Detailed Information

Cited 2 time in webofscience Cited 2 time in scopus
Metadata Downloads

Atomic Reconstruction and Oxygen Evolution Reaction of Mn3O4 Nanoparticles

Full metadata record
DC Field Value Language
dc.contributor.authorYoon, Sangmoon-
dc.contributor.authorSeo, Hongmin-
dc.contributor.authorJin, Kyoungsuk-
dc.contributor.authorKim, Hyoung Gyun-
dc.contributor.authorLee, Seung-Yong-
dc.contributor.authorJo, Janghyun-
dc.contributor.authorCho, Kang Hee-
dc.contributor.authorRyu, Jinseok-
dc.contributor.authorYoon, Aram-
dc.contributor.authorKim, Young-Woon-
dc.contributor.authorZuo, Jian-Min-
dc.contributor.authorKwon, Young-Kyun-
dc.contributor.authorNam, Ki Tae-
dc.contributor.authorKim, Miyoung-
dc.date.accessioned2022-12-21T04:40:13Z-
dc.date.available2022-12-21T04:40:13Z-
dc.date.created2022-12-16-
dc.date.issued2022-09-
dc.identifier.issn1948-7185-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/86302-
dc.description.abstractUnderstanding the chemical states of individual surface atoms and their arrangements is essential for addressing several current issues such as catalysis, energy stroage/conversion, and environmental protection. Here, we exploit a profile imaging technique to understand the correlation between surface atomic structures and the oxygen evolution reaction (OER) in Mn3O4 nanoparticles. We image surface structures of Mn3O4 nanoparticles and observe surface reconstructions in the (110) and (101) planes. Mn3+ ions at the surface, which are commonly considered as the active sites in OER, disappear from the reconstructed planes, whereas Mn3+ ions are still exposed at the edges of nanoparticles. Our observations suggest that surface reconstructions can deactivate low-index surfaces of Mn oxides in OER. These structural and chemical observations are further validated by density functional theory calculations. This work shows why atomic-scale characterization of surface structures is crucial for a molecular-level understanding of a chemical reaction in oxide nanoparticles.-
dc.language영어-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.relation.isPartOfJOURNAL OF PHYSICAL CHEMISTRY LETTERS-
dc.titleAtomic Reconstruction and Oxygen Evolution Reaction of Mn3O4 Nanoparticles-
dc.typeArticle-
dc.type.rimsART-
dc.description.journalClass1-
dc.identifier.wosid000881311800001-
dc.identifier.doi10.1021/acs.jpclett.2c01638-
dc.identifier.bibliographicCitationJOURNAL OF PHYSICAL CHEMISTRY LETTERS, v.13, no.35, pp.8336 - 8343-
dc.description.isOpenAccessN-
dc.identifier.scopusid2-s2.0-85137908282-
dc.citation.endPage8343-
dc.citation.startPage8336-
dc.citation.titleJOURNAL OF PHYSICAL CHEMISTRY LETTERS-
dc.citation.volume13-
dc.citation.number35-
dc.contributor.affiliatedAuthorYoon, Sangmoon-
dc.type.docTypeArticle-
dc.subject.keywordPlusEFFICIENT WATER OXIDATION-
dc.subject.keywordPlusCATALYST-
dc.subject.keywordPlusRESOLUTION-
dc.subject.keywordPlusNANOSCALE-
dc.subject.keywordPlusOXIDES-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher YOON, SANGMOON photo

YOON, SANGMOON
BioNano Technology (Department of Physics)
Read more

Altmetrics

Total Views & Downloads

BROWSE