Detailed Information

Cited 11 time in webofscience Cited 13 time in scopus
Metadata Downloads

Strain-Induced Atomic-Scale Building Blocks for Ferromagnetism in Epitaxial LaCoO3

Full metadata record
DC Field Value Language
dc.contributor.authorYoon, Sangmoon-
dc.contributor.authorGao, Xiang-
dc.contributor.authorOk, Jong Mok-
dc.contributor.authorLiao, Zhaoliang-
dc.contributor.authorHan, Myung-Geun-
dc.contributor.authorZhu, Yimei-
dc.contributor.authorGanesh, Panchapakesan-
dc.contributor.authorChisholm, Matthew F.-
dc.contributor.authorChoi, Woo Seok-
dc.contributor.authorLee, Ho Nyung-
dc.date.accessioned2022-03-03T04:40:35Z-
dc.date.available2022-03-03T04:40:35Z-
dc.date.created2022-03-03-
dc.date.issued2021-05-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/83604-
dc.description.abstractThe origin of strain-induced ferromagnetism, which is robust regardless of the type and degree of strain in LaCoO3 (LCO) thin films, is enigmatic despite intensive research efforts over the past decade. Here, by combining scanning transmission electron microscopy with ab initio density functional theory plus U calculations, we report that the ferromagnetism does not emerge directly from the strain itself but rather from the creation of compressed structural units within ferroelastically formed twin-wall domains. The compressed structural units are magnetically active with the rocksalt-type high-spin/low-spin order. Our study highlights that the ferroelastic nature of ferromagnetic structural units is important for understanding the intriguing ferromagnetic properties in LCO thin films.-
dc.language영어-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.relation.isPartOfNANO LETTERS-
dc.titleStrain-Induced Atomic-Scale Building Blocks for Ferromagnetism in Epitaxial LaCoO3-
dc.typeArticle-
dc.type.rimsART-
dc.description.journalClass1-
dc.identifier.wosid000651773600040-
dc.identifier.doi10.1021/acs.nanolett.1c00756-
dc.identifier.bibliographicCitationNANO LETTERS, v.21, no.9, pp.4006 - 4012-
dc.description.isOpenAccessN-
dc.identifier.scopusid2-s2.0-85106496534-
dc.citation.endPage4012-
dc.citation.startPage4006-
dc.citation.titleNANO LETTERS-
dc.citation.volume21-
dc.citation.number9-
dc.contributor.affiliatedAuthorYoon, Sangmoon-
dc.type.docTypeArticle-
dc.subject.keywordAuthorEpitaxial thin film-
dc.subject.keywordAuthorComplex oxides-
dc.subject.keywordAuthorFerromagnetism-
dc.subject.keywordAuthorElectron microscopy-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusMISMATCH-
dc.subject.keywordPlusDOMAINS-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher YOON, SANGMOON photo

YOON, SANGMOON
BioNano Technology (Department of Physics)
Read more

Altmetrics

Total Views & Downloads

BROWSE