Detailed Information

Cited 8 time in webofscience Cited 11 time in scopus
Metadata Downloads

Parallel implementation of Nussbaumer algorithm and number theoretic transform on a GPU platform: application to qTESLA

Authors
Lee, W.-K.Akleylek, S.Wong, D.C.-K.Yap, W.-S.Goi, B.-M.Hwang, S.-O.
Issue Date
Apr-2021
Publisher
Springer
Keywords
Graphics processing units; Lattice-based cryptography; Number theoretic transform; Nussbaumer algorithm; Post-quantum cryptography
Citation
Journal of Supercomputing, v.77, no.4, pp.3289 - 3314
Journal Title
Journal of Supercomputing
Volume
77
Number
4
Start Page
3289
End Page
3314
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/80452
DOI
10.1007/s11227-020-03392-x
ISSN
0920-8542
Abstract
Among the popular post-quantum schemes, lattice-based cryptosystems have received renewed interest since there are relatively simple, highly parallelizable and provably secure under a worst-case hardness assumption. However, polynomial multiplication over rings is the most time-consuming operation in most of the lattice-based cryptosystems. To further improve the performance of lattice-based cryptosystems for large scale usage, polynomial multiplication must be implemented in parallel. The polynomial multiplication can be performed using either number theoretic transform (NTT) or Nussbaumer algorithm. However, Nussbaumer algorithm is inherently serial. Meanwhile, the efficient implementation of NTT using various indexing methods on GPU platform remains unknown.In this paper, we explore the best combination of various indexing methods to implement NTT on GPU platform and the efficient way to parallelize the Nussbaumer algorithm. Our results suggest that the combination of Gentleman–Sande and Cooley–Tukey (GS-CT) indexing methods produced the best performance on RTX2060 GPU (i.e. 422,638 polynomial multiplications per second). A technique to parallelize Nussbaumer algorithm by reducing the non-coalesced global memory access to half is produced. To the best of our knowledge, this is the first GPU implementation of Nussbaumer algorithm and it outperforms the best aforementioned NTT (GS-CT) implementation by 14.5%. For illustration purpose, the proposed GPU implementation techniques are applied to qTESLA, a state-of-the-art lattice based signature scheme. We emphasize that the proposed implementation techniques are not specific to any cryptosystem; they can be easily adapted to any other lattice-based cryptosystems. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
Files in This Item
There are no files associated with this item.
Appears in
Collections
IT융합대학 > 컴퓨터공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hwang, Seong Oun photo

Hwang, Seong Oun
College of IT Convergence (컴퓨터공학부(컴퓨터공학전공))
Read more

Altmetrics

Total Views & Downloads

BROWSE