Scutellaria baicalensis Attenuated Neurological Impairment by Regulating Programmed Cell Death Pathway in Ischemic Stroke Mice
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Seo, Ho-won | - |
dc.contributor.author | Ha, Tae-Young | - |
dc.contributor.author | Ko, Geon | - |
dc.contributor.author | Jang, Aram | - |
dc.contributor.author | Choi, Ji-Woong | - |
dc.contributor.author | Lee, Dong-hun | - |
dc.contributor.author | Chang, Keun-A | - |
dc.date.accessioned | 2023-10-06T02:40:23Z | - |
dc.date.available | 2023-10-06T02:40:23Z | - |
dc.date.created | 2023-10-06 | - |
dc.date.issued | 2023-09 | - |
dc.identifier.issn | 2073-4409 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/89204 | - |
dc.description.abstract | Stroke is a major global health problem that causes significant mortality and long-term disability. Post-stroke neurological impairment is a complication that is often underestimated with the risk of persistent neurological deficits. Although traditional Chinese medicines have a long history of being used for stroke, their scientific efficacy remains unclear. Scutellaria baicalensis, an herbal component known for its anti-inflammatory and antioxidant properties, has traditionally been used to treat brain disorders. This study investigated the therapeutic effects of the Scutellaria baicalensis extraction (SB) during the acute stage of ischemic stroke using photothrombotic (PTB)-induced and transient middle cerebral artery occlusion (tMCAO) model mice. We found that SB mitigated ischemic brain injury, as evidenced by a significant reduction in the modified neurological severity score in the acute stage of PTB and both the acute and chronic stages of tMCAO. Furthermore, we elucidated the regulatory role of SB in the necroptosis and pyroptosis pathways during the acute stage of stroke, underscoring its protective effects. Behavioral assessments demonstrated the effectiveness of SB in ameliorating motor dysfunction and cognitive impairment compared to the group receiving the vehicle. Our findings highlight the potential of SB as a promising therapeutic candidate for stroke. SB was found to help modulate the programmed cell death pathways, promote neuroprotection, and facilitate functional recovery. | - |
dc.language | 영어 | - |
dc.language.iso | en | - |
dc.publisher | MDPI | - |
dc.relation.isPartOf | CELLS | - |
dc.title | Scutellaria baicalensis Attenuated Neurological Impairment by Regulating Programmed Cell Death Pathway in Ischemic Stroke Mice | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.description.journalClass | 1 | - |
dc.identifier.wosid | 001065157400001 | - |
dc.identifier.doi | 10.3390/cells12172133 | - |
dc.identifier.bibliographicCitation | CELLS, v.12, no.17 | - |
dc.description.isOpenAccess | Y | - |
dc.identifier.scopusid | 2-s2.0-85170153113 | - |
dc.citation.title | CELLS | - |
dc.citation.volume | 12 | - |
dc.citation.number | 17 | - |
dc.contributor.affiliatedAuthor | Seo, Ho-won | - |
dc.contributor.affiliatedAuthor | Ha, Tae-Young | - |
dc.contributor.affiliatedAuthor | Ko, Geon | - |
dc.contributor.affiliatedAuthor | Jang, Aram | - |
dc.contributor.affiliatedAuthor | Choi, Ji-Woong | - |
dc.contributor.affiliatedAuthor | Lee, Dong-hun | - |
dc.contributor.affiliatedAuthor | Chang, Keun-A | - |
dc.type.docType | Article | - |
dc.subject.keywordAuthor | stroke | - |
dc.subject.keywordAuthor | Scutellaria baicalensis | - |
dc.subject.keywordAuthor | transient MCAO | - |
dc.subject.keywordAuthor | photothrombotic stroke model | - |
dc.subject.keywordAuthor | necroptosis | - |
dc.subject.keywordAuthor | pyroptosis | - |
dc.subject.keywordAuthor | cell death | - |
dc.subject.keywordPlus | CEREBRAL-ISCHEMIA | - |
dc.subject.keywordPlus | ISCHEMIA/REPERFUSION INJURY | - |
dc.subject.keywordPlus | BRAIN ISCHEMIA | - |
dc.subject.keywordPlus | BAICALIN | - |
dc.subject.keywordPlus | NECROPTOSIS | - |
dc.subject.keywordPlus | PYROPTOSIS | - |
dc.subject.keywordPlus | APOPTOSIS | - |
dc.subject.keywordPlus | ACTIVATION | - |
dc.subject.keywordPlus | THERAPY | - |
dc.relation.journalResearchArea | Cell Biology | - |
dc.relation.journalWebOfScienceCategory | Cell Biology | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, Republic of Korea(13120)031-750-5114
COPYRIGHT 2020 Gachon University All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.