Detailed Information

Cited 4 time in webofscience Cited 5 time in scopus
Metadata Downloads

A Novel Deep Learning-based IoT Device Transmission Interval Management Scheme for Enhanced Scalability in LoRa Networks

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Sanghyun-
dc.contributor.authorLee, Joohyung-
dc.contributor.authorHwang, Jungyeon-
dc.contributor.authorChoi, Jun Kyun-
dc.date.accessioned2021-11-22T03:40:28Z-
dc.date.available2021-11-22T03:40:28Z-
dc.date.created2021-09-17-
dc.date.issued2021-11-
dc.identifier.issn2162-2337-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/82732-
dc.description.abstractIn this letter, a novel deep learning-based IoT device transmission interval management scheme for enhanced scalability that reduces the redundancy data measurement in LoRa networks is proposed. For this purpose, a Local LSTM prediction model of each cluster is proposed in which the devices are clustered based on the features of the extracted data using an autoencoder. By adjusting the device transmission interval based on the prediction results, the amount of redundantly collected traffic in the LoRa environment is reduced. The proposed scheme is validated using a simulation-based experiment with the Intel lab IoT dataset. Here, we consider the physical characteristics of LoRa and the data pattern of Intel lab data. As a result, the scalability of the proposed scheme can be improved by 31% on average with a 0.3 MAPE prediction error threshold compared to the base model to which the proposed scheme is not applied. IEEE-
dc.language영어-
dc.language.isoen-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.relation.isPartOfIEEE Wireless Communications Letters-
dc.titleA Novel Deep Learning-based IoT Device Transmission Interval Management Scheme for Enhanced Scalability in LoRa Networks-
dc.typeArticle-
dc.type.rimsART-
dc.description.journalClass1-
dc.identifier.wosid000716695600046-
dc.identifier.doi10.1109/LWC.2021.3106649-
dc.identifier.bibliographicCitationIEEE Wireless Communications Letters, v.10, no.11, pp.2538 - 2542-
dc.description.isOpenAccessN-
dc.identifier.scopusid2-s2.0-85114620113-
dc.citation.endPage2542-
dc.citation.startPage2538-
dc.citation.titleIEEE Wireless Communications Letters-
dc.citation.volume10-
dc.citation.number11-
dc.contributor.affiliatedAuthorLee, Joohyung-
dc.type.docTypeArticle-
dc.subject.keywordAuthorclustering-
dc.subject.keywordAuthorData models-
dc.subject.keywordAuthordata prediction.-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorFeature extraction-
dc.subject.keywordAuthorInterference-
dc.subject.keywordAuthorInternet of things-
dc.subject.keywordAuthorInternet of Things-
dc.subject.keywordAuthorLoRa-
dc.subject.keywordAuthorPredictive models-
dc.subject.keywordAuthorscalability-
dc.subject.keywordAuthorScalability-
dc.subject.keywordAuthorServers-
dc.subject.keywordPlusForecasting-
dc.subject.keywordPlusInternet of things-
dc.subject.keywordPlusLong short-term memory-
dc.subject.keywordPlusPredictive analytics-
dc.subject.keywordPlusScalability-
dc.subject.keywordPlusAuto encoders-
dc.subject.keywordPlusData measurements-
dc.subject.keywordPlusData patterns-
dc.subject.keywordPlusManagement scheme-
dc.subject.keywordPlusPhysical characteristics-
dc.subject.keywordPlusPrediction errors-
dc.subject.keywordPlusPrediction model-
dc.subject.keywordPlusTransmission intervals-
dc.subject.keywordPlusDeep learning-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
IT융합대학 > 소프트웨어학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Joo Hyung photo

Lee, Joo Hyung
College of IT Convergence (Department of Software)
Read more

Altmetrics

Total Views & Downloads

BROWSE