Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

EGF-expressed human mesenchymal stem cells inhibit collagenase1 expression in keratinocytes

Authors
Lee, Jeong HyunChellasamy, GayathriYun, KyusikNam, Myeong Jin
Issue Date
Oct-2023
Publisher
ELSEVIER SCIENCE INC
Keywords
Conditioned media; Human epidermal growth factor; MAPK pathway; Matrix metalloproteinase
Citation
CELLULAR SIGNALLING, v.110
Journal Title
CELLULAR SIGNALLING
Volume
110
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/90405
DOI
10.1016/j.cellsig.2023.110827
ISSN
0898-6568
1873-3913
Abstract
Mesenchymal stem cells (MSCs) repair tissue injury by upregulating the paracrine secretion of cytokines and growth factors. Human MSC has been recognized as a promising therapeutic material for treatment of various human diseases. Even though the effect of epidermal growth factor (EGF) has been well investigated, the synergetic effect of EGF and MSC has not been studied. Therefore, we expect our basic study to contribute to developing new therapeutic reagents for skin diseases or innovative cosmetics. In this study, we examined the effect of human epidermal growth factor-transfected MSCs (hEGF MSCs) on human keratinocyte HaCaT cell proliferation and the mechanisms that regulate matrix metalloproteinase (MMP)-1 expression in HaCaT cells. To identify the hEGF plasmid and its transfection into MSCs, we performed gel electrophoresis and quantitative PCR. Proliferation and migration of HaCaT cells were examined using water Soluble Tetrazolium (WST-1) and woundhealing assays, respectively. Zymography was performed to investigate the correlation between hEGF MSCconditioned medium (CM)-treated HaCaT cells and MMP-1 expression. We found that cell proliferation and wound-healing rates were increased in hEGF MSC-CM-treated HaCaT cells compared to those in MSC-CM-treated cells, and conversely collagenase activity was decreased. The mRNA and protein levels of MMP-1 were also decreased in hEGF MSC-CM-treated HaCaT cells. 2-DE analysis showed that the expression of carboxypeptidase, which promotes growth factors and wound healing, was increased in hEGF MSC-CM-treated HaCaT cells. Finally, western blot was used to determine whether MMP-1 expression was reduced via the mitogen-activated protein kinase (MAPK) pathway; the results showed that the levels of MAPK pathway-related proteins (pErk, pJNK, and p-p38) and the levels of transcription factors (pCREB, NF kappa B, and p-c-Fos) were decreased. In addition, pAkt expression was found to be elevated. The results of our study suggest that hEGF MSCs promote cell proliferation and reduce MMP-1 expression via the MAPK pathway in human keratinocyte HaCaT cells.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Nam, Myeong Jin photo

Nam, Myeong Jin
BioNano Technology (Department of Life Sciences)
Read more

Altmetrics

Total Views & Downloads

BROWSE