Detailed Information

Cited 3 time in webofscience Cited 3 time in scopus
Metadata Downloads

Voxel-wise partial volume correction method for accurate estimation of tissue sodium concentration in 23Na-MRI at 7 T

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Sang-Young-
dc.contributor.authorSong, Junghyun-
dc.contributor.authorYoon, Jong-Hyun-
dc.contributor.authorKim, Kyoung-Nam-
dc.contributor.authorChung, Jun-Young-
dc.contributor.authorNoh, Young-
dc.date.available2021-01-25T00:40:08Z-
dc.date.created2020-12-08-
dc.date.issued2021-02-
dc.identifier.issn0952-3480-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/79801-
dc.description.abstractSodium is crucial for the maintenance of cell physiology, and its regulation of the sodium-potassium pump has implications for various neurological conditions. The distribution of sodium concentrations in tissue can be quantitatively evaluated by means of sodium MRI (23Na-MRI). Despite its usefulness in diagnosing particular disease conditions, tissue sodium concentration (TSC) estimated from 23Na-MRI can be strongly biased by partial volume effects (PVEs) that are induced by broad point spread functions (PSFs) as well as tissue fraction effects. In this work, we aimed to propose a robust voxel-wise partial volume correction (PVC) method for 23Na-MRI. The method is based on a linear regression (LR) approach to correct for tissue fraction effects, but it utilizes a 3D kernel combined with a modified least trimmed square (3D-mLTS) method in order to minimize regression-induced inherent smoothing effects. We acquired 23Na-MRI data with conventional Cartesian sampling at 7 T, and spill-over effects due to the PSF were considered prior to correcting for tissue fraction effects using 3D-mLTS. In the simulation, we found that the TSCs of gray matter (GM) and white matter (WM) were underestimated by 20% and 11% respectively without correcting tissue fraction effects, but the differences between ground truth and PVE-corrected data after the PVC using the 3D-mLTS method were only approximately 0.6% and 0.4% for GM and WM, respectively. The capability of the 3D-mLTS method was further demonstrated with in vivo 23Na-MRI data, showing significantly lower regression errors (ie root mean squared error) as compared with conventional LR methods (p < 0.001). The results of simulation and in vivo experiments revealed that 3D-mLTS is superior for determining under- or overestimated TSCs while preserving anatomical details. This suggests that the 3D-mLTS method is well suited for the accurate determination of TSC, especially in small focal lesions associated with pathological conditions. © 2020 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd-
dc.language영어-
dc.language.isoen-
dc.publisherWILEY-
dc.relation.isPartOfNMR in Biomedicine-
dc.titleVoxel-wise partial volume correction method for accurate estimation of tissue sodium concentration in 23Na-MRI at 7 T-
dc.typeArticle-
dc.type.rimsART-
dc.description.journalClass1-
dc.identifier.wosid000595204800001-
dc.identifier.doi10.1002/nbm.4448-
dc.identifier.bibliographicCitationNMR in Biomedicine, v.34, no.2-
dc.description.isOpenAccessN-
dc.identifier.scopusid2-s2.0-85097012469-
dc.citation.titleNMR in Biomedicine-
dc.citation.volume34-
dc.citation.number2-
dc.contributor.affiliatedAuthorKim, Sang-Young-
dc.contributor.affiliatedAuthorSong, Junghyun-
dc.contributor.affiliatedAuthorYoon, Jong-Hyun-
dc.contributor.affiliatedAuthorKim, Kyoung-Nam-
dc.contributor.affiliatedAuthorChung, Jun-Young-
dc.contributor.affiliatedAuthorNoh, Young-
dc.type.docTypeArticle-
dc.subject.keywordAuthor23Na-MRI, 3D kernel-
dc.subject.keywordAuthorlinear regression (LR)-
dc.subject.keywordAuthormodified least trimmed square (mLTS)-
dc.subject.keywordAuthorpartial volume correction (PVC)-
dc.subject.keywordAuthorspatial blurring-
dc.subject.keywordAuthortissue sodium concentration (TSC)-
dc.subject.keywordPlusCytology-
dc.subject.keywordPlusDiagnosis-
dc.subject.keywordPlusLeast squares approximations-
dc.subject.keywordPlusMean square error-
dc.subject.keywordPlusOptical transfer function-
dc.subject.keywordPlusPhysiology-
dc.subject.keywordPlusSodium-
dc.subject.keywordPlusSodium compounds-
dc.subject.keywordPlusTissue-
dc.subject.keywordPlusAccurate estimation-
dc.subject.keywordPlusLeast trimmed squares-
dc.subject.keywordPlusPartial volume correction-
dc.subject.keywordPlusPartial volume effect-
dc.subject.keywordPlusPathological conditions-
dc.subject.keywordPlusRoot mean squared errors-
dc.subject.keywordPlusSodium-potassium pump-
dc.subject.keywordPlusTissue sodium concentration-
dc.subject.keywordPlusTissue engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
의과대학 > 의학과 > 1. Journal Articles
의과대학 > 의예과 > 1. Journal Articles
보건과학대학 > 의용생체공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Chung, Jun Young photo

Chung, Jun Young
College of Medicine (Premedical Course)
Read more

Altmetrics

Total Views & Downloads

BROWSE