Detailed Information

Cited 11 time in webofscience Cited 10 time in scopus
Metadata Downloads

Isolation of intact bacteria from blood by selective cell lysis in a microfluidic porous silica monolith

Full metadata record
DC Field Value Language
dc.contributor.authorHan, Jung Y.-
dc.contributor.authorWiederoder, Michael-
dc.contributor.authorDeVoe, Don L.-
dc.date.accessioned2023-07-18T08:40:58Z-
dc.date.available2023-07-18T08:40:58Z-
dc.date.created2023-07-18-
dc.date.issued2019-06-
dc.identifier.issn2096-1030-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/88522-
dc.description.abstractRapid and efficient isolation of bacteria from complex biological matrices is necessary for effective pathogen identification in emerging single-cell diagnostics. Here, we demonstrate the isolation of intact and viable bacteria from whole blood through the selective lysis of blood cells during flow through a porous silica monolith. Efficient mechanical hemolysis is achieved while providing passage of intact and viable bacteria through the monoliths, allowing size-based isolation of bacteria to be performed following selective lysis. A process for synthesizing large quantities of discrete capillary-bound monolith elements and millimeter-scale monolith bricks is described, together with the seamless integration of individual monoliths into microfluidic chips. The impact of monolith morphology, geometry, and flow conditions on cell lysis is explored, and flow regimes are identified wherein robust selective blood cell lysis and intact bacteria passage are achieved for multiple gram-negative and gram-positive bacteria. The technique is shown to enable rapid sample preparation and bacteria analysis by single-cell Raman spectrometry. The selective lysis technique presents a unique sample preparation step supporting rapid and culture-free analysis of bacteria for the point of care.-
dc.language영어-
dc.language.isoen-
dc.publisherSPRINGERNATURE-
dc.relation.isPartOfMicrosystems & Nanoengineering-
dc.titleIsolation of intact bacteria from blood by selective cell lysis in a microfluidic porous silica monolith-
dc.typeArticle-
dc.type.rimsART-
dc.description.journalClass1-
dc.identifier.wosid000471977100002-
dc.identifier.doi10.1038/s41378-019-0063-4-
dc.identifier.bibliographicCitationMicrosystems & Nanoengineering, v.5, no.1-
dc.description.isOpenAccessN-
dc.identifier.scopusid2-s2.0-85067359505-
dc.citation.titleMicrosystems & Nanoengineering-
dc.citation.volume5-
dc.citation.number1-
dc.contributor.affiliatedAuthorHan, Jung Y.-
dc.type.docTypeArticle-
dc.subject.keywordPlusINFRARED-SPECTROSCOPY-
dc.subject.keywordPlusUNITED-STATES-
dc.subject.keywordPlusIDENTIFICATION-
dc.subject.keywordPlusINFECTIONS-
dc.subject.keywordPlusCOLUMNS-
dc.subject.keywordPlusSEPSIS-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusDEVICE-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
바이오나노대학 > 바이오나노학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Han, Jung Yeon photo

Han, Jung Yeon
BioNano Technology (Department of BioNano Technology)
Read more

Altmetrics

Total Views & Downloads

BROWSE