Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Multi-Class Classification Prediction Model for Password Strength Based on Deep Learning

Full metadata record
DC Field Value Language
dc.contributor.author김석준-
dc.contributor.author이병문-
dc.date.accessioned2023-04-07T14:41:03Z-
dc.date.available2023-04-07T14:41:03Z-
dc.date.created2023-04-07-
dc.date.issued2023-03-
dc.identifier.issn2383-7632-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/87435-
dc.description.abstractVarious indexes are being used today to evaluate the strength of passwords. In these indexes, the strength of a password is evaluated to be high if it takes longer for an attacker to predict it. Therefore, using such an evaluation, there is a problem that a leaked password may reduce the reliability of the index by increasing vulnerability if an attacker attempts to attack using a leaked password. Hence, estimating the leaked frequency when considering strength is important for reducing vulnerability. This paper proposes a password strength evaluation model using deep learning-based multi-class classification, which solves the existing problem of leaked frequency not being considered during evaluation. Data preprocessing modeling is critical to improve the performance of this model. Additionally, since selecting and extracting feature values of preprocessing data is also important, a model that accurately estimates the degree of leakage through an evaluation method of existing indexes is proposed. To evaluate the performance of the proposed model, an experiment that compares the password leaked frequency stored in a data-base using a password list was conducted. As a result, the proposed model correctly evaluated 99% of the 345 leaked passwords. Therefore, the effectiveness of the proposed model was verified.-
dc.language영어-
dc.language.isoen-
dc.publisher한국멀티미디어학회-
dc.relation.isPartOfJournal of Multimedia Information System-
dc.titleMulti-Class Classification Prediction Model for Password Strength Based on Deep Learning-
dc.typeArticle-
dc.type.rimsART-
dc.description.journalClass2-
dc.identifier.doi10.33851/JMIS.2023.10.1.45-
dc.identifier.bibliographicCitationJournal of Multimedia Information System, v.10, no.1, pp.45 - 52-
dc.identifier.kciidART002948277-
dc.description.isOpenAccessN-
dc.citation.endPage52-
dc.citation.startPage45-
dc.citation.titleJournal of Multimedia Information System-
dc.citation.volume10-
dc.citation.number1-
dc.contributor.affiliatedAuthor김석준-
dc.contributor.affiliatedAuthor이병문-
dc.subject.keywordAuthorArtificial Intelligence-
dc.subject.keywordAuthorDeep Learning-
dc.subject.keywordAuthorPassword Strength-
dc.subject.keywordAuthorPassword Strength Prediction.-
dc.description.journalRegisteredClasskci-
Files in This Item
There are no files associated with this item.
Appears in
Collections
IT융합대학 > 컴퓨터공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Byung Mun photo

Lee, Byung Mun
College of IT Convergence (컴퓨터공학부(컴퓨터공학전공))
Read more

Altmetrics

Total Views & Downloads

BROWSE