Detailed Information

Cited 3 time in webofscience Cited 5 time in scopus
Metadata Downloads

Key factors affecting contact resistance in coplanar organic thin-film transistors

Full metadata record
DC Field Value Language
dc.contributor.authorJo, Sun-Woo-
dc.contributor.authorCho, Seongjae-
dc.contributor.authorKim, Chang-Hyun-
dc.date.accessioned2022-09-13T00:40:09Z-
dc.date.available2022-09-13T00:40:09Z-
dc.date.created2022-09-13-
dc.date.issued2022-10-
dc.identifier.issn0022-3727-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/85449-
dc.description.abstractWe present a comprehensive numerical analysis of contact resistance in coplanar organic thin-film transistors. A large number of hole-transporting organic transistors are investigated through two-dimensional finite-element simulation, by deliberately changing the channel length, source/drain electrode thickness, and hole-injection energy barrier heights. Gate-field-dependent terminal contact resistances of these devices are fully estimated and electrostatic distributions inside the organic semiconductor film are visualized for the understanding of physical mechanisms. It is found that the relationship between source/drain electrode thickness and contact resistance does not follow any simple trend and is also strongly associated with the injection energy barrier. Moreover, the origin of negative contact resistance in organic transistors featuring a minimal charge-injection barrier is elaborated. Finally, a direct impact of the semiconductor charge-carrier mobility on contact resistance is addressed, revealing a linear dependence of contact resistance on inverse mobility over a broad parameter range.-
dc.language영어-
dc.language.isoen-
dc.publisherIOP Publishing Ltd-
dc.relation.isPartOfJOURNAL OF PHYSICS D-APPLIED PHYSICS-
dc.titleKey factors affecting contact resistance in coplanar organic thin-film transistors-
dc.typeArticle-
dc.type.rimsART-
dc.description.journalClass1-
dc.identifier.wosid000829567000001-
dc.identifier.doi10.1088/1361-6463/ac8124-
dc.identifier.bibliographicCitationJOURNAL OF PHYSICS D-APPLIED PHYSICS, v.55, no.40-
dc.description.isOpenAccessN-
dc.identifier.scopusid2-s2.0-85135141918-
dc.citation.titleJOURNAL OF PHYSICS D-APPLIED PHYSICS-
dc.citation.volume55-
dc.citation.number40-
dc.contributor.affiliatedAuthorJo, Sun-Woo-
dc.contributor.affiliatedAuthorCho, Seongjae-
dc.contributor.affiliatedAuthorKim, Chang-Hyun-
dc.type.docTypeArticle-
dc.subject.keywordAuthororganic thin-film transistors-
dc.subject.keywordAuthordevice physics-
dc.subject.keywordAuthornumerical simulation-
dc.subject.keywordAuthorcontact resistance-
dc.subject.keywordAuthorcharge-carrier mobility-
dc.subject.keywordPlusSEMICONDUCTORS-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusMODEL-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
IT융합대학 > 전자공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Chang Hyun photo

Kim, Chang Hyun
College of IT Convergence (Major of Electronic Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE