Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

High-performance and low-energy approximate full adder design for error-resilient image processing

Full metadata record
DC Field Value Language
dc.contributor.authorShahrokhi, S.H.-
dc.contributor.authorHosseinzadeh, M.-
dc.contributor.authorReshadi, M.-
dc.contributor.authorGorgin, S.-
dc.date.accessioned2022-05-31T23:40:03Z-
dc.date.available2022-05-31T23:40:03Z-
dc.date.created2021-09-07-
dc.date.issued2022-06-
dc.identifier.issn0020-7217-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/84463-
dc.description.abstractFull Adder cell is the main building block of larger arithmetic circuits and often is placed along their critical path. Therefore, it is a vital task to design high-performance and low-energy Full Adder cells. In this paper, a novel inexact Full Adder cell is proposed based on carbon nanotube field-effect transistor (CNFET) technology. Comprehensive simulations are carried out at the transistor level by the HSPICE simulator applying the 32 nm Stanford library model. The operation of the proposed cell is investigated with different supply voltages, output loads, ambient temperatures, and operating frequencies. At the application level, the proposed cell is applied to the image blending system by MATLAB software. Simulation results confirm that the proposed cell outperforms its counterparts in terms of both transistor and application-level metrics such as delay, power-delay product (PDP), energy-delay product (EDP), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) index. © 2021 Informa UK Limited, trading as Taylor & Francis Group.-
dc.language영어-
dc.language.isoen-
dc.publisherTAYLOR & FRANCIS LTD-
dc.relation.isPartOfInternational Journal of Electronics-
dc.titleHigh-performance and low-energy approximate full adder design for error-resilient image processing-
dc.typeArticle-
dc.type.rimsART-
dc.description.journalClass1-
dc.identifier.wosid000691511400001-
dc.identifier.doi10.1080/00207217.2021.1966662-
dc.identifier.bibliographicCitationInternational Journal of Electronics, v.109, no.6, pp.1059 - 1079-
dc.description.isOpenAccessN-
dc.identifier.scopusid2-s2.0-85113976761-
dc.citation.endPage1079-
dc.citation.startPage1059-
dc.citation.titleInternational Journal of Electronics-
dc.citation.volume109-
dc.citation.number6-
dc.contributor.affiliatedAuthorHosseinzadeh, M.-
dc.type.docTypeArticle in Press-
dc.subject.keywordAuthorApproximate computing-
dc.subject.keywordAuthorCNFET-
dc.subject.keywordAuthorfull adder-
dc.subject.keywordAuthorhigh-speed-
dc.subject.keywordAuthorlow-energy-
dc.subject.keywordPlusAdders-
dc.subject.keywordPlusApplication programs-
dc.subject.keywordPlusCarbon nanotubes-
dc.subject.keywordPlusCells-
dc.subject.keywordPlusCytology-
dc.subject.keywordPlusImage processing-
dc.subject.keywordPlusMATLAB-
dc.subject.keywordPlusSignal to noise ratio-
dc.subject.keywordPlusApplication level-
dc.subject.keywordPlusArithmetic circuit-
dc.subject.keywordPlusCarbon nanotube field effect transistor (CNFET)-
dc.subject.keywordPlusEnergy delay product-
dc.subject.keywordPlusOperating frequency-
dc.subject.keywordPlusPeak signal to noise ratio-
dc.subject.keywordPlusPower delay product-
dc.subject.keywordPlusStructural similarity indices (SSIM)-
dc.subject.keywordPlusCarbon nanotube field effect transistors-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hosseinzadeh, Mehdi photo

Hosseinzadeh, Mehdi
College of IT Convergence (Department of Software)
Read more

Altmetrics

Total Views & Downloads

BROWSE