Detailed Information

Cited 8 time in webofscience Cited 8 time in scopus
Metadata Downloads

Concentration Gradient Induced Delithiation Failure of MoO3 for Li-Ion Batteries

Full metadata record
DC Field Value Language
dc.contributor.authorJang, Jihyun-
dc.contributor.authorKim, Hyun-seung-
dc.contributor.authorMoon, San-
dc.contributor.authorChae, Oh B.-
dc.contributor.authorAhn, Sung-Jin-
dc.contributor.authorJung, Heechul-
dc.contributor.authorChoi, Junghyun-
dc.contributor.authorOh, Seung M.-
dc.contributor.authorRyu, Ji Heon-
dc.contributor.authorYoon, Taeho-
dc.date.accessioned2023-03-27T06:42:18Z-
dc.date.available2023-03-27T06:42:18Z-
dc.date.created2023-03-27-
dc.date.issued2022-01-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/87303-
dc.description.abstractElectric vehicle manufacturers worldwide are demanding superior lithium-ion batteries, with high energy and power densities, compared to gasoline engines. Although conversion-type metal oxides are promising candidates for high-capacity anodes, low initial Coulombic efficiency (ICE) and poor capacity retention have hindered research on their applications. In this study, the ICE of conversion-type MoO3 is investigated, with a particular focus on the delithiation failure. A computational modeling predicts the concentration gradient of Li+ in MoO3 particles. The highly delithiated outer region of the particle forms a layer with low electronic conductivity, which impedes further delithiation. A comparative study using various sizes of MoO3 particles demonstrated that the electrode failure during delithiation is governed by the concentration gradient and the subsequent formation of a resistive shell. The proposed failure mechanism provides critical guidance for the development of conversion-type anode materials with improved electrochemical reversibility.-
dc.language영어-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.relation.isPartOfNANO LETTERS-
dc.titleConcentration Gradient Induced Delithiation Failure of MoO3 for Li-Ion Batteries-
dc.typeArticle-
dc.type.rimsART-
dc.description.journalClass1-
dc.identifier.wosid000752999600001-
dc.identifier.doi10.1021/acs.nanolett.1c04290-
dc.identifier.bibliographicCitationNANO LETTERS, v.22, no.2, pp.761 - 767-
dc.description.isOpenAccessN-
dc.identifier.scopusid2-s2.0-85123878012-
dc.citation.endPage767-
dc.citation.startPage761-
dc.citation.titleNANO LETTERS-
dc.citation.volume22-
dc.citation.number2-
dc.contributor.affiliatedAuthorChae, Oh B.-
dc.type.docTypeArticle-
dc.subject.keywordAuthorLi-ion batteries-
dc.subject.keywordAuthortransition metal oxides-
dc.subject.keywordAuthormolybdenum oxides-
dc.subject.keywordAuthorconversion reactions-
dc.subject.keywordAuthorconcentration gradients-
dc.subject.keywordPlusELECTRODE MATERIALS-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusINTERCALATION-
dc.subject.keywordPlusREACTIVITY-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher ,  photo

,
Engineering (화공생명배터리공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE