Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Use of machine learning to improve the estimation of conductivity and permittivity based on longitudinal relaxation time T1 in magnetic resonance at 7 T

Full metadata record
DC Field Value Language
dc.contributor.authorHernandez, Daniel-
dc.contributor.authorKim, Kyoung-Nam-
dc.date.accessioned2023-06-30T14:41:17Z-
dc.date.available2023-06-30T14:41:17Z-
dc.date.created2023-06-26-
dc.date.issued2023-05-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/88321-
dc.description.abstractElectrical property tomography (EPT) is a noninvasive method that uses magnetic resonance imaging (MRI) to estimate the conductivity and permittivity of tissues, and hence, can be used as a biomarker. One branch of EPT is based on the correlation of water and relaxation time T1 with the conductivity and permittivity of tissues. This correlation was applied to a curve-fitting function to estimate electrical properties, it was found to have a high correlation between permittivity and T1 however the computation of conductivity based on T1 requires to estimate the water content. In this study, we developed multiple phantoms with several ingredients that modify the conductivity and permittivity and explored the use of machine learning algorithms to have a direct estimation of conductivity and permittivity based on MR images and the relaxation time T1. To train the algorithms, each phantom was measured using a dielectric measurement device to acquire the true conductivity and permittivity. MR images were taken for each phantom, and the T1 values were measured. Then, the acquired data were tested using curve fitting, regression learning, and neural fit models to estimate the conductivity and permittivity values based on the T1 values. In particular, the regression learning algorithm based on Gaussian process regression showed high accuracy with a coefficient of determination R-2 of 0.96 and 0.99 for permittivity and conductivity, respectively. The estimation of permittivity using regression learning demonstrated a lower mean error of 0.66% compared to the curve fitting method, which resulted in a mean error of 3.6%. The estimation of conductivity also showed that the regression learning approach had a lower mean error of 0.49%, whereas the curve fitting method resulted in a mean error of 6%. The findings suggest that utilizing regression learning models, specifically Gaussian process regression, can result in more accurate estimations for both permittivity and conductivity compared to other methods.-
dc.language영어-
dc.language.isoen-
dc.publisherNATURE PORTFOLIO-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.titleUse of machine learning to improve the estimation of conductivity and permittivity based on longitudinal relaxation time T1 in magnetic resonance at 7 T-
dc.typeArticle-
dc.type.rimsART-
dc.description.journalClass1-
dc.identifier.wosid000989082600019-
dc.identifier.doi10.1038/s41598-023-35104-9-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.13, no.1-
dc.description.isOpenAccessY-
dc.identifier.scopusid2-s2.0-85159354256-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume13-
dc.citation.number1-
dc.contributor.affiliatedAuthorHernandez, Daniel-
dc.contributor.affiliatedAuthorKim, Kyoung-Nam-
dc.type.docTypeArticle-
dc.subject.keywordPlusMRI-
dc.subject.keywordPlusALGORITHM-
dc.subject.keywordPlusBRAIN-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
보건과학대학 > 의용생체공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Altmetrics

Total Views & Downloads

BROWSE