Detailed Information

Cited 6 time in webofscience Cited 6 time in scopus
Metadata Downloads

Emetine exerts anticancer effects in U2OS human osteosarcoma cells via activation of p38 and inhibition of ERK, JNK, and beta-catenin signaling pathways

Authors
Son, JuhyeonLee, Sang Yeol
Issue Date
Oct-2021
Publisher
WILEY
Keywords
apoptosis; emetine; metastasis; mitogen-activated protein kinase; osteosarcoma
Citation
JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, v.35, no.10
Journal Title
JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY
Volume
35
Number
10
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/82487
DOI
10.1002/jbt.22868
ISSN
1095-6670
Abstract
Osteosarcoma (OS) is a primary bone neoplasm that is highly malignant. As advances in chemotherapy for the treatment of OS have stagnated, discovery of new reagents is required. Emetine is a phytochemical which can be isolated from a medicinal herb Cephaelis ipecacuanha and is traditionally used for amoebicides. Previous studies have demonstrated that emetine can possibly be repositioned for use in anticancer reagents. However, any anticancer effects and underlying mechanisms of emetine on human OS are not yet well understood. In this study, we analyzed the anticancer effects and involved cellular mechanisms after treatment with emetine to U2OS human OS cells. Emetine significantly reduced both the viability and proliferation, and induced apoptosis via activation of caspase-3 and caspase-7 in U2OS cells. Emetine effectively inhibited the migration and invasion of U2OS cells. Gelatinase activities of matrix metalloproteinase 2 (MMP-2) and MMP-9 were reduced by emetine. MMP-9 was transcriptionally inhibited, while MMP-2 was posttranscriptionally repressed, via the reduced expression of membrane-type I-matrix metalloproteinase (MT1-MMP). p38, which is closely related with induction of apoptosis, was stimulated by emetine. Extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and beta-catenin, which are linked with expression of MMPs, were downregulated. Emetine exerted anticancer effects on MG63 human OS cells as well. Taken together, our study demonstrated the anticancer and antimetastatic potential of emetine in treating human OS for the first time. It is expected that emetine may be a promising drug candidate to be repositioned for chemotherapy of OS.
Files in This Item
There are no files associated with this item.
Appears in
Collections
바이오나노대학 > 생명과학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Sang Yeol photo

Lee, Sang Yeol
BioNano Technology (Department of Life Sciences)
Read more

Altmetrics

Total Views & Downloads

BROWSE