Brain endothelial cell-derived extracellular vesicles with a mitochondria-targeting photosensitizer effectively treat glioblastoma by hijacking the blood‒brain barrier
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nguyen, Cao T.G. | - |
dc.contributor.author | Kang, Ji Hee | - |
dc.contributor.author | Kang, Su Jin | - |
dc.contributor.author | Truong, Hoang Q. | - |
dc.contributor.author | Kang, Han Chang | - |
dc.contributor.author | Rhee, Won Jong | - |
dc.contributor.author | Zhang, Yu Shrike | - |
dc.contributor.author | Ko, Young Tag | - |
dc.contributor.author | Shim, Min Suk | - |
dc.date.accessioned | 2023-10-17T00:40:10Z | - |
dc.date.available | 2023-10-17T00:40:10Z | - |
dc.date.created | 2023-09-08 | - |
dc.date.issued | 2023-09 | - |
dc.identifier.issn | 2211-3835 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/89359 | - |
dc.description.abstract | Glioblastoma (GBM) is the most aggressive malignant brain tumor and has a high mortality rate. Photodynamic therapy (PDT) has emerged as a promising approach for the treatment of malignant brain tumors. However, the use of PDT for the treatment of GBM has been limited by its low blood‒brain barrier (BBB) permeability and lack of cancer-targeting ability. Herein, brain endothelial cell-derived extracellular vesicles (bEVs) were used as a biocompatible nanoplatform to transport photosensitizers into brain tumors across the BBB. To enhance PDT efficacy, the photosensitizer chlorin e6 (Ce6) was linked to mitochondria-targeting triphenylphosphonium (TPP) and entrapped into bEVs. TPP-conjugated Ce6 (TPP-Ce6) selectively accumulated in the mitochondria, which rendered brain tumor cells more susceptible to reactive oxygen species-induced apoptosis under light irradiation. Moreover, the encapsulation of TPP-Ce6 into bEVs markedly improved the aqueous stability and cellular internalization of TPP-Ce6, leading to significantly enhanced PDT efficacy in U87MG GBM cells. An in vivo biodistribution study using orthotopic GBM-xenografted mice showed that bEVs containing TPP-Ce6 [bEV(TPP-Ce6)] substantially accumulated in brain tumors after BBB penetration via transferrin receptor-mediated transcytosis. As such, bEV(TPP-Ce6)-mediated PDT considerably inhibited the growth of GBM without causing adverse systemic toxicity, suggesting that mitochondria are an effective target for photodynamic GBM therapy. © 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences | - |
dc.language | 영어 | - |
dc.language.iso | en | - |
dc.publisher | Chinese Academy of Medical Sciences | - |
dc.relation.isPartOf | Acta Pharmaceutica Sinica B | - |
dc.title | Brain endothelial cell-derived extracellular vesicles with a mitochondria-targeting photosensitizer effectively treat glioblastoma by hijacking the blood‒brain barrier | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.description.journalClass | 1 | - |
dc.identifier.wosid | 001077753400001 | - |
dc.identifier.doi | 10.1016/j.apsb.2023.03.023 | - |
dc.identifier.bibliographicCitation | Acta Pharmaceutica Sinica B, v.13, no.9, pp.3834 - 3848 | - |
dc.description.isOpenAccess | Y | - |
dc.identifier.scopusid | 2-s2.0-85153613830 | - |
dc.citation.endPage | 3848 | - |
dc.citation.startPage | 3834 | - |
dc.citation.title | Acta Pharmaceutica Sinica B | - |
dc.citation.volume | 13 | - |
dc.citation.number | 9 | - |
dc.contributor.affiliatedAuthor | Kang, Ji Hee | - |
dc.contributor.affiliatedAuthor | Ko, Young Tag | - |
dc.type.docType | Article | - |
dc.subject.keywordAuthor | Blood‒brain barrier | - |
dc.subject.keywordAuthor | Chlorin e6 | - |
dc.subject.keywordAuthor | Extracellular vesicle | - |
dc.subject.keywordAuthor | Glioblastoma | - |
dc.subject.keywordAuthor | Mitochondria-targeting photosensitizer | - |
dc.subject.keywordAuthor | Photodynamic therapy | - |
dc.subject.keywordAuthor | Transferrin receptor | - |
dc.subject.keywordAuthor | Triphenylphosphonium | - |
dc.subject.keywordPlus | PHOTODYNAMIC THERAPY | - |
dc.subject.keywordPlus | IN-VIVO | - |
dc.subject.keywordPlus | EXOSOMES | - |
dc.subject.keywordPlus | NANOPARTICLES | - |
dc.subject.keywordPlus | PERSPECTIVES | - |
dc.subject.keywordPlus | EFFICIENT | - |
dc.subject.keywordPlus | DELIVERY | - |
dc.subject.keywordPlus | CARRIERS | - |
dc.subject.keywordPlus | TUMORS | - |
dc.relation.journalResearchArea | Pharmacology & Pharmacy | - |
dc.relation.journalWebOfScienceCategory | Pharmacology & Pharmacy | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, Republic of Korea(13120)031-750-5114
COPYRIGHT 2020 Gachon University All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.