Detailed Information

Cited 13 time in webofscience Cited 14 time in scopus
Metadata Downloads

Effects of heterogeneity of pre-fire forests and vegetation burn severity on short-term post-fire vegetation density and regeneration in Samcheok, Korea

Authors
Lee, Joo-MeeLee, Sang-WooLim, Joo-HoonWon, Myoung-SooLee, Hyung-Sook
Issue Date
Jan-2014
Publisher
SPRINGER JAPAN KK
Keywords
Regression tree; Spatial heterogeneity; Burn severity; Normalized burn ratio (NBR); Normalized difference vegetation index (NDVI)
Citation
LANDSCAPE AND ECOLOGICAL ENGINEERING, v.10, no.1, pp.215 - 228
Journal Title
LANDSCAPE AND ECOLOGICAL ENGINEERING
Volume
10
Number
1
Start Page
215
End Page
228
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/12935
DOI
10.1007/s11355-013-0214-y
ISSN
1860-1871
Abstract
This study investigated the combined effects of heterogeneity of pre-fire forest cover and vegetation burn severity on post-fire vegetation density and regeneration at an early stage in Samcheok, Korea. To measure the spatial heterogeneity of pre-fire forests, spatial pattern metrics at a landscape level and class level were adopted, and a regression tree analysis for post-fire vegetation density and regeneration was used to avoid spatial autocorrelation. Two regression tree models were estimated for post-fire vegetation density and post-fire vegetation regeneration with the same independent variable sets, including heterogeneity of pre-fire forest cover and vegetation burn severity. The estimated model suggested that the percentage of Japanese red pine and burn severity were the most significant variables for post-fire vegetation density and regeneration, respectively. The compositional and spatial heterogeneity of pre-fire forest and burn severity, as well as the degree of burn severity, was found to have significant impacts on post-fire vegetation density and regeneration. Overall, more rapid vegetation regeneration can be expected in more severely burned areas. However, this rapid vegetation regeneration at an early stage is due mostly to perennials and shrubs, not to the sprouting or regrowth of trees. The study results strongly indicated that a susceptible forest cover type and its spatial patterns directly influence the heterogeneity of burn severity and early vegetation density and regeneration. Hence, the management of susceptible forest cover types is particularly critical for establishing more fire-resilient forests and for post-fire forest restoration.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE