Detailed Information

Cited 12 time in webofscience Cited 12 time in scopus
Metadata Downloads

Inhibitory functions of maslinic acid on particulate matter-induced lung injury through TLR4-mTOR-autophagy pathways

Authors
Jeong S.Y.Kim J.Park E.K.Baek M.-C.Bae J.-S.
Issue Date
Apr-2020
Publisher
Academic Press Inc.
Keywords
Lung injury; Maslinic acid; Particulate matter; TLR4-mTOR-autophagy
Citation
Environmental Research, v.183
Journal Title
Environmental Research
Volume
183
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/17800
DOI
10.1016/j.envres.2020.109230
ISSN
0013-9351
Abstract
Particulate matter (PM), the collection of all liquid and solid particles suspended in air, includes both organic and inorganic particles, many of which are health-hazards. PM particles with a diameter equal to or less than 2.5 μm (PM2.5) is a form of air pollutant that causes significant lung damage when inhaled. Maslinic acid (MA) prevents oxidative stress and pro-inflammatory cytokine generation, but there is little information available regarding its role in PM-induced lung injury. Therefore, the purpose of this study was to determine the protective activity of MA against PM2.5-induced lung injury. The mice were divided into seven groups (n = 10 each): a mock control group, an MA control (0.8 mg/kg mouse body weight) group, an opted PM2.5 produced from diesel (10 mg/kg mouse body weight) group, a diesel PM2.5+MA (0.2, 0.4, 0.6, and 0.8 mg/kg mouse body weight) groups. Mice were treated with MA via tail-vein injection 30 min after the intratracheal instillation of a diesel PM2.5. Changes in the wet/dry weight ratio of the lung tissue, total protein/total cell and lymphocyte counts, inflammatory cytokines in the bronchoalveolar lavage fluid (BALF), vascular permeability, and histology were monitored in diesel PM2.5-treated mice. The results showed that MA reduced pathological lung injury, the wet/dry weight ratio of the lung tissue, and hyperpermeability caused by diesel PM2.5. MA also inhibited diesel PM2.5-induced myeloperoxidase (MPO) activity in the lung tissue, decreased the levels of diesel PM2.5-induced inflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-1β, reduced nitric oxide (NO) and total protein in the BALF, and effectively attenuated diesel PM2.5-induced increases in the number of lymphocytes in the BALF. In addition, MA increased the protein phosphorylation of the mammalian target of rapamycin (mTOR) and dramatically suppressed diesel PM2.5-stimulated expression of toll-like receptor 4 (TLR4), MyD88, and the autophagy-related proteins LC3 II and Beclin 1. In conclusion, these findings indicate that MA has a critical anti-inflammatory effect due to its ability to regulate both the TLR4-MyD88 and mTOR-autophagy pathways and may thus be a potential therapeutic agent against diesel PM2.5-induced lung injury. © 2020 Elsevier Inc.
Files in This Item
There are no files associated with this item.
Appears in
Collections
의과대학 > 의예과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jae Hong photo

Kim, Jae Hong
College of Medicine (Premedical Course)
Read more

Altmetrics

Total Views & Downloads

BROWSE