Detailed Information

Cited 12 time in webofscience Cited 15 time in scopus
Metadata Downloads

In Situ Observation of the Effect of Accelerating Voltage on Electron Beam Damage of Layered Cathode Materials for Lithium-Ion Batteries

Full metadata record
DC Field Value Language
dc.contributor.authorShim, Jae-Hyun-
dc.contributor.authorKang, Hyosik-
dc.contributor.authorKim, Young-Min-
dc.contributor.authorLee, Sanghun-
dc.date.available2020-03-03T07:43:38Z-
dc.date.created2020-02-24-
dc.date.issued2019-11-27-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/17959-
dc.description.abstractElectron beam damage from transmission electron microscopy of layered lithium transition-metal oxides is a threshold phenomenon that depends on the electron beam energy, which we demonstrate in this study by varying the accelerating voltage of a scanning transmission electron microscope. The electron beam irradiation experiment shows that Ni in LiNiO2 has much lower threshold energy for displacement than Co in LiCoO2, which is supported by DFT calculations predicting that Ni has lower migration energy. The transition-metal ions are reduced from the oxidation state of +3 to +2 during migration from their original positions to the lithium sites, and Ni is more easily reduced than Co because of its electronic configuration. In addition, the high-energy electron beam induces oxygen release, which is another symptom of degradation of materials that occurs more strongly in Ni-containing materials with ion displacement.-
dc.language영어-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.subjectTRANSITION-METAL OXIDES-
dc.subjectLI-ION-
dc.subjectMICROSCOPY-
dc.subjectMIGRATION-
dc.subjectGRADIENT-
dc.subjectSTATE-
dc.titleIn Situ Observation of the Effect of Accelerating Voltage on Electron Beam Damage of Layered Cathode Materials for Lithium-Ion Batteries-
dc.typeArticle-
dc.type.rimsART-
dc.description.journalClass1-
dc.identifier.wosid000500415700049-
dc.identifier.doi10.1021/acsami.9b15608-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.11, no.47, pp.44293 - 44299-
dc.identifier.scopusid2-s2.0-85075760440-
dc.citation.endPage44299-
dc.citation.startPage44293-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume11-
dc.citation.number47-
dc.contributor.affiliatedAuthorKang, Hyosik-
dc.contributor.affiliatedAuthorLee, Sanghun-
dc.type.docTypeArticle-
dc.subject.keywordAuthorlithium-ion battery-
dc.subject.keywordAuthorelectron microscope-
dc.subject.keywordAuthorlayered cathode materials-
dc.subject.keywordAuthoraccelerating voltage-
dc.subject.keywordAuthorcation mixing-
dc.subject.keywordPlusTRANSITION-METAL OXIDES-
dc.subject.keywordPlusLI-ION-
dc.subject.keywordPlusMICROSCOPY-
dc.subject.keywordPlusMIGRATION-
dc.subject.keywordPlusGRADIENT-
dc.subject.keywordPlusSTATE-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
바이오나노대학 > 나노화학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Sang Hun photo

Lee, Sang Hun
BioNano Technology (Department of Chemistry)
Read more

Altmetrics

Total Views & Downloads

BROWSE