Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Crack-Free Single-Crystalline LiNiO2 for High Energy Density All-Solid-State Batteries

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Dongsoo-
dc.contributor.authorMesnier, Alex-
dc.contributor.authorManthiram, Arumugam-
dc.date.accessioned2024-07-15T05:30:20Z-
dc.date.available2024-07-15T05:30:20Z-
dc.date.issued2024-05-
dc.identifier.issn1614-6832-
dc.identifier.issn1614-6840-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/91990-
dc.description.abstractSingle-crystalline layered oxide (LiNi1-x-yMnxCoyO2) cathodes have been found to exhibit exceptional electrochemical properties when coupled with various inorganic solid electrolytes (ISEs) in all-solid-state batteries (ASSBs). Their advantages stem from the robust morphological integrity with the absence of grain boundaries and the high electrochemical oxidative stability. Here, ASSBs featuring single-crystalline LiNiO2 (LNO) with the highest Ni content are reported, offering a high theoretical specific capacity of 275 mAh g(-1) alongside a high average discharge voltage (3.7 V vs Li+/Li). Through a careful investigation, it is demonstrated that micron-sized single-crystalline LNO (mu SC-LNO) composite cathodes with a halide ISE exhibit a high initial discharge capacity of 205 mAh g(-1) with an outstanding cycle performance over 200 cycles in room-temperature ASSBs. The significance of engineering parameters is emphasized, such as particle size and specific density, in promoting a homogeneous and fast Li+ transport within the composite cathodes. Furthermore, the formation of undesirable interphase between the halide ISE in the cathode and sulfide ISE separator is elucidated, which may be a critical factor impeding long-term cyclability of ASSBs. This work provides insights into the design of composite cathodes for high-energy-density ASSBs.-
dc.language영어-
dc.language.isoENG-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleCrack-Free Single-Crystalline LiNiO2 for High Energy Density All-Solid-State Batteries-
dc.typeArticle-
dc.identifier.wosid001193232100001-
dc.identifier.doi10.1002/aenm.202303490-
dc.identifier.bibliographicCitationADVANCED ENERGY MATERIALS, v.14, no.19-
dc.description.isOpenAccessN-
dc.identifier.scopusid2-s2.0-85188895075-
dc.citation.titleADVANCED ENERGY MATERIALS-
dc.citation.volume14-
dc.citation.number19-
dc.type.docTypeArticle-
dc.publisher.location독일-
dc.subject.keywordAuthorall-solid-state batteries-
dc.subject.keywordAuthorelectrochemistry-
dc.subject.keywordAuthorhalide solid electrolyte-
dc.subject.keywordAuthorlithium nickel oxide-
dc.subject.keywordAuthorsingle crystal-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusELECTROCHEMISTRY-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusCATHODES-
dc.subject.keywordPlusREDOX-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Dongsoo photo

Lee, Dongsoo
Engineering (화공생명배터리공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE