Detailed Information

Cited 5 time in webofscience Cited 5 time in scopus
Metadata Downloads

Are there higher pedestrian fatalities in larger cities?: A scaling analysis of 115 to 161 largest cities in the United States

Full metadata record
DC Field Value Language
dc.contributor.authorChang, Yu Sang-
dc.contributor.authorLee, Won Jae-
dc.contributor.authorLee, Jae Hee-
dc.date.available2020-02-28T06:44:11Z-
dc.date.created2020-02-06-
dc.date.issued2016-
dc.identifier.issn1538-9588-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/9756-
dc.description.abstractObjective: In 2012, 4,743 pedestrians were killed in the United States, representing 14% of total traffic fatalities. The number of pedestrians injured was higher at 76,000. Therefore, 36 out of 52 of the largest cities in the United States have adopted a citywide target of reducing pedestrian fatalities. The number of cities adopting the reduction goal during 2011 and 2012 increased rapidly with 8 more cities. We examined the scaling relationship of pedestrian fatality counts as a function of the population size of 115 to 161 large U.S. cities during the period of 1994 to 2011. We also examined the scaling relationship of nonpedestrian and total traffic fatality counts as a function of the population size.Methods: For the data source of fatality measures we used Traffic Safety Facts Fatality Analysis Reporting System/General Estimates System annual reports published each year from 1994 to 2011 by the NHTSA. Using the data source we conducted both annual cross-sectional and panel data bivariate and multivariate regression models. In the construction of the estimated functional relationship between traffic fatality measures and various factors, we used the simple power function for urban scaling used by Bettencourt etal. (2007, 2010) and the refined STIRPAT (stochastic impacts by regression on population, affluence, and technology) model used in Dietz and Rosa (1994, 1997) and York etal. (2003).Results: We found that the scaling relationship display diseconomies of scale or sublinear for pedestrian fatalities. However, the relationship displays a superlinear relationship in case of nonpedestrian fatalities. The scaling relationship for total traffic fatality counts display a nearly linear pattern. When the relationship was examined by the 4 subgroups of cities with different population sizes, the most pronounced sublinear scaling relationships for all 3 types of fatality counts was discovered for the subgroup of megacities with a population of more than 1 million.Conclusions: The scaling patterns of traffic fatalities of subgroups of cities depend on population sizes of the cities in subgroups. In particular, 9 megacities with populations of more than 1 million are significantly different from the remaining cities and should be viewed as a totally separate group. Thus, analysis of the patterns of traffic fatalities needs to be conducted within the group of megacities separately from the other cities with smaller population sizes for devising prevention policies to reduce traffic fatalities in both megacities and smaller cities.-
dc.language영어-
dc.language.isoen-
dc.publisherTAYLOR & FRANCIS INC-
dc.relation.isPartOfTRAFFIC INJURY PREVENTION-
dc.subjectCO2 EMISSIONS-
dc.subjectSAFETY-
dc.subjectIMPACT-
dc.subjectPOPULATION-
dc.subjectNUMBERS-
dc.subjectURBANIZATION-
dc.subjectWALKING-
dc.titleAre there higher pedestrian fatalities in larger cities?: A scaling analysis of 115 to 161 largest cities in the United States-
dc.typeArticle-
dc.type.rimsART-
dc.description.journalClass1-
dc.identifier.wosid000384322100010-
dc.identifier.doi10.1080/15389588.2016.1162904-
dc.identifier.bibliographicCitationTRAFFIC INJURY PREVENTION, v.17, no.7, pp.720 - 728-
dc.identifier.scopusid2-s2.0-84987704764-
dc.citation.endPage728-
dc.citation.startPage720-
dc.citation.titleTRAFFIC INJURY PREVENTION-
dc.citation.volume17-
dc.citation.number7-
dc.contributor.affiliatedAuthorChang, Yu Sang-
dc.contributor.affiliatedAuthorLee, Won Jae-
dc.contributor.affiliatedAuthorLee, Jae Hee-
dc.type.docTypeArticle-
dc.subject.keywordAuthorPedestrian traffic fatality-
dc.subject.keywordAuthornonpedestrian traffic fatality-
dc.subject.keywordAuthortotal traffic fatality-
dc.subject.keywordAuthorpopulation size of cities-
dc.subject.keywordAuthorsubgroups of cities-
dc.subject.keywordPlusCO2 EMISSIONS-
dc.subject.keywordPlusSAFETY-
dc.subject.keywordPlusIMPACT-
dc.subject.keywordPlusPOPULATION-
dc.subject.keywordPlusNUMBERS-
dc.subject.keywordPlusURBANIZATION-
dc.subject.keywordPlusWALKING-
dc.relation.journalResearchAreaPublic, Environmental & Occupational Health-
dc.relation.journalResearchAreaTransportation-
dc.relation.journalWebOfScienceCategoryPublic, Environmental & Occupational Health-
dc.relation.journalWebOfScienceCategoryTransportation-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassssci-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사회과학대학 > 의료경영학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Won Jae photo

Lee, Won Jae
Social Sciences (의료산업경영학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE