Detailed Information

Cited 2 time in webofscience Cited 5 time in scopus
Metadata Downloads

Selectively designed hierarchical copper-cobalt oxysulfide nanoarchitectures for high-rate hybrid supercapacitors

Full metadata record
DC Field Value Language
dc.contributor.authorPallavolu, Mohan Reddy-
dc.contributor.authorGoli, Hemachandra Rao-
dc.contributor.authorKumar, Yedluri Anil-
dc.contributor.authorNaushad, Mu.-
dc.contributor.authorSambasivam, Sangaraju-
dc.contributor.authorSreedhar, Adem-
dc.date.accessioned2022-11-11T07:40:09Z-
dc.date.available2022-11-11T07:40:09Z-
dc.date.created2022-11-08-
dc.date.issued2022-12-
dc.identifier.issn0925-8388-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/86004-
dc.description.abstractRational design of metal oxide-sulfide-based composite electrode materials with multi-functional nanoarchitectures, high electrochemical conductivity, and superior redox activity have attracted extensive attention in high-rate hybrid supercapacitors. Herein, the hierarchical binder-free copper-cobalt oxysulfide (Cu0.33Co0.67OxSy) nanoarchitectures with flower-like nanosheets and nanoplates are facilely synthesized on Ni-foam for hybrid supercapacitors using a simple and low-cost wet chemical method. The Cu0.33Co0.67OxSy-NFs demonstrated a high specific capacity of 193 mAh/cm(2) (443.9 mu Ah/cm(2)) at current density of 3 mA cm-(2), with excellent cycling performance of 95 % even after 3000 charge-discharge cycles. In addition, an aqueous hybrid device was assembled using prepared Cu0.33Co0.67OxSy-NFs as positive and porous carbon as negative electrode, which demonstrated benchmark for energy storage properties. Specifically, the assembled device exhibited a high energy density of 0.33 mWh/cm(2) and a power density of 2.1 mW/cm(2) with high capacity retention (91 % after 5000 cycles at 20 mA cm-(2)). In view of practical applicability, the assembled hybrid devices can be able to power up a small wind fan for a long duration. The cost-effective single-step approach in designing high-performance cathode materials in this study provide a strategy for the design and manufacture of other ternary metal oxysulfides for high-performance energy storage devices. (C) 2022 Elsevier B.V. All rights reserved.-
dc.language영어-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE SA-
dc.relation.isPartOfJOURNAL OF ALLOYS AND COMPOUNDS-
dc.titleSelectively designed hierarchical copper-cobalt oxysulfide nanoarchitectures for high-rate hybrid supercapacitors-
dc.typeArticle-
dc.type.rimsART-
dc.description.journalClass1-
dc.identifier.wosid000855725300001-
dc.identifier.doi10.1016/j.jallcom.2022.166814-
dc.identifier.bibliographicCitationJOURNAL OF ALLOYS AND COMPOUNDS, v.926-
dc.description.isOpenAccessN-
dc.identifier.scopusid2-s2.0-85138532464-
dc.citation.titleJOURNAL OF ALLOYS AND COMPOUNDS-
dc.citation.volume926-
dc.contributor.affiliatedAuthorSreedhar, Adem-
dc.type.docTypeArticle-
dc.subject.keywordAuthorTernary transition metal oxysulfides-
dc.subject.keywordAuthorNanoflowers-
dc.subject.keywordAuthorElectrochemical activity-
dc.subject.keywordAuthorHybrid supercapacitors-
dc.subject.keywordAuthorEnergy density-
dc.subject.keywordPlusASYMMETRIC SUPERCAPACITORS-
dc.subject.keywordPlusELECTRODE MATERIALS-
dc.subject.keywordPlusOXIDE MATERIALS-
dc.subject.keywordPlusENERGY-STORAGE-
dc.subject.keywordPlusNICKEL FOAM-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusBATTERY-
dc.subject.keywordPlusNANOSTRUCTURES-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusNANOSHEETS-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Sreedhar, Adem photo

Sreedhar, Adem
BioNano Technology (Department of Physics)
Read more

Altmetrics

Total Views & Downloads

BROWSE