Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Identifying Molecular Markers for Ficus erecta Thunb. Based on Complete Plastome Sequences of Korean Figs (Ficus L., Moraceae)open access

Authors
Jung, JoonhyungKim, Tae-HeeKwon, Seog WooPark, Hyun JiChoi, In SukKim, Joo-Hwan
Issue Date
Mar-2024
Publisher
MDPI
Keywords
Korean figs; plastid genome (plastome); molecular markers
Citation
DIVERSITY-BASEL, v.16, no.3
Journal Title
DIVERSITY-BASEL
Volume
16
Number
3
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/91181
DOI
10.3390/d16030129
ISSN
1424-2818
1424-2818
Abstract
Plastome sequences are crucial in plant studies due to their role in examining genomic evolution, understanding phylogenetic relationships, and developing molecular markers. Despite the collection of information about Korean figs, their genomic data remain underexplored. We utilize next-generation sequencing and PCR techniques to investigate genomic data and to develop and validate molecular markers. In this study, we characterize the complete plastomes of Korean figs: F. erecta, F. erecta var. sieboldii, F. sarmentosa var. nipponica, and F. sarmentosa var. thunbergii, which range in length from 160,276 to 160,603 bp. These genomes comprise 78 plastid protein-coding genes, 30 tRNA, and four rRNA, with the exception of one pseudogene, infA. We discovered that F. erecta and F. erecta var. sieboldii share identical plastome sequences. Phylogenomic analysis indicates the monophyly of Ficus, although the relationships among its subgenera remain unclear. We discovered that Ficus possesses 467 molecular diagnostic characters in its plastid protein-coding genes compared to other Moraceae groups, and F. erecta exhibits 33 molecular diagnostic characters. Single nucleotide polymorphisms in ndhD, petA, and rbcL were effectively used to develop molecular markers for distinguishing F. erecta from other figs. Additionally, we provided a straightforward PCR protocol for utilizing these newly developed molecular markers.
Files in This Item
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Joo-Hwan photo

Kim, Joo-Hwan
BioNano Technology (Department of Life Sciences)
Read more

Altmetrics

Total Views & Downloads

BROWSE