Detailed Information

Cited 21 time in webofscience Cited 24 time in scopus
Metadata Downloads

Separation detection of hemoglobin and glycated hemoglobin fractions in blood using the electrochemical microfluidic channel with a conductive polymer composite sensor

Full metadata record
DC Field Value Language
dc.contributor.authorHossain, M. D. Mozammal-
dc.contributor.authorMoon, Jong-Min-
dc.contributor.authorGurudatt, N. G.-
dc.contributor.authorPark, Deog-Su-
dc.contributor.authorChoi, Cheol Soo-
dc.contributor.authorShim, Yoon-Bo-
dc.date.available2020-02-27T02:21:33Z-
dc.date.created2020-02-04-
dc.date.issued2019-10-01-
dc.identifier.issn0956-5663-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/921-
dc.description.abstractSeparation and detection of hemoglobin (Hb) and glycated hemoglobin fractions (HbA1c, HbAld(1+2), HbAle, HbAld3a, HbAl(a+b), HbA2, and HbAld3b) was performed using an electrochemical AC field modulated separation channel (EMSC) coupled with a sensor probe. The sensor was fabricated based on immobilization of a redox mediator on the poly(2,2':5',5 ''-terthiophene-3'-p-benzoic acid, pTTBA) and N,S-doped porous carbon (NSPC) nanocomposite. The different types of catalytic redox mediators such as Nile Blue (NB), toluidine blue O (TBO), and Neutral Red (NR) were evaluated to achieve the efficient detection. Of these, the NB-based sensor showed the best analytical signal for Hb and HbA1c, thus it was characterized using various electrochemical and surface analysis methods. After that, the sensor was coupled with the EMSC to achieve the separation detection of the Hb family, The frequency and amplitude of the AC electrical field applied onto the EMSC walls were the main driving forces for the separation and sensitive detection of the analytes. Under optimized conditions, linear dynamic ranges for Hb and HbA1c among their fractions were obtained between 1.0 x 10(-6) to 3.5 mM and 3.0 x 10(-6) to 0.6 mM with the detection limit of 8.1 x 10(-7) +/- 3.0 x 10(-8 )and 9.2 x 10(-7 )+/- 5 x 10(-8) mM, respectively. Interference effects of other biomolecules were also investigated and the clinical applicability of the device was evaluated by the determination of total Hb and % HbA1c in real human blood samples.-
dc.language영어-
dc.language.isoen-
dc.publisherELSEVIER ADVANCED TECHNOLOGY-
dc.relation.isPartOfBIOSENSORS & BIOELECTRONICS-
dc.subjectMINOR COMPONENTS-
dc.subjectCHROMATOGRAPHY-
dc.subjectHBA(1C)-
dc.titleSeparation detection of hemoglobin and glycated hemoglobin fractions in blood using the electrochemical microfluidic channel with a conductive polymer composite sensor-
dc.typeArticle-
dc.type.rimsART-
dc.description.journalClass1-
dc.identifier.wosid000487175000035-
dc.identifier.doi10.1016/j.bios.2019.111515-
dc.identifier.bibliographicCitationBIOSENSORS & BIOELECTRONICS, v.142-
dc.identifier.scopusid2-s2.0-85069049648-
dc.citation.titleBIOSENSORS & BIOELECTRONICS-
dc.citation.volume142-
dc.contributor.affiliatedAuthorChoi, Cheol Soo-
dc.type.docTypeArticle-
dc.subject.keywordAuthorClinical diagnosis-
dc.subject.keywordAuthorHemoglobin-
dc.subject.keywordAuthorGlycated hemoglobin-
dc.subject.keywordAuthorAmperometric sensor-
dc.subject.keywordAuthorElectrochemical microfluidic channel-
dc.subject.keywordAuthorBlood-
dc.subject.keywordPlusMINOR COMPONENTS-
dc.subject.keywordPlusCHROMATOGRAPHY-
dc.subject.keywordPlusHBA(1C)-
dc.relation.journalResearchAreaBiophysics-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryBiophysics-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
의과대학 > 의예과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Cheol Soo photo

Choi, Cheol Soo
College of Medicine (Premedical Course)
Read more

Altmetrics

Total Views & Downloads

BROWSE