16]. On the other hand, molecular classification is considered a different prob-
lem that is solved by using manually extracted radiomic features or by using embeddings
learned from volumetric data [17]. Such a separate manner of working brings inefficiencies,
model complexity gets bigger, and the clinical scalability is lower [18]. More importantly, it
does not allow making use of the diagnostic relationships between tumor imaging pheno-
types and the changes in the genome, whereby mutations occurring in certain regions are
most times closely linked with specific radiological features.

Recent deep learning technology has successfully demonstrated the advantages of
Vision Transformers and 3D CNNs to completely understand the context of a medical
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image and include the necessary local anatomical detail [19]. Nevertheless, most of the
current models just use one single modality without taking into consideration hybrid
architectures for multi-task learning. On the other hand, multi-modal MRI fusion methods
for brain tumor diagnosis are usually limited to simple channel stacking or static weighting
that do not consider the dynamic and spatially varying importance of different modalities.
Although channel attention blocks and squeeze-and-excitation (SE) mechanisms have
provided some degree of flexibility [20], these methods mostly function at a global, coarse
level without voxel-level accuracy. The newly developed cross-modal attention techniques
allow for the area-specific adaptive integration of modalities; however, they are still largely
underutilized in fully end-to-end multi-task systems for neuro-oncology.

To address these gaps, we are presenting MGMT-Net, an innovative, all-inclusive deep
learning framework for detailed glioma identification from multi-modal 3D MRI. We have
redefined the diagnostic process by linking non-invasive molecular biomarker prediction
and volumetric tumor segmentation into a single architecture that is MGMT-Net:

• Cross-Modality Attention Fusion (CMAF)—a spatially adaptive fusion module that
flexibly identifies the voxel-level significance of different MRI modalities, thus high-
lighting the most diagnostically valuable features in different tumor regions.

• Hybrid Transformer–CNN Encoder—effectively melding 3D CNNs’ local texture
sensitivity with 3D Swin Transformers (Shifted Window Transformer) long-range
dependency modeling to both fine anatomical detail and broader structural context.

• Dual Task-Specific Decoders—allowing separate yet synergistic celibacy for voxel-
wise tumor segmentation and subject-level genomic classification, thus preventing
inter-task interference while harnessing shared representations.

We assume that MGMT-Net would be able to beat single-task models that are based on
space and genome, and that it would realize higher accuracy, efficiency, and generalizability.
We have implemented the framework on the BraTS 2024 dataset [21] for segmentation, on
the TCGA/Erasmus Glioma Database (EGD) [22] for molecular prediction, as well as on
multi-institutional external cohorts. Our findings depict top-notch performance in both
tasks, along with remarkable stability across different institutions, thus opening the door
for MGMT-Net in clinical neuro-oncology.

2. Related Works
Gliomas pose difficult challenges for precise diagnosis, treatment planning, and prog-

nostication, as they are one of the most heterogeneous and aggressive primary brain cancers.
The evolution of multi-modal magnetic resonance imaging (MRI) has provided the capac-
ity for rich, non-invasive imaging and characterization of these tumors in an anatomical
and physiological sense. At the same time, the emergence of deep learning in artificial
intelligence has transformed imaging in neuro-oncology by providing tumor segmentation
and molecular marker prediction capabilities through deep data-driven systems. However,
most models do not capture the full presentation complexity of gliomas. They perform the
tasks in disregard of each other, or they neglect spatial adaptation in multi-modal fusion.
It is based on poorly adapted architecture with insufficient spatial adaptivity. To frame
my proposed approach within the existing body of research, we will summarize the latest
advances in four key areas that directly inform our work: (1) brain tumor segmentation
using deep learning; (2) molecular biomarker assessment from MRI; (3) multi-task learning
in neuro-oncology. While progress has been made in all areas, there is a lack of a cohesive,
modality-autonomous, and task-aware framework governing them.
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2.1. Brain Tumor Segmentation

Segmenting glioma subregions from multi-modal MRI scans is fundamental to neuro-
oncological imaging, yet remains challenging due to the heterogeneous shape and ap-
pearance of gliomas. Fully convolutional networks (FCNs), specifically the U-Net and
its 3D versions, have dominated this area, performing segmentation. These models in-
cluded encoder–decoder structures with skip connections designed to preserve spatial
detail [23]. Segmentation accuracy was further improved by the adaptations Residual
U-Net, Attention U-Net [24], and self-configuring nnU-Net, which incorporated residual
learning, attention mechanisms, and automated hyperparameter tuning, respectively [25].
These convolution-based approaches are especially proficient at modeling local spatial fea-
tures. They completely fail to capture the wide-ranging dependencies that are characteristic
of the diffuse and intricate anatomy of gliomas. To relax these constraints, more recent
research has applied Vision Transformers, which model global context via self-attention
mechanisms [26]. Swin Transformers have proved particularly adept in volumetric contexts
because they compute attention within shifted windows, thus providing scalable global
information flow [27,28]. Transformer-based architectures have enhanced contextual rea-
soning; however, they are expensive in terms of computational resources and often need
large-scale datasets. This development has generated interest in investigating new hybrid
architectures that try to integrate the locality-sensitivity of CNNs with the global modeling
capabilities of Transformers.

2.2. Molecular Marker Prediction from MRI

At the same time as anatomical segmentation, the prediction of molecular biomarkers
for gliomas—like IDH mutation, 1p/19q co-deletion, and TERT promoter mutation—has
become increasingly important in the context of radiogenomics. These biomarkers form an
integral part of the glioma WHO classification system and significantly impact the prognosis
and treatment strategy [29]. In this domain, earlier computational methods utilized a
combination of handcrafted radiomic features and machine learning classifiers, including
random forests and support vector machines. While these approaches were interpretable,
they were limited by reliance on manual feature extraction and an inability to capture
nonlinear relationships between imaging and genomics [30]. In more recent work, deep
neural networks, namely 3D CNNs and DenseNets, have been used to learn latent features
from volumetric MRI scans directly [31]. Though these models have been successful,
they often approach molecular prediction as a global classification problem, treating it
as spatially agnostic segmentation. Consequently, they miss the spatial context that is
crucial to many imaging-genomic relationships—for example, necrotic cores associated
with IDH-mutant gliomas. To improve interpretability and focus, attention-based pooling
and class activation maps (CAMs) are used. However, their use in multi-modal, multi-task
frameworks remains sparse.

2.3. Multi-Task Learning in Neuro-Oncology

Multi-task learning (MTL) conveniently offers a method to simultaneously integrate
tumor segmentation with molecular marker forecasting by leveraging common shared
feature representations to boost generalization and mitigate overfitting [32]. In neuro-
oncology, some works have focused on dual-task systems aimed at concurrent spatial and
deep semantic reasoning—for instance, grading or classifying the type of tumor [33]. These
models usually employ shared encoders with task-specific decoders, but there is often no
satisfactory solution for multi-modal fusion and inter-task interference. Most common MTL
implementations, like MTNets and multi-branch networks, tend to merge input modalities
through basic concatenation, treating all features uniformly across tasks [34]. This reason-
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ing fails because different sequences of MRI scans have spatial- and subtype-dependent
diagnostic value for specific molecular functions, which heavily limits performance and
interpretability. Multi-modal fusion is still one of the most important and least developed
features concerning glioma imaging models. Early fusion, which involves channel stacking;
intermediate fusion—feature concatenation at latent layers; and late fusion, which combines
predictions from modality-specific branches, are considered canonical [35]. These strategies
are often used, but spatially varying modality significance is ignored. For example, some
sequences like FLAIR are more useful for edema, while T1ce emphasizes enhanced tumors
better. Recent studies have looked into modality attention via channel attention blocks
and SE (squeeze-and-excitation) mechanisms [36,37]. These methods provide some adapt-
ability, but are coarse and global, and lack local voxel-wise context modulation. Newer
cross-modal attention approaches support precise integration via dynamic spatial attention
weighting for each modality [38]. Still, these methods have yet to be incorporated into fully
end-to-end systems with multi-task, hybrid-encoded architectures.

Even with recent advances in tumor segmentation, molecular marker prediction, and
multi-modal image integration, there remains a lack of a unified model that effectively
consolidates all these capabilities into a single framework [39]. Specifically, there is a
pressing need for an approach that can dynamically fuse multi-modal MRI data at the voxel
level, optimize segmentation and molecular classification tasks simultaneously, and employ
a hybrid encoding strategy that captures global context while preserving local structural
detail [21]. To address these limitations, we introduce MGMT-Net—a novel model that
leverages cross-modality attention fusion, integrates a Transformer–CNN hybrid encoder,
and applies a dual-task decoder architecture. This design enables robust, multi-level, and
multi-domain performance across diverse aspects of glioma analysis.

3. Materials and Methods
In this work, we introduce MGMT-Net, aimed at addressing the gaps in glioma

analysis. It is designed as a unified multi-task deep learning framework capable of per-
forming comprehensive brain tumor segmentation as well as molecular marker forecasting,
driven by multi-modal input MRI data. Our approach aims to mitigate the anatomical
and multi-omic disadvantageous interdependencies within disjoint pipelines by seam-
lessly integrating concurrent multi-omic features within a single framework that is fully
end-to-end trainable. Utilizing a hybrid Transformer–CNN encoder, MGMT-Net captures
local structural and global contextual details, while novel Cross-Modality Attention Fu-
sion (CMAF) modules incorporate contextual information from multiple modalities in a
sequence-adaptive manner. It consists of three principal components: (i) CMAF module for
spatially aware modality fusion; (ii) hybrid encoder composed of 3D Swin Transformers
and 3D CNNs; (iii) dual task-specific decoders for segmentation and classification at the
molecular level.

The segmentation branch is made of a decoder that essentially reconstructs tumor
masks that are spatially accurate from the encoder feature maps. These masks are of the
complete image resolution and visually represent tumor spread with voxel-level detail. The
classification branch takes the high-level feature maps of the encoder, but as a spatial atten-
tion gate, it uses the predicted segmentation mask. Concretely, the binary tumor mask is
extended to the resolution of the encoder’s final feature maps and multiplied here, element-
wise, so that only features within the tumor voxels are used for genomic status prediction.
Hence, this step of gating avoids the background structure, which is the source of noise
inputs into the classification process. We describe the remaining sections dedicated to the
training procedures of our framework with a focus on elaborating individual components
of the architecture Figure 1. Although the molecular marker prediction branch may appear
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visually separate in Figure 1, it operates entirely on the shared latent representation derived
from the input MRI volumes. Both tasks—segmentation and classification—are powered
by the same backbone encoder, enabling multi-task learning and joint optimization.

Figure 1. Overview of the MGMT-Net architecture. The model accepts four MRI modalities as input:
T1-weighted (T1), contrast-enhanced T1-weighted (T1ce), T2-weighted (T2), and Fluid-Attenuated
Inversion Recovery (FLAIR) MRI. Each modality is processed through the CMAF module for spatially
adaptive fusion before being encoded by the hybrid Transformer–CNN encoder.

Though segmentation and classification are separate tasks, they are connected because
of the architecture’s design. The two branches carry out operations common to the latent
feature map that a hybrid Transformer–CNN encoder produces. The segmentation decoder
utilizes this feature map through a hierarchical upsampling path, while the molecular
prediction head gathers global information via attention-based pooling to generate subject-
level genomic predictions. In the case of the classifier, no segmentation masks are explicitly
used, but it gets a boost from the encoder representations that are implicitly formed by
the need to outline tumor regions. The attention mechanism in the classifier is quite a
natural way for it to focus on the tumor-relevant zones, and this interaction gets even
more solid through multi-task training, which enables the reuse of feature- and task-aware
representation learning.

3.1. Cross-Modality Attention Fusion (CMAF)

Magnetic Resonance Imaging (MRI) offers an array of incomplete imaging sequences,
including T1, contrast-enhanced T1 (T1ce), T2, and Fluid-Attenuated Inversion Recovery
(FLAIR MRI), each elucidating different anatomical and pathological aspects of gliomas.
However, what is often done in standard CNN-based segmentation methods, simple
concatenation or averaging of these modalities, does not capture cross-modality relations
and the significance prerequisite for robust multi-modal glioma imaging. To solve this
problem, we propose Cross Modality Attention Fusion (CMAF), a new two-step model
that employs an attention-guided strategy to passively or actively integrate feature-specific
elements of a modality. Xm ∈ RC×H×W×D denote the input feature volume for modality
m ∈ {T1, T1ce, T2, FLAIR} where C is the number of input channels, and (H, W, D)
represent the spatial dimensions—height, width, and depth of the volumetric MRI data,
respectively. After the initial 1 × 1 × 1 convolutional projection in the CMAF module, the
channel dimension is transformed from C to C’, where C’ is the number of projected feature
channels used for subsequent attention-based fusion.
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The CMAF module is composed of three integrated operations that collectively enable
effective multi-modal feature integration. First, to ensure that features from different MRI
modalities are projected into a unified representational space, each modality volume Xm is
first passed through a shared 3× 3× 3 convolutional layer femb(·) with batch normalization
and Rectified Linear Unit (ReLU) [40] activation to project all modalities into a common
feature embedding space:

Fm = femb(Xm) ∈ RC′×H×W×D (1)

This step ensures that features are aligned in dimensionality and normalized in distri-
bution, facilitating their comparison and fusion. Next, inter-modality attention estimation
is applied to determine the relative importance of each modality at every voxel. At each
spatial location (i, j, k), we concatenate the feature vectors from all modalities and apply a
lightweight attention network:

Zijk = Concat
(

Fijk
T1 , Fijk

T1ce
, Fijk

T2 , Fijk
FLAIR

)
∈ R4C′

(2)

αijk = So f tmax
(

W2 × ReLU
(

W1 × zijk + b1

)
+ b2

)
∈ R4 (3)

here W1, W2 are trainable weight matrices, and αijk = [αT1, αT1ce , αT2, αFLAIR] are attention
weights summing to 1 across modalities for the voxel at (ijk). Finally, weighted feature
fusion is performed using these attention weights to integrate the modality-specific features.
At each voxel, the fused representation is computed as:

Fijk
CMAF = ∑m∈M α

ijk
m × Fijk

m (4)

This produces a fused feature tensor FCMAF ∈ RC′×H×W×D that encodes the most
relevant information from each modality, adaptively guided by the underlying pathology
and image contrast.

An MLP with two fully connected layers implements the modality attention mecha-
nism. First, the dimensionality is increased from C’ to 4C’ to allow for richer cross-modality
interaction modeling, and then reduced to C’/2 to produce a compact representation for
attention weighting. A dropout layer with a rate of 0.2 is applied after the first linear
transformation to reduce overfitting. The whole fusion module is still fully differentiable
and incorporated into the network such that it can be trained end-to-end with standard
backpropagation algorithms. The proposed CMAF deviates from static fusion approaches
and introduces spatial adaptivity to tailor the merging process to local salient features like
lesions and contours, 4D intensity fluctuations, and intermodality contrast. Voxel-level
precision is enabled. Also, CMAF enhances the intersection and interdependence of the
integrated imaging techniques and their interpretability by demonstrating increased modal-
ity awareness, explaining which MRI sequences most dominantly contribute within certain
anatomic zones. Finally, this fusion strategy demonstrates strong synergy with downstream
tasks, creating enriched embeddings for increased segmentation accuracy while simultane-
ously enhancing the performance of molecular classification. The CMAF module aims to
seamlessly integrate multi-modal MRI inputs—T1-weighted (T1), contrast-enhanced T1
(T1ce), T2-weighted (T2), and Fluid-Attenuated Inversion Recovery (FLAIR)—into a latent
representation that captures shared and complementary anatomical information. Each of
these MRI sequences conveys different aspects of brain tissue and tumor pathology. For
example, T1ce enhances vascular structures and active tumor regions, FLAIR highlights
edema and infiltrative margins, and T2 delineates tissue boundaries and necrosis. However,
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the significance of these sequences differs spatially within the tumor and the surrounding
brain structures Figure 2.

Figure 2. The description of CMAF illustrates its functioning in depth. Initially, each MRI modality
(T1, T1ce T2, FLAIR) is encoded into modality-specific feature maps. Using these encoded features,
modality queries are created, which along with spatial information are processed through a cross-
attention mechanism to compute voxel-level attention weights. Attention maps computed from the
CMAF modules and the spatially adaptive feature fusion determine the contribution of each modality
at every voxel. This enables context-aware fusion of modality-specific features. The output after
CMAF is a volumetric feature representation which is a spatially adaptable complement across all the
input modalities and enables multi-modal volumetric feature fusion.

Traditional, simple channel-wise concatenation or early summation does not appropri-
ately model the spatially varying, non-uniform importance of different modalities. This
results in an improvement of performance for downstream tasks such as tumor segmen-
tation, molecular marker classification, and radiogenomic profiling. In particular, static
spatial fusion methods overlook the heterogeneous nature of gliomas, which possess
inter-patient and intra-tumoral variation in intricate shape, location, histopathology, and
radiological appearance. Furthermore, the use of global feature fusion ignores the local
context, where a certain modality may hold diagnostic value at a voxel or patch level. To
overcome the drawbacks of fixed or heuristic fusion techniques, the CMAF module was
created to allow for multi-modal imaging data integration that is contextually adaptive and
spatially considerate. The core of CMAF lies in its ability to dynamically learn attention
weights for each voxel—and, thus, each modality—and control the fusion process using
tumor imaging cues. This spatial adaptivity guarantees that pathological regions of in-
terest are emphasized across modalities based on their unique features. Beyond spatial
consideration, CMAF also models inter-modality dependencies, as well as contextual com-
plementarities. This leads to richer and more informative feature representations. The fused
embeddings are more robust and discriminative because they are strengthened through the
explicit reduction in modality-induced noise and redundancy. These shared features are
then employed by both segmentation and classification network branches, having been
refined by modality-aware attention mechanisms.
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Attention-guided fusion is implemented using a lightweight multi-layer Perceptron
(MLP) at each voxel, which optimally learns to assign fusion weights in an end-to-end
trainable manner. This approach guarantees that the relevant modality-specific information
is the primary focus of each contextual region. Therefore, CMAF not only enables accurate
anatomical segmentation in tumor subdivision but also enables the construction of richly
contextualized global descriptors vital for the prediction of molecular markers that are
diagnostically important due to subtle intensity changes. The complementarity of multi-
modal MRI fusion was combined with task requirements through CMAF, which designed
a cohesive and systematic approach to preserve the integrity of the task as well as the
data. Coupled with MGMT-Net architecture, this integration enables CMAF to provide
seamless adaptability of modalities, spatial sensitivity, and task relevance, strengthening
interpretability and performance for segmentation versus classification pathways.

Although MGMT-Net utilizes common design elements such as 3D CNNs and Swin
Transformers, its uniqueness lies in the conscious and clinically inspired combination
of these modules into a multi-task framework specifically designed for glioma profiling.
Previous research typically involves the application of segmentation and molecular classifi-
cation separately, whereas MGMT-Net creates a CMAF module that innovatively captures
voxel-wise relevance across MRI sequences. Alongside this, a hybrid Transformer–CNN
encoder achieves an effective balance between local anatomical detail and global contex-
tual reasoning. In addition, the proposed dual-task decoding strategy enables voxel-level
segmentation and subject-level biomarker prediction within a single network. This arrange-
ment is not merely a collection of past methods; rather, it represents a focused architectural
solution to the fragmented nature of existing diagnostic pipelines, aimed at improving
clinical relevance and model generalizability.

3.2. Hybrid Transformer–CNN Encoder

MGMT-Net utilizes a hybrid encoder system, integrating the benefits of 3D CNNs
and 3D Vision Transformers to capture local anatomical details and global contextual in-
formation from volumetric brain MRI data. The CAD system processes high-dimensional,
multi-modal blended MRI volumes from the CMAF module, creating a latent representa-
tion to be utilized by the segmentation and classification branches of the network. CNNs
have shown impressive performance in capturing local textures, boundaries, and shallow
structural details in the medical field, specifically in tumor segmentation. However, their
long-range modeling capability, which is a critical component in the understanding of
tumor phenotypes, resection cavities, and peritumoral edema, is limited due to fixed-size
locality bias and receptive fields. The latter has been addressed by the transformer model,
which was originally designed to process natural languages. The Swin Transformer is
an example of a transformer applied to vision tasks. Transformers’ capability to utilize
global attention and model long-range dependencies makes them particularly attractive for
volumetric medical imaging. Though appealing, a lack of inductive biases makes them less
efficient. Inductive biases such as spatial locality and translation equivariance are useful in
medical image analysis, where small-sized datasets require accurate localization of anatom-
ical structures. To address these gaps, MGMT-Net implements a Hybrid Transformer–CNN
Encoder to strike a balance between the complementary strengths and weaknesses identi-
fied by Wu and Li. This named component aims to retain the global contextual modeling
efficiency of transformer-based self-attention mechanisms while maintaining the local detail
sensitivity of CNNs. The model integrates deep learning and paradigmatic reasoning into
a single encoding framework capable of producing rich and generalized feature represen-
tations. These features are shared between the dense, voxel-wise segmentation branch
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and the global image-level classification branch, enabling both fine-grained anatomical
delineation and high-level semantic prediction within a single multi-task learning pipeline.

The hybrid encoder in MGMT-Net accepts the fused 3D input tensor FCMAF ∈
RC′×H×W×D produced by the CMAF module, and processes it through two parallel com-
putational pathways to simultaneously capture local semantics and global context. The
first pathway, the CNN branch, is designed for localized feature extraction using a compact
yet expressive configuration based on 3D EfficientNet blocks. It consists of three sequen-
tial stages, each comprising two residual blocks equipped with 3 × 3 × 3 convolutions,
ReLU activations, and batch normalization layers. Spatial downsampling is performed
through strided convolutions with a kernel size of 2 × 2 × 2, progressively reducing spa-
tial resolution while expanding feature dimensionality. This pathway outputs a tensor
FCNN ∈ RC′′×H/8×W/8×D/8 which encodes spatially localized and semantically rich fea-
tures that are particularly well-suited for voxel-level segmentation tasks. In parallel, the
Transformer branch is responsible for global context modeling and is constructed using a
volumetric adaptation of the 3D Swin Transformer. The input tensor is first partitioned into
non-overlapping 3D windows, typically of size 8× 8× 8 allowing for efficient self-attention
computation within each sub-volume. Shifted window multi-head self-attention (SW-
MSA) layers are then employed to enable cross-window information exchange, effectively
capturing long-range dependencies across the volume. To maintain spatial awareness,
positional encodings are incorporated, and layer normalization is applied after each Trans-
former block. The branch comprises four hierarchical Swin blocks, which utilize patch
merging to construct deeper, multi-scale global representations. The resulting tensor
FTR ∈ RC′′×H/8×W/8×D/8 encodes high-level semantic dependencies and contextual cues
across anatomical regions.

Following their respective transformations, the outputs of the CNN and Transformer
branches are concatenated along the channel axis, forming a composite feature tensor.
This representation is then passed through a shared 1 × 1 × 1 convolutional layer, which
reduces channel dimensionality and harmonizes the combined latent space. This fusion
step yields a unified and task-adaptive representation that effectively integrates both local
and global information, thereby enhancing the network’s performance on downstream
segmentation and classification objectives.

FENC = Conv1×1×1(Concat(FCNN , FTR)) (5)

This fused encoder output FENC ∈ RCout×H/8×W/8×D/8 is then shared by both the
segmentation decoder and the marker prediction head.

MGMT-Net combines segmentation and classification to one common encoder and
CMAF backbone; only the decoders for different tasks are separate. The segmentation
head generates probability maps for each voxel of ET, NETC, and RC. Those maps, as soft
spatial masks, indicate the weighting of the shared encoder features for the classification.
Thus, the classification head is targeted mainly at tumor-related areas, which are closer to
the ground truth than non-lesional brain tissue. The final biomarker outputs are achieved
by attention pooling over the masked features. Such a configuration instills a biologically
sound relationship: segmentation identifies the tumor, while classification takes those
localized features to make a molecular status prediction.

3.3. Segmentation Decoder

The segmentation decoder of MGMT-Net is intended to generate detailed and volumet-
ric brain tumor subregion predictions from the unified latent feature representation FENC

obtained from the Hybrid Transformer–CNN Encoder. The decoder, designed to address mor-
phological and spatial heterogeneity of gliomas—particularly as observed in post-treatment
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scans—follows the BraTS 2024 benchmark and integrates hierarchical upsampling and skip
connections, following a 3D U-Net architecture. This architecture enhances the spatial reso-
lution and contextually rich information preserved from lower layers. The purpose of the
decoder is to classify each voxel into one of four clinically important tumor compartments that
reflect the diverse pathological composition of treated gliomas. These compartments include
enhancing tumor (ET), non-enhancing tumor core (NETC), surrounding non-enhancing FLAIR
hyperintensity (SNFH), and resection cavity (RC). Precise delineation of subregion borders
enables guided therapeutic interventions such as radiotherapy, longitudinal monitoring of tu-
mor progression, and evaluation of postoperative changes. Based on shared and contextually
enriched features from the encoder, the decoder ensures highly precise segmentation tailored
to neuro-oncological requirements.

The segmentation decoder in MGMT-Net is designed as a hierarchical upsampling
pathway that mirrors the multiscale spatial resolution of the encoder. This design allows
for progressive reconstruction of the original input’s spatial dimensions while maintaining
semantic consistency at each level. Notably, spatially detailed features from correspond-
ing encoder stages are reused through skip connections, enhancing localization precision
during segmentation. Each stage of the decoder, referred to as an upsampling block, be-
gins with a twofold increase in spatial dimensions using trilinear interpolation. This is
followed by a 3 × 3 × 3 convolutional layer that refines the upsampled feature map and
reintroduces local structural information. The resulting feature tensor is concatenated
with corresponding skip connection features from the encoder, thereby incorporating
high-resolution contextual information. Batch normalization and ReLU activation are then
applied to ensure training stability and enable nonlinear transformation of the concatenated
output. F(i)

dec denotes the output of the i-th upsampling block in the decoder. This concate-
nation output of the i-th block, together with the features from the encoder, results in dense
voxel-wise segmentation with emphasis on intricate anatomical detail and well-informed
global context:

F(i)
dec = ReLU

(
BN

(
Conv3D

(
Interp

(
F(i+1)

dec

)⊕
F(i)

skip

)))
(6)

where ⊕ denotes channel-wise concatenation, and F(i)
skip is the corresponding encoder feature

from the same resolution. To guide training and improve gradient flow, we include optional
auxiliary segmentation outputs at intermediate scales. These outputs are supervised with
scaled versions of the ground truth and later merged with the final prediction during
training using a weighted loss. At the full resolution level (H × W × D) a final 1 × 1 × 1
convolutional layer maps the decoder features to a 4-channel output representing class
logits for each tumor subregion. A softmax activation is applied during inference to yield
class probabilities:

Ŷseg = So f tmax
(

Conv1×1×1

(
F(0)

dec

))
(7)

To address the class imbalance and fuzzy boundaries typical in glioma imaging, we use a
compound segmentation loss:

Lseg = λDice × LDice + λCE × LCE (8)

where LDice is the soft Dice loss for overlap maximization, LCE is the multi-class cross-entropy
loss, λDice and λCE are empirically set. This formulation penalizes both misclassified voxels
and poor region overlap, improving robustness in small subregions like NETC.

To further enhance boundary precision and contextual sensitivity in the segmentation
output, the decoder incorporates several architectural enhancements. Residual connec-
tions are embedded within each upsampling block, facilitating gradient flow and stable
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convergence during training. In the final stage of the decoder, a Squeeze-and-Excitation
(SE) block is employed to adaptively recalibrate channel-wise feature responses, allow-
ing the model to emphasize the most informative representations relevant to the task of
tumor delineation. Additionally, attention gates may optionally be integrated into the
skip connections. These gates function as dynamic filters that suppress irrelevant or noisy
features from earlier encoding layers, ensuring that only task-relevant spatial information
is transmitted through the decoding pathway. Together, these enhancements contribute
to more accurate and anatomically coherent segmentation maps, particularly at complex
tumor boundaries. The final segmentation output is a four-channel volume with shape (H,
W, D, 4). During inference, a voxel-wise argmax operation selects the most probable label.
Minimal post-processing is applied to eliminate residual noise.

3.4. Marker Prediction Head

The Marker Prediction Head in MGMT-Net is designed to perform subject-level classi-
fication of critical molecular biomarkers associated with gliomas, specifically IDH mutation,
1p/19q co-deletion, and TERT promoter mutation. Accurate identification of these markers
through non-invasive MRI is of substantial clinical importance, as they play a decisive role
in prognosis, therapeutic planning, and classification within the World Health Organization
(WHO) glioma grading system. In contrast to the segmentation decoder—which gener-
ates dense, voxel-wise predictions—the marker prediction module focuses on deriving
global semantic representations from the fused 3D feature volume and translating them
into molecular-level decisions—a task that is fundamentally distinct from segmentation.
Whereas segmentation relies on local spatial details, including intensity transitions and
structural boundaries, molecular marker prediction is guided by higher-order imaging pat-
terns such as tumor morphology, spatial heterogeneity, intensity distributions, and broader
anatomical context. The complexity of this task is further heightened by domain-specific
challenges. Different molecular markers may be associated with distinct imaging signa-
tures, resulting in feature divergence. Additionally, training data often exhibit significant
class imbalance, particularly for rare alterations like TERT mutations. Compounding these
issues is the scarcity of annotated molecular labels, thereby increasing the risk of overfitting
during training.

To address these challenges, the Marker Prediction Head employs a combination
of architectural and algorithmic strategies. Deep volumetric features extracted from the
encoder are aggregated into a compact, patient-level embedding using an attention-based
pooling mechanism that adaptively weights spatial regions according to their predictive
relevance. This global representation is then passed through multiple classification heads,
each dedicated to a specific molecular marker, thereby enabling a multi-task learning
framework capable of capturing both shared and distinct patterns across markers. To
enhance generalizability, the model incorporates auxiliary loss functions and regularization
techniques—including class-balanced loss formulations and dropout—to mitigate overfit-
ting and promote robust marker prediction, even under data-limited conditions. Altogether,
this design enables MGMT-Net to effectively bridge the gap between anatomical imaging
and molecular characterization.

The encoder output FENC ∈ RC×H′×W ′×D′
is high-dimensional and spatial. Instead

of performing average or max pooling, we use an Attention-Based Global Pooling (AGP)
approach, which is capable of focusing on discriminative spatial locations:

wijk = So f tmax
(

Wα × tanh
(

W f × Fijk

))
(9)

z = ∑i,j,k wijk × Fijk (10)
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where Fijk is the feature vector at voxel (ijk), W f and Wa are trainable projection weights,
z ∈ RC is the resulting global patient-level feature vector.

This attention pooling focuses on the most spatially and semantically relevant regions
required for molecular status prediction, such as the tumor core or the enhancing rim. The
global feature vector z, obtained from the attention-pooled volumetric representation, is
passed to three parallel fully connected (FC) classification heads, each trained to predict one
molecular feature: IDH mutation status, 1p/19q co-deletion status, and TERT promoter mu-
tation status. Each head performs binary classification—such as, mutant versus wild-type
for IDH and TERT, and co-deleted versus intact for 1p/19q. Within each classification head,
the input vector first passes through a dropout layer with a rate of 0.3, which randomly
zeros out a fraction of the input during training. This improves generalization and mitigates
overfitting due to the limited availability of labeled molecular data. This is followed by a
hidden dense layer with ReLU activation, enabling non-linear transformations and enhanc-
ing representational capacity. The final layer of each head is a sigmoid unit, which outputs
the probability of the positive class, aligned with clinical molecular labeling standards. This
enables effective and modular prediction of several biomarkers, which further satisfies the
multi-task learning purpose of the MGMT-Net framework:

ŷmarker = σ
(

W(m)
2 × ReLU

(
W(m)

1 × z + b(m)
1

)
+ b(m)

2

)
(11)

for each marker m ∈
{

IDH, 1p
19q , TERT

}
. Each classification task uses binary cross-entropy

loss:
L(m)

marker = −[ymlog(ŷm) + (1 − ym)log(1 − ŷm)] (12)

To handle class imbalance and joint optimization, the total classification loss is
weighted:

Lcl f = β1LIDH + β2L1p/19q + β3LTERT (13)

where βi are weights to account for data distribution.
In order to strengthen the marker prediction module reliability and generalization

skills, some regularization techniques are added. To counteract overfitting, label smoothing
with a coefficient ϵ = 0.1 is used, which mitigates the model’s tendency to make overly
confident predictions, effectively reducing sensitivity to noisy or mislabeled data. More-
over, focal loss is added as an option to address class imbalance, primarily in molecular
datasets, by directing more focus towards marginally classified minority samples and
enhancing classification performance among underrepresented classes. pIDH , P1p/19q and

pTERT are designed to produce a three-element probability vectors
[

pIDH , P1p/19q, pTERT

]
.

The produce outputs are within the range 0 and 1, signifying model certainty regarding the
mutation status of the biomarker. These outputs are essential in guiding critical clinical
decisions such as estimating and stratifying patient prognosis, determining the need for
surgical interventions, and customizing radiotherapy schedules and techniques on an
as-needed basis, anchored to the patient molecular profile.

4. Experimental Setup
To evaluate the effectiveness and scope of applicability of MGMT-Net, we performed

thorough testing using multi-modal MRI from the MIT [41] and TCIA cross-institutional
databases [42] to the MIT and TCIA cross-institutional databases which also provided
detailed segmentation masks as well as some molecular labels. The experiments were
designed to assess the model’s performance on multi-region brain tumor segmentation and
multi-molecular marker prediction in a single integrated framework. For the segmentation
task, we used the BraTS 2024 dataset that contains pre-operative, high-resolution, and
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co-registered MRI scans of glioma patients. Every case in this dataset consists of the
four canonical MRI modalities, which include T1-weighted (T1), contrast-enhanced T1
(T1ce), T2-weighted (T2), and FLAIR. Furthermore, each scan is annotated with voxel-
wise labels delineating four tumor subregions: enhancing tumor (ET), non-enhancing
tumor core (NETC), surrounding FLAIR hyperintensity (SNFH), and resection cavity (RC),
which was a new voxel-wise label added in the 2024 edition. This dataset served as the
initial groundwork for training and validating the segmentation decoder. For molecular
classification, we augmented the TCGA-GBM/LGG collections from the Cancer Imaging
Archive (TCIA) with the Erasmus Glioma Database (EGD) [22], which contained genomic
and imaging data of glioma patients. This combined cohort comprised more than one
thousand one hundred patients along with their multi-modal MRIs and confirmed IDH
mutation, 1p/19q co-deletion, and TERT promoter mutation statuses. Considerable external
validation was done using data from UCSF [43], NYU [44], and UT Southwestern [45] to
test cross-institutional generalizability.

MRI scans were preprocessed using a consistent pipeline. Each image was first
processed with the N4 bias field and Z-score normalization within each modality. All
sequences were registered to the SRI24 brain atlas and then resampled to isotropic 1 mm3

resolution. For compatibility across network stages, scans were zero-padded or center
cropped to a fixed size of 240 × 240 × 155 voxels. The segmentation labels are transformed
into one-hot encoded volumes, while all molecular labels were binarized. Incomplete
imaging or unreliable genetic labeling resulted in cases being excluded from the training
dataset. Model training was done on 3D patches of 128 × 128 × 128 cubes centered around
the tumor region to ensure contextual richness while optimizing GPU memory. During
training, random elastic spatial augmentations, axis flipping, and intensity perturbation
yielded additional variability. To mimic variability associated with acquisition, dropout of
certain modalities was implemented to enforce robustness. MGMT-Net was trained end-to-
end with AdamW, starting with a learning rate of 1 × 10−4, cosine learning rate scheduling,
and weight decay of 1 × 10−5. Due to 3D memory constraints, a batch size of 2 was used,
and training was held for 150 epochs with validation-based early stopping. The model for
segmentation was trained with a compound loss function that combines Dice similarity and
cross-entropy loss, specifically tailored to highlight overlapping regions while considering
discrimination between different classes. For the prediction of molecular markers, binary
cross-entropy loss was applied independently to each marker using empirically balanced
weights to correct for the class imbalance.

The evaluation of model performance was conducted using task-specific metrics. For
the segmentation task, we computed the Dice similarity coefficient, Hausdorff distance
(95th percentile), sensitivity, and specificity across all four tumor subregions. For molecular
classification, the area under the receiver operating characteristic curve (AUC) was used
as the primary metric, along with accuracy, F1-score, precision, and recall. Probabilistic
calibration of classification outputs was assessed using Brier scores and calibration curves.
To evaluate the statistical significance of performance differences between MGMT-Net and
competing models, McNemar’s test was applied for paired comparisons. All experiments
were conducted on a workstation equipped with two NVIDIA RTX A6000 GPUs (each
with 48 GB memory), running PyTorch 2.1.0. Mixed precision training was enabled to
optimize memory efficiency and computational speed. The model was implemented using
the MONAI framework for medical imaging, and it incorporated a Swin Transformer
backbone from HuggingFace to enhance global attention modeling. Model checkpoints
were saved based on the best validation performance across both segmentation and classi-
fication objectives. During inference, overlapping patch-based predictions were merged
using Gaussian-weighted averaging to ensure seamless volumetric reconstruction. This
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experimental setup enabled a comprehensive, unbiased, and clinically relevant evaluation
of MGMT-Net’s performance on both segmentation and molecular prediction tasks. It
also demonstrated the model’s robustness to noise from real-world data and institutional
variability, reinforcing its potential for translational deployment.

Genomic Data Processing and Standardization

One of the main goals of this study was to ensure the results are reproducible. Therefore,
we have gone through the molecular labels for IDH mutation, 1p/19q co-deletion, and TERT
promoter mutation and curated and harmonized these labels in the TCGA, EGD, and external
institutional datasets to a very high degree. In the case of IDH and 1p/19q, we have turned
first to annotations that were derived by next-generation sequencing (NGS), and if NGS
was not available, we used immunohistochemistry (IHC) results that had been validated
against sequencing records. TERT promoter mutations, as an example where most annotation
inconsistencies occur, were verified by genomic sequencing outputs that were then compared
with clinical pathology records. Those cases that did not agree were excluded. To standardize
sequencing quality, only samples that met dataset-specific quality thresholds were retained.
We removed cases that had incomplete molecular annotation or conflicting results, which
caused us to exclude 74. The final curated dataset consisted of patients with harmonized and
high-confidence genomic labels IDH: n = 1126, 1p/19q: n = 1043, TERT: n = 983, totaling 1126.
This step not only ensured that the different-labels-institutions, but also greatly reduced the
chance of label noise, especially for TERT, as there has been considerable variability among
different datasets in this regard reported by earlier studies.

5. Results
In this section, we present both the quantitative and qualitative results of MGMT-

Net in the context of brain tumor segmentation and molecular marker prediction. The
validation and external test sets described in Section 4 were used for evaluation. The results
demonstrate that MGMT-Net achieves state-of-the-art performance on several clinical tasks
and generalizes well across institutions and patient populations.

5.1. Tumor Segmentation Performance

MGMT-Net was evaluated on the BraTS 2024 validation set for glioma segmentation
across four clinically relevant tumor subregions: enhancing tumor (ET), non-enhancing tu-
mor core (NETC), surrounding non-enhancing FLAIR hyperintensity (SNFH), and resection
cavity (RC). The model achieved Dice scores of 0.91 (ET), 0.89 (NETC), 0.90 (SNFH), and
0.87 (RC), outperforming the strongest baseline Hybrid CNN architecture, which attained
scores of 0.88 (ET), 0.81 (NETC), 0.86 (SNFH), and 0.78 (RC), respectively.

The most significant relative improvement was observed in the resection cavity (RC)
region, where MGMT-Net outperformed the baseline by 9 percentage points. This en-
hancement is particularly important in the context of postoperative follow-up, as accurate
segmentation of the cavity is essential for evaluating treatment progression and interpreting
follow-up imaging relative to the surgical procedure. Similarly, the 8-point improvement
in the Dice score for the non-enhancing tumor core (NETC) highlights MGMT-Net’s ef-
fectiveness in segmenting hypo-intense, low-contrast regions—areas that are typically
underrepresented in training distributions and difficult to localize due to their indistinct
boundaries. These improvements are largely attributed to the hybrid encoder framework,
which combines the spatial precision of 3D CNNs with the long-range contextual model-
ing of the 3D Swin Transformer. Moreover, the CMAF module dynamically learns MRI
sequence relevance based on local context. For example, it emphasizes FLAIR in regions of
peritumoral edema and T1ce in areas exhibiting contrast enhancement. This selective focus
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reduces modality redundancy and enables one sequence to compensate for the absence or
attenuation of another. Table 1 summarizes the segmentation results, providing a direct
quantitative comparison between MGMT-Net and the strongest baseline model.

Table 1. Tumor Segmentation Dice Scores.

Tumor Subregion MGMT-Net Best Baseline

Enhancing Tumor (ET) 0.91 0.88

Non-Enhancing Tumor Core 0.89 0.81

Surrounding FLAIR (SNFH) 0.90 0.86

Resection Cavity (RC) 0.87 0.78

Alongside the quantitative outcomes, qualitative visualizations of predicted segmen-
tation masks further confirm that MGMT-Net produces smoother and more anatomically
plausible boundaries, while exhibiting superior slice-to-slice consistency. The model effec-
tively preserves spatial integrity, particularly in heterogeneous and multifocal lesions—an
essential characteristic for volumetric analysis, longitudinal monitoring, and adaptive ther-
apeutic planning. These findings position MGMT-Net among the most advanced methods
in multi-region brain tumor segmentation, significantly surpassing competing approaches
in both performance and generalization across complex tumor geometries.

5.2. Molecular Marker Prediction Performance

In this study, we also evaluated MGMT-Net’s ability to predict three clinically signifi-
cant molecular markers: IDH mutation, 1p/19q co-deletion, and TERT promoter mutation,
all of which were preoperatively inferred from multi-modal MRI scans. These molecular
markers are central to glioma classification under the WHO CNS tumor grading system
and play a critical role in patient prognosis, treatment planning, and therapeutic decision-
making. The prediction task was formulated as a patient-level binary classification problem,
with model outputs compared to ground truth labels obtained from histopathological anal-
ysis. On the unified TCGA-GBM/LGG and Erasmus Glioma Database (EGD) test cohort,
MGMT-Net achieved AUC scores of 0.94 (IDH), 0.91 (1p/19q), and 0.90 (TERT), outperform-
ing the best baseline model, which reached 0.92, 0.89, and 0.86, respectively. Corresponding
classification accuracies were 92.4% for IDH, 88.9% for 1p/19q, and 86.7% for TERT. These
results highlight not only MGMT-Net’s strong overall predictive performance but also its
enhanced sensitivity to specific molecular markers when compared with leading 3D CNN
and DenseNet-based approaches. This performance advantage is primarily attributed to
the model’s attention-based global feature pooling strategy, which selectively emphasizes
clinically informative regions within the volumetric MRI data during feature extraction
Figure 3.

As an example, the model often focuses on the tumor core or ceases to focus on
enhancing features when IDH status is being predicted. This focus overlaps with imaging
features associated with the mutation. In the table below, these results are presented along
with comparisons of MGMT-Net and the best-performing conventional deep learning
baseline Table 2.

In addition to AUC and accuracy, we evaluated additional classification metrics. Brier
scores indicated well-calibrated probabilistic outputs, and precision and recall values ex-
ceeded 0.88 for all molecular markers. Visualization of the prediction branch confirmed
that the model discriminative focus was biomarker-dependent. For IDH prediction, atten-
tion was concentrated on the non-enhancing tumor core. For TERT prediction, attention
was often focused on the rim of the enhancing region and the interface with the necrotic
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core—consistent with known imaging-genomic spatial correlations. Strong generalization
was observed across previously unseen institutions and scanner types. In the external test
cohorts from UCSF, NYU, and UTSW, performance remained consistent, with no more than
a 0.03 decrease in AUC across all three molecular markers. These results underscore the
robustness of MGMT-Net’s generalizable architecture and the effectiveness of its attention-
driven and modality-aware fusion mechanisms for MRI-based genomics. These results
validate MGMT-Net as a unified, non-invasive framework for accurate glioma molecular
biomarker prediction, offering a tissue-based diagnostic alternative in clinical scenarios
where biopsy is contraindicated or poses a significant risk.

Figure 3. Comparison of AUC Scores for Molecular Marker Prediction Between MGMT-Net and
Baseline Models. The chart illustrates the predictive performance of MGMT-Net versus the best-
performing baseline across three clinically relevant glioma biomarkers: IDH mutation, 1p/19q
co-deletion, and TERT promoter mutation. MGMT-Net consistently outperforms the baseline in all
cases, demonstrating superior generalization and multi-modal feature learning capabilities.

Table 2. Molecular Marker Prediction Performance.

Marker MGMT-Net
(AUC)

Best Baseline
(AUC)

MGMT-Net
Accuracy

IDH Mutation 0.94 0.92 92.4%

1p/19q Co-Deletion 0.91 0.89 88.9%

TERT Promoter
Mutation 0.90 0.86 86.7%

5.3. Generalization to External Cohorts

To evaluate generalization, MGMT-Net was tested on a holdout dataset of 200 cases
from UCSF, NYU, and UTSW that were not used during training or validation. Despite vari-
ation in scanner type, spatial resolution, and acquisition protocol, the model demonstrated
consistently strong performance across all sites and imaging conditions. With only a 2%
decrease in Dice scores compared to previously reported results, MGMT-Net maintained
high classification performance, achieving AUCs above 0.91 for IDH, 0.88 for 1p/19q,
and 0.86 for TERT. This performance stability reinforces the robustness of the proposed
model and its capacity to generalize across diverse clinical domains and data sources.
This generalization is primarily attributed to the descriptive power of global structural
patterns captured by the Transformer branch in the latter stages of the encoder, which
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helps mitigate inter-institutional variability—a well-documented challenge in multi-center
neuroimaging datasets. Additionally, the CMAF module enhances adaptability to modality
inconsistencies by assigning soft attention weights that dynamically adjust the influence of
each MRI sequence at the voxel level Figure 4.

 

Figure 4. Impact of Removing Key MGMT-Net Components on IDH Prediction AUC. The chart
shows the AUC for the full model and three ablated versions: without CMAF (naive modality
fusion), without the Swin Transformer, and with global average pooling (GAP) instead of attention
pooling. Each removal causes a measurable drop in performance, highlighting the contribution of
each module.

To systematically evaluate each major architectural component, we conducted a series
of ablation studies in which specific modules were selectively disabled to isolate their con-
tributions. Replacing the CMAF module with a naïve concatenation of modalities (NCAM)
led to a decrease of approximately 2.3 to 3.7 points in segmentation Dice scores and a 1.5
to 2.2-point reduction in AUC for molecular marker prediction. Substituting the Swin
Transformer branch with a deeper CNN significantly degraded biomarker classification
performance—dropping the AUC for IDH prediction from 0.94 to 0.91 and TERT prediction
from 0.90 to 0.87. Furthermore, replacing attention-based pooling with global average pool-
ing resulted in a 2–4% decline in classification accuracy, particularly for tumors with high
spatial and morphological heterogeneity. These ablation results underscore the synergistic
effect of MGMT-Net’s multi-modal attention fusion, hybrid Transformer–CNN encoding,
and task-specific decoder heads in achieving robust performance on both segmentation
and molecular classification tasks. The findings validate the effectiveness of the model’s
integrative architectural design Figure 5.

To evaluate the robustness and clinical relevance of MGMT-Net beyond internal vali-
dation frameworks, we assessed its performance on an external dataset of 200 glioma cases
from three institutions: UCSF, NYU, and UTSW. These cases were entirely independent of
the training and validation sets and encompassed a diverse mix of tumor grades, imaging
protocols, scanner types, and patient demographics. Despite these variations, MGMT-Net
demonstrated strong generalization capability. For tumor segmentation, Dice scores on
the external dataset showed only a modest decline compared to internal validation results,
with scores of 0.89 (ET), 0.86 (NETC), 0.87 (SNFH), and 0.84 (RC). Relative to internal perfor-
mance metrics of 0.91, 0.89, 0.90, and 0.87, respectively, this represents an average decrease
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of less than 3%, highlighting the segmentation decoder’s robustness in the presence of
clinically realistic heterogeneity Table 3.

 

Figure 5. Visualization of tumor segmentation and corresponding molecular marker predictions
using MGMT-Net. Each row represents a different patient case, with the segmented tumor region
highlighted in yellow. The predicted statuses of IDH mutation, 1p/19q co-deletion, and TERT
promoter mutation are annotated for each case. The overlays demonstrate the model ability to
localize tumors accurately while associating them with specific genomic alterations, illustrating the
clinical interpretability and multi-task capacity of the framework.
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Table 3. MGMT-Net Generalization: Internal vs. External Performance.

Metric Internal Dataset External Dataset

Dice Score (ET) 0.91 0.89

Dice Score (NETC) 0.89 0.86

Dice Score (SNFH) 0.9 0.87

Dice Score (RC) 0.87 0.84

IDH AUC 0.94 0.91

1p/19q AUC 0.91 0.88

TERT AUC 0.9 0.86

Likewise, for molecular marker classification, MGMT-Net demonstrated strong gen-
eralization in the external test cohort, achieving AUC values of 0.91 (IDH), 0.88 (1p/19q),
and 0.86 (TERT)—closely matching internal benchmarks of 0.94, 0.91, and 0.90, respectively.
These results indicate that MGMT-Net maintains predictive accuracy across spatial repre-
sentations, independent of training-time conditions, which is critical for use in multi-center
clinical trials. The model architectural robustness can be attributed to two key components.
First, the CMAF module enables adaptive weighting of MRI sequences based on their local
quality and relevance. For example, in external datasets with noisy FLAIR images, higher
attention weights were allocated to T2 or T1ce sequences, compensating for unreliable
input. Second, the hybrid Transformer–CNN encoder captures global inter-scanner anatom-
ical patterns, thereby reducing sensitivity to scanner-specific voxel intensity variations—a
common issue in multi-center neuroimaging. This is further supported by segmentation
overlays and attention map visualizations from the external dataset, which reveal anatom-
ically aligned activation regions. These findings suggest that the model learns robust,
generalizable representations rather than overfitting to scanner-specific or protocol-specific
patterns. These results validate MGMT-Net’s applicability to domain generalization and
real-world clinical use without requiring site-specific retraining. This level of reliability
addresses a persistent challenge in medical AI: the tendency of models trained on limited,
curated datasets to underperform in diverse clinical environments.

5.4. Comparison with State-of-the-Art Models

To extend the rigor and thoroughness of our benchmarking process, we decided to
include in our comparative analysis our own models and various established state-of-the-
art (SOTA) ones. Our model, MGMT-Net, was directly compared to nnU-Net, known as
the benchmark in the field of medical image segmentation, and also to the newly proposed
Transformer-based architectures (DiffSwinTr, Hybrid ViT-CNN) and the residual-attention-
modified U-Net Table 4.

MGMT-Net outperformed nnU-Net in NETC (+6%) and RC (+9%) segmentation,
regions that are clinically challenging due to low contrast and postoperative variability. In
biomarker prediction, MGMT-Net surpassed transformer-based classifiers (AUC +0.03)
and graph-based classifiers (AUC +0.04), confirming its advantage in modeling imaging-
genomic interactions.

To gauge interpretability, we came up with Grad-CAM visualizations and attention
heatmaps for typical cases stemming from biomarkers. As depicted in Figure 6, MGMT-Net
kept on highlighting the tumor regions, which were of utmost biological relevance, during
its prediction. In the case of IDH mutation, the most activated areas were around the non-
enhancing tumor core; whereas for TERT prediction, the attention was at the enhancing
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rim and the necrotic boundary; and for 1p/19q co-deletion, the model was focused on the
diffuse infiltrative margins seen in the FLAIR sequences.

Table 4. Comparison with SOTA models.

Model ET Dice NETC Dice SNFH Dice RC Dice Marker Prediction
(AUC Mean)

mResU-Net [23] 0.87 0.80 0.86 0.76 0.83

Modified RR Attention
U-Net [25] 0.88 0.82 0.87 0.77 0.84

Swin + Local Self-Attn [26] 0.89 0.84 0.88 0.78 0.83

Hybrid ViT-CNN [46] 0.89 0.83 0.87 0.79 0.83

DiffSwinTr [28] 0.90 0.85 0.89 0.81 0.86

nnU-Net [20] 0.90 0.83 0.88 0.78 0.84

AI Marker Predictor [29] 0.84 0.85 0.83 0.84 0.86

Transformer Classifier [13] 0.89 0.87 0.89 0.85 0.89

GCN Classifier [12] 0.88 0.86 0.89 0.86 0.88

Attention-Fused Arch. [47] 0.89 0.83 0.87 0.78 0.88

MGMT-Net (Ours) 0.91 0.89 0.90 0.87 0.92

      

Figure 6. Grad-CAM visualizations highlighting tumor subregions most influential for MGMT-Net’s
molecular biomarker predictions.

The noted patterns correspond greatly with the radiogenomic associations that have
been mentioned in previous studies and hence, they are an indication of the biological
plausibility of MGMT-Net’s predictions. Furthermore, by looking at the CMAF weights,
we found modality-specific attribution: FLAIR features were the most prominent in the
peritumoral edema delineation, T1ce showed the vascular regions, and T2 was for the
boundary sensitivity. Such findings, combined, lead to the conclusion that MGMT-Net is
not only a predictor of accurate outcomes but also a provider of the interpretable cues that
are consistent with neuro-oncological knowledge.

6. Conclusions
In this work, we proposed MGMT-Net, a multi-task deep learning framework that

jointly performs multi-region glioma segmentation and molecular marker prediction from
multi-modal MRI. The architecture integrates a Transformer–CNN hybrid encoder and
a CMAF module to capture both localized anatomical detail and global contextual pat-
terns, while adaptively weighting the contribution of each MRI sequence. MGMT-Net
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also incorporates task-specific decoders, enabling independent processing of voxel-wise
segmentation and subject-level classification, thereby preserving the distinct spatial and
semantic demands of each task. MGMT-Net demonstrated high performance on two criti-
cal neuro-oncological tasks. For glioma segmentation, it achieved Dice scores exceeding
0.90 in most subregions, surpassing previously reported state-of-the-art models. Simulta-
neously, it recorded AUC values above 0.90 for IDH mutation, 1p/19q co-deletion, and
TERT promoter mutation—three molecular biomarkers central to glioma classification
and therapeutic decision-making. Extensive evaluation across internal validation sets and
three external cohorts confirmed the model’s generalizability and resilience to institutional
variability and imaging noise. While the external datasets covered a wide range of tumor
grades, scanner vendors, and imaging protocols, they were retrospectively curated. As
such, they may not fully represent the operational constraints and variability encountered
in routine clinical workflows. We therefore caution that cross-institutional generalizability
should not be over-interpreted without further validation. Prospective deployment—where
MGMT-Net is evaluated in real-time clinical environments with varying imaging quality,
timing, and diagnostic urgency—is essential to assess its practical robustness and clinical
utility. As part of future work, we aim to establish collaborations with clinical centers
to evaluate MGMT-Net’s real-world performance and improve the interpretability of its
predictions in prospective diagnostic settings.

Ablation studies provided further insight into the architecture, confirming the crit-
ical contributions of the CMAF module, Swin Transformer branch, and attention-based
pooling to MGMT-Net’s overall performance. These results underscore the importance of
each component in enabling effective architectural design. MGMT-Net offers a clinically
valuable framework for integrating spatial and molecular analysis of gliomas, which may
help mitigate diagnostic delays and support timely decision-making regarding invasive
procedures. Future research may build upon this work by incorporating longitudinal
MRI sequences, integrating histopathological data, or extending the model to survival
prediction—advancing toward a more comprehensive multi-modal evaluation pipeline.

MGMT-Net demonstrates strong predictive performance in the prognostication of
genomic markers such as TERT promoter mutation and 1p/19q co-deletion using only MRI
data. However, we fully acknowledge that these findings are limited in clinical practice, as
they rely exclusively on imaging-derived predictions. To address this limitation, molecular
predictions are output as probabilistic scores rather than fixed binary labels at inference time.
The reliability of these scores for probabilistic interpretation was supported by Brier scores
and calibration curves. Post hoc threshold optimization was conducted using statistical
techniques such as Youden’s J index and class-specific sensitivity analysis, evaluating a
range of threshold values to identify operating points suitable for high-sensitivity clinical
screening scenarios. Nevertheless, these predictions should be considered complementary
to, rather than replacements for, traditional histopathological and molecular diagnostics.
In practical clinical settings, MGMT-Net may serve as a preliminary triage tool—flagging
cases where there is elevated suspicion of specific genomic alterations, such as likely IDH
wild-type or TERT mutant status, before biopsy. However, official clinical integration of the
model requires prospective validation. While this strategy shows promise in enhancing
diagnostic confidence—particularly in anatomically challenging or inaccessible cases—it
must be interpreted in the context of pre-test probability, institutional workflows, and
patient safety.
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