Detailed Information

Cited 34 time in webofscience Cited 46 time in scopus
Metadata Downloads

Ultrasensitive Detection of Dopamine, IL-6 and SARS-CoV-2 Proteins on Crumpled Graphene FET Biosensor

Full metadata record
DC Field Value Language
dc.contributor.authorHwang, Michael Taeyoung-
dc.contributor.authorPark, Insu-
dc.contributor.authorHeiranian, Mohammad-
dc.contributor.authorTaqieddin, Amir-
dc.contributor.authorYou, Seungyong-
dc.contributor.authorFaramarzi, Vahid-
dc.contributor.authorPak, Angela A.-
dc.contributor.authorZande, Arend M.-
dc.contributor.authorAluru, Narayana R.-
dc.contributor.authorBashir, Rashid-
dc.date.accessioned2021-11-15T01:40:14Z-
dc.date.available2021-11-15T01:40:14Z-
dc.date.created2021-09-06-
dc.date.issued2021-11-
dc.identifier.issn2365-709X-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/82686-
dc.description.abstractUniversal platforms for biomolecular analysis using label-free sensing modalities can address important diagnostic challenges. Electrical field effect-sensors are an important class of devices that can enable point-of-care sensing by probing the charge in the biological entities. Use of crumpled graphene for this application is especially promising. It is previously reported that the limit of detection (LoD) on electrical field effect-based sensors using DNA molecules on the crumpled graphene FET (field-effect transistor) platform. Here, the crumpled graphene FET-based biosensing of important biomarkers including small molecules and proteins is reported. The performance of devices is systematically evaluated and optimized by studying the effect of the crumpling ratio on electrical double layer (EDL) formation and bandgap opening on the graphene. It is also shown that a small and electroneutral molecule dopamine can be captured by an aptamer and its conformation change induced electrical signal changes. Three kinds of proteins were captured with specific antibodies including interleukin-6 (IL-6) and two viral proteins. All tested biomarkers are detectable with the highest sensitivity reported on the electrical platform. Significantly, two COVID-19 related proteins, nucleocapsid (N-) and spike (S-) proteins antigens are successfully detected with extremely low LoDs. This electrical antigen tests can contribute to the challenge of rapid, point-of-care diagnostics.-
dc.language영어-
dc.language.isoen-
dc.publisherWILEY-
dc.relation.isPartOfADVANCED MATERIALS TECHNOLOGIES-
dc.titleUltrasensitive Detection of Dopamine, IL-6 and SARS-CoV-2 Proteins on Crumpled Graphene FET Biosensor-
dc.typeArticle-
dc.type.rimsART-
dc.description.journalClass1-
dc.identifier.wosid000690732200001-
dc.identifier.doi10.1002/admt.202100712-
dc.identifier.bibliographicCitationADVANCED MATERIALS TECHNOLOGIES, v.6, no.11-
dc.description.isOpenAccessN-
dc.identifier.scopusid2-s2.0-85113628733-
dc.citation.titleADVANCED MATERIALS TECHNOLOGIES-
dc.citation.volume6-
dc.citation.number11-
dc.contributor.affiliatedAuthorHwang, Michael Taeyoung-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordAuthorcrumpled graphene FET biosensor-
dc.subject.keywordAuthorCOVID-19 antigen test-
dc.subject.keywordAuthorCOVID-19 proteins detection-
dc.subject.keywordAuthordopamine detection-
dc.subject.keywordAuthorS- and N-protein-
dc.subject.keywordPlusFIELD-EFFECT TRANSISTOR-
dc.subject.keywordPlusLABEL-FREE-
dc.subject.keywordPlusELECTRICAL DETECTION-
dc.subject.keywordPlusSILICON NANOWIRES-
dc.subject.keywordPlusINTERLEUKIN-6-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusDNA-
dc.subject.keywordPlusMULTISCALE-
dc.subject.keywordPlusPLATFORM-
dc.subject.keywordPlusSTRAIN-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
바이오나노대학 > 바이오나노학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher HWANG, MICHAEL TAEYOUNG photo

HWANG, MICHAEL TAEYOUNG
BioNano Technology (Department of BioNano Technology)
Read more

Altmetrics

Total Views & Downloads

BROWSE