Detailed Information

Cited 6 time in webofscience Cited 5 time in scopus
Metadata Downloads

Material classification from sparse spectral X-ray CT using vectorial total variation based on L infinity normopen access

Authors
Jumanazarov, DoniyorKoo, JakeoungKehres, JanPoulsen, Henning F.Olsen, Ulrik L.Iovea, Mihai
Issue Date
May-2022
Publisher
ELSEVIER SCIENCE INC
Keywords
Spectral X-ray CT; Electron density; Effective atomic number; Joint reconstruction; Security screening
Citation
MATERIALS CHARACTERIZATION, v.187
Journal Title
MATERIALS CHARACTERIZATION
Volume
187
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/88159
DOI
10.1016/j.matchar.2022.111864
ISSN
1044-5803
Abstract
The development of energy resolving photon counting detectors (PCD) has paved the way to spectral X-ray Computed Tomography (CT), with which one can simultaneously extract the energy dependence of a material's linear attenuation coefficient (LAC). Spectral CT has proved to be an advanced technique to classify materials based on their physical properties such as electron density (rho(e)) and effective atomic number (Z(eff)). However, the application of spectral CT may be hindered by the poor image reconstruction quality when used for material identification in security screening where rapid scanning is required. Image reconstruction from few projections or low radiation exposure time would enable rapid scanning. The reconstruction quality for each energy bin may also be degraded since the division of photon counts into multiple energy bins naturally leads to higher noise levels. In this work, we explore how to perform accurate spectral CT reconstructions from such data, and propose L(infinity)norm-based vectorial total variation (L-infinity-VTV) regularization that uses correlations between multiple energy bins. Using experimental data acquired with a custom laboratory instrument for spectral CT, the L-infinity-VTV is tested on "real life " phantoms consisting of materials in the range of 6 < Z(eff) < 15. For material classification from only 7 projections, the L-infinity-VTV gives the relative deviations of 3.5% for rho e and 2.4% for Z(eff), whereas the total nuclear variation (TNV) of another state-of-the-art joint reconstruction and the total variation (TV) yield those of 3.4% and 3.1%, and 3.8% and 4.2%, respectively. The L-infinity-VTV is now ready for use in security screening.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Koo, JaKeoung photo

Koo, JaKeoung
College of IT Convergence (Department of AI)
Read more

Altmetrics

Total Views & Downloads

BROWSE