Detailed Information

Cited 2 time in webofscience Cited 2 time in scopus
Metadata Downloads

Bond Behavior of Steel Rebar Embedded in Cementitious Composites Containing Polyvinyl Alcohol (PVA) Fibers and Carbon Nanotubes (CNTs)

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Dongmin-
dc.contributor.authorLee, Seong-Cheol-
dc.contributor.authorYoo, Sung-Won-
dc.date.accessioned2023-03-17T02:40:18Z-
dc.date.available2023-03-17T02:40:18Z-
dc.date.created2023-03-16-
dc.date.issued2023-02-
dc.identifier.issn2073-4360-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/87151-
dc.description.abstractIn this study, pull-out tests were conducted to investigate the bond behavior of a rebar embedded in cementitious composites with polyvinyl alcohol (PVA) fibers and carbon nanotubes (CNTs). In the cementitious composites, the binder consisted of ordinary Portland cement, blast furnace slag, and fly ash, with a weight ratio of 39.5, 21.0 and 39.5%, respectively, while the nonbinder consisted of quartzite sand, lightweight aggregate, superplasticizer, and shrinkage-reducing admixture. The water/binder ratio and volume fractions of the PVA fibers were 32.9% and 2.07%, respectively. In the test program, the rebar diameter (D13, D16, and D19) and CNTs mix ratio (0.0, 0.1, 0.2, and 0.3 wt.%) were considered as the test variables. The test results showed that the bond strength of a rebar increased as the rebar diameter decreased or as the CNTs mix ratio increased. Based on the test results, a new, simple model has been proposed with consideration of the rebar diameter, as well as the CNTs mix ratio. Comparing the test results, it was investigated that the proposed model generally represented the bond behavior well, including the bond strength and the corresponding slip of a rebar embedded in PVA cementitious composites, with or without CNTs.-
dc.language영어-
dc.language.isoen-
dc.publisherMDPI-
dc.relation.isPartOfPOLYMERS-
dc.titleBond Behavior of Steel Rebar Embedded in Cementitious Composites Containing Polyvinyl Alcohol (PVA) Fibers and Carbon Nanotubes (CNTs)-
dc.typeArticle-
dc.type.rimsART-
dc.description.journalClass1-
dc.identifier.wosid000941603200001-
dc.identifier.doi10.3390/polym15040884-
dc.identifier.bibliographicCitationPOLYMERS, v.15, no.4-
dc.description.isOpenAccessN-
dc.identifier.scopusid2-s2.0-85148999825-
dc.citation.titlePOLYMERS-
dc.citation.volume15-
dc.citation.number4-
dc.contributor.affiliatedAuthorYoo, Sung-Won-
dc.type.docTypeArticle-
dc.subject.keywordAuthorbond behavior-
dc.subject.keywordAuthorcementitious composites-
dc.subject.keywordAuthorcarbon nanotubes (CNTs)-
dc.subject.keywordAuthorbond stress-slip model-
dc.subject.keywordAuthorpolyvinyl alcohol (PVA)-
dc.subject.keywordPlusDIVERSE EMBEDMENT MODEL-
dc.subject.keywordPlusREINFORCED CONCRETE MEMBERS-
dc.subject.keywordPlusLOCAL BOND-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusDEFORMED BARS-
dc.subject.keywordPlusSTRESS-SLIP-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusDISPERSION-
dc.relation.journalResearchAreaPolymer Science-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 토목환경공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoo, Sung Won photo

Yoo, Sung Won
Engineering (Department of Civil & Environmental Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE