Detailed Information

Cited 0 time in webofscience Cited 6 time in scopus
Metadata Downloads

Impact of Grid Density on the les Analysis of Flow CCV: Application to the TCC-III Engine under Motored Conditions

Full metadata record
DC Field Value Language
dc.contributor.authorKo, I.-
dc.contributor.authorMin, K.-
dc.contributor.authorFontanesi, S.-
dc.contributor.authorRulli, F.-
dc.contributor.authorHa, T.-
dc.contributor.authorChoi, H.-
dc.date.available2020-02-27T12:42:29Z-
dc.date.created2020-02-12-
dc.date.issued2018-
dc.identifier.issn0148-7191-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/4265-
dc.description.abstractLarge-eddy simulation (LES) applications for internal combustion engine (ICE) flows are constantly growing due to the increase of computing resources and the availability of suitable CFD codes, methods and practices. The LES superior capability for modeling spatial and temporal evolution of turbulent flow structures with reference to RANS makes it a promising tool for describing, and possibly motivating, ICE cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Despite the growing interest towards LES in the academic community, applications to ICE flows are still limited. One of the reasons for such discrepancy is the uncertainty in the estimation of the LES computational cost. This in turn is mainly dependent on grid density, the CFD domain extent, the time step size and the overall number of cycles to be run. Grid density is directly linked to the possibility of reducing modeling assumptions for sub-grid scales. The extent of the computational domain influences the impact of the boundary conditions on the CFD results. The time-step size needs to be set according to the size of the resolved turbulent eddies. It is therefore closely tied to local grid size with the constraint that the CFL number should be lower than unity everywhere in the domain for the highest accuracy. The overall number of simulated cycles influences the soundness of the statistical analysis of LES outcomes. This paper focuses on the impact of grid density on the LES description of the TCC-III single-cylinder optical engine flow under motored conditions. In particular, attention is focused on the intake stroke of the engine cycle, which governs the induced flow motion. LES results are first evaluated by means of well-established quality indices to find the insufficient grid resolution region to be refined. Second, comparisons with available PIV measurements are carried out. Finally, COV and proper orthogonal decomposition analyses are adopted to further assess the impact of grid density on CCV. © 2018 SAE International. All Rights Reserved.-
dc.language영어-
dc.language.isoen-
dc.publisherSAE International-
dc.relation.isPartOfSAE Technical Papers-
dc.subjectEngine cylinders-
dc.subjectIce-
dc.subjectLarge eddy simulation-
dc.subjectPrincipal component analysis-
dc.subjectQuality control-
dc.subjectTurbulent flow-
dc.subjectAcademic community-
dc.subjectComputational costs-
dc.subjectComputational domains-
dc.subjectComputing resource-
dc.subjectModel assumptions-
dc.subjectProper orthogonal decompositions-
dc.subjectSingle cylinders-
dc.subjectTemporal evolution-
dc.subjectComputational fluid dynamics-
dc.titleImpact of Grid Density on the les Analysis of Flow CCV: Application to the TCC-III Engine under Motored Conditions-
dc.typeArticle-
dc.type.rimsART-
dc.description.journalClass1-
dc.identifier.doi10.4271/2018-01-0203-
dc.identifier.bibliographicCitationSAE Technical Papers, v.2018-April-
dc.identifier.scopusid2-s2.0-85045467335-
dc.citation.titleSAE Technical Papers-
dc.citation.volume2018-April-
dc.contributor.affiliatedAuthorHa, T.-
dc.contributor.affiliatedAuthorChoi, H.-
dc.type.docTypeConference Paper-
dc.subject.keywordPlusEngine cylinders-
dc.subject.keywordPlusIce-
dc.subject.keywordPlusLarge eddy simulation-
dc.subject.keywordPlusPrincipal component analysis-
dc.subject.keywordPlusQuality control-
dc.subject.keywordPlusTurbulent flow-
dc.subject.keywordPlusAcademic community-
dc.subject.keywordPlusComputational costs-
dc.subject.keywordPlusComputational domains-
dc.subject.keywordPlusComputing resource-
dc.subject.keywordPlusModel assumptions-
dc.subject.keywordPlusProper orthogonal decompositions-
dc.subject.keywordPlusSingle cylinders-
dc.subject.keywordPlusTemporal evolution-
dc.subject.keywordPlusComputational fluid dynamics-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 기계공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Hoi Myung photo

Choi, Hoi Myung
Engineering (기계·스마트·산업공학부(기계공학전공))
Read more

Altmetrics

Total Views & Downloads

BROWSE