Detailed Information

Cited 5 time in webofscience Cited 0 time in scopus
Metadata Downloads

A design principle of root length distribution of plants

Full metadata record
DC Field Value Language
dc.contributor.authorJung, Yeonsu-
dc.contributor.authorPark, Keunhwan-
dc.contributor.authorJensen, Kaare H.-
dc.contributor.authorKim, Wonjung-
dc.contributor.authorKim, Ho-Young-
dc.date.available2020-10-20T06:43:07Z-
dc.date.created2020-06-11-
dc.date.issued2019-12-
dc.identifier.issn1742-5689-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/78520-
dc.description.abstractShaping a plant root into an ideal structure for water capture is increasingly important for sustainable agriculture in the era of global climate change. Although the current genetic engineering of crops favours deep-reaching roots, here we show that nature has apparently adopted a different strategy of shaping roots. We construct a mathematical model for optimal root length distribution by considering that plants seek maximal water uptake at the metabolic expenses of root growth. Our theory finds a logarithmic decrease of root length density with depth to be most beneficial for efficient water uptake, which is supported by biological data as well as our experiments using root-mimicking network systems. Our study provides a tool to gauge the relative performance of root networks in transgenic plants engineered to endure a water deficit. Moreover, we lay a fundamental framework for mechanical understanding and design of water-absorptive growing networks, such as medical and industrial fluid transport systems and soft robots, which grow in porous media including soils and biotissues.-
dc.language영어-
dc.language.isoen-
dc.publisherROYAL SOC-
dc.relation.isPartOfJOURNAL OF THE ROYAL SOCIETY INTERFACE-
dc.titleA design principle of root length distribution of plants-
dc.typeArticle-
dc.type.rimsART-
dc.description.journalClass1-
dc.identifier.wosid000504648200005-
dc.identifier.doi10.1098/rsif.2019.0556-
dc.identifier.bibliographicCitationJOURNAL OF THE ROYAL SOCIETY INTERFACE, v.16, no.161-
dc.description.isOpenAccessN-
dc.citation.titleJOURNAL OF THE ROYAL SOCIETY INTERFACE-
dc.citation.volume16-
dc.citation.number161-
dc.contributor.affiliatedAuthorPark, Keunhwan-
dc.type.docTypeArticle-
dc.subject.keywordAuthorbiological fluid dynamics-
dc.subject.keywordAuthorroot length density-
dc.subject.keywordAuthorplant physics-
dc.subject.keywordAuthorflow in porous media-
dc.subject.keywordPlusSOIL-TEMPERATURE-
dc.subject.keywordPlusWATER EXTRACTION-
dc.subject.keywordPlusSCAFFOLD DESIGN-
dc.subject.keywordPlusWINTER-WHEAT-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusNITROGEN-
dc.subject.keywordPlusDENSITY-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusOILSEED-
dc.subject.keywordPlusCROPS-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 기계공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Keunhwan photo

Park, Keunhwan
Engineering (기계·스마트·산업공학부(기계공학전공))
Read more

Altmetrics

Total Views & Downloads

BROWSE