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ABSTRACT In a multicore neuromorphic processor embedding a learning algorithm, a presynaptic neuron
is occasionally located in a different core from the cores of its postsynaptic neurons, which needs neuron-
to-target core communication for inference through a network router. The more neuron-to-target core
connections, the more workload is imposed on the network router, which the more likely causes event routing
congestion. Another significant challenge arising from a large number of neuron-to-core connections is data
duplication in multiple cores for the learning algorithm to access the full data to evaluate weight update.
This data duplication consumes a considerable amount of on-chip memory while the memory capacity per
core is strictly limited. The optimal distribution of neurons over cores is categorized as an optimization
problem with constraints, which may allow the discrete Lagrangian multiplier method (LMM) to optimize
the distribution. Proof-of-concept demonstrations were made on the distribution of neurons over cores
in a neuromorphic processor embedding a learning algorithm. The choice of the learning algorithm was
twofold: a simple spike timing-dependent plasticity learning rule and event-driven random backpropagation
algorithm, which are categorized as a two- and three-factor learning rule, respectively. As a result, the discrete
LMM significantly reduced the number of neuron-to-core connections for both algorithms by approximately
55% in comparison with the number for random distribution cases, implying a 55% reduction in the
workload on the network router and a 52.8% reduction in data duplication. The code is available on-line
(https://github.com/guhyunkim/Optimize-neuron-distribution).

INDEX TERMS Multicore neuromorphic processor, spiking neural network, discrete Lagrange multiplier
method, neuron distribution optimization.

I. INTRODUCTION
Neuromorphic hardware usually emulates spiking neural net-
work (SNN), which is a time-dependent model, to accelerate
large-scale model simulation (emulation)[1] To date, vari-
ous prototypes of neuromorphic hardware have been intro-
duced, including TrueNorth [2], SpiNNaker [3], Loihi [4],
MorphIC [5], DYNAPs [6], and BrainScaleS [7]. Multi-
core architecture is commonplace in most prototypes, which
employs many cores, each with a group of neurons and
their fan-in synapses. A fan-in (fan-out) synapse of a neuron
explains a synapse between the neuron and its presynap-
tic (postsynaptic) neuron. The multicore architecture allows
the neurons and their fan-in synapses in the same core to
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share hardware resources such as arithmetic logic circuits
and memory for common variables among them when they
are optimally distributed over cores. Because the forward
propagation of events (spikes) to a neuron should address
its fan-in synaptic data, placing the neuron and its fan-in
synapses in the same core avoids unnecessary data transfer
between cores. Therefore, all data required for the update on
neuronal variables for a neuron are available within the source
core, which are referred to as topologically local data.

Communication between cores commonly follows the
address-event representation (AER) protocol [8], [9] Upon
an event from a particular neuron in a particular core,
the addresses of the neuron and core are delivered to the
target neurons through communication buses; consequently,
the neuronal and synaptic variables are updated in the cores
of the target neurons. The forward propagation of events is
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the basic principle of inference so that the multicore archi-
tecture with topologically local data supports energy-efficient
inference.

Inference aside, an important concern is on-chip learn-
ing with an appropriate learning rule (learner) embedded
in each core of a multicore neuromorphic processor. This
enables the hardware to learn in real time without external
general-purpose hardware. Such embedded learners need to
satisfy strict constraints for energy- and data-efficient learn-
ing [10] The constraints include (i) event-driven update,
(ii) use of topologically and temporally local data only,
and (iii) minimal use of variables in the learner. If events
are sparse, it is desirable for the learner to update the weight
upon events rather than dedicated update periods as for
deep learning, which can avoid unnecessary update pro-
cesses. Given that the state-of-the-art architecture of neu-
romorphic hardware allows inter-core communication to
transfer the addresses of a firing neuron and its core only,
the learner needs the full access to the variables incorporated
into the algorithm within the core. However, because the
memory capacity per core is strictly limited, the learner is
desired to use local (rather than global) data only. Gener-
ally, different learners include different numbers of variables.
Two-factor learning rules, e.g., Hebb rule [11], [12] and
spike timing-dependent plasticity (STDP) rule [13], [14], use
two variables (one pre- and one postsynaptic variable), and
three-factor learning rules [15] uses one additional variable.
It is desired for the learner to use the minimal number of
variables because of the limited memory capacity per core.

FIGURE 1. Schematic of data allocation to cores of a digital
neuromorphic processor embedding (a) a two-factor and (b) a
three-factor learning rule. A pre- and postsynaptic state variable are
denoted by s1 and s2, respectively. A third factor for a three-factor
learning rule is denoted by vm. Neuron i (i = 1,2,3,4) is denoted by ni .

Pre- and postsynaptic neurons are occasionally placed in
different cores as illustrated in Fig. 1. For a toy network in
Fig. 1(a), when Neuron 1 in Core 1 fires a spike, the addresses
of the neuron and its core are delivered to its postsynap-
tic neurons (Neurons 2 and 4 in Core 2 and Neuron 3 in
Core 3) through a network router. The addresses are deliv-
ered to a destination core once irrespective of the number
of postsynaptic neurons in the same core. This is because
the event is re-distributed within the core as for Loihi [4],
increasing the bandwidth (events/s) of the network router.

Therefore, placing the postsynaptic neurons in the same core
alleviates the workload on the router, thereby avoiding traffic
congestion (routing delays). Additionally, because the learner
needs the full access to the data for weight update, the variable
for Neuron 1 should be duplicated in the target cores. For
instance, considering a two-factor learning rule, the variable
for Neuron 1 (s1) is duplicated in Cores 2 and 3 for each
learner to use the duplicated variable to update. Given that
the neurons in the same core can share the duplicated vari-
able, minimizing the number of target cores can minimize
data duplication. For a three-factor learning rule, such data
duplication and the consequent use of memory are generally
severer as shown in Fig. 1(b); each target core (Cores 2 and 3)
duplicates the variables in different cores (here, s1 and vm)
because the learner needs to access them. Therefore, the opti-
mal distribution of neurons over cores reduces the number of
neuron-to-core connections, which consequently reduces the
probable traffic congestion and data duplication.

A naïve rule for optimal distribution is to place all postsy-
naptic neurons in the same core. However, generally, the neu-
rons in a network are intertwined; the complexity in network
topology renders the naïve rule infeasible. In this regard,
we propose a method to minimize neuron-to-core connec-
tions and consequent data duplication. This method is based
on the Lagrange multiplier method (LMM) with an appro-
priate objective function and constraints on the neuron- and
synapse-accommodation capacity of a core. The model archi-
tecture of our concern features as follows:
• Each core has no local channel for local event routing
(when pre- and postsynaptic neurons are located in the
same core), so that all events are routed by the network
router.

• Each event is distributed within a target core when the
target core includes multiple postsynaptic neurons.

• Each neuron is placed in the same core as its fan-in
synapses and its own state variable(s) that is addressed
when updating its fan-in and fan-out synaptic weights.

• The learner in each core has the full access to all state
variables of the algorithm such that the state variables
located in different cores are duplicated in the core.

In fact, these constraints correspond to those of Loihi [4],
which was taken as a benchmark architecture in this study.
Loihi is comprised of 128 neuromorphic cores; each maxi-
mally includes 1,024 point neurons, 4,096 fan-out connec-
tions to other cores, and 4,096 fan-in connections from other
cores. A single fan-in connection to a core is virtually wired
to multiple target neurons through fan-in synapses. The num-
bers of neurons and synapses in the core are variable with the
limit posed by on-core memory capacity. The cores are inter-
connected through asynchronous network-on-chips (NoCs),
each of which is shared by four neighboring cores. Upon
an event from a particular core, a data packet of target core
and axon indices is emitted and delivered to the target cores
through a chain of NoCs.

Section II introduces the basic principle of the LMM
(Section II.A) and elaborates its application to the task
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of optimal distribution of neurons over multiple cores
(Section II.B), and estimation of additional memory usage
due to data duplication (Section II.C). Section III presents
the optimization results for two learning algorithms: spike
timing dependent plasticity (STDP) rule [13], [14] and
event-driven random backpropagation (eRBP) algorithm [16]
as a representative two- and three-factor learning rule, respec-
tively. The application of this optimization method to differ-
ent model architectures is discussed in Section IV. Finally,
Section V concludes this study.

II. OPTIMIZATION METHOD
A. LAGRANGE MULTIPLIER METHOD
The LMM finds the local maxima or minima of a function
f with given equality constraints c’s = 0 [17] Assume a
task of optimizing f (x, y) with a single equality constraint
c(x, y) = 0. The maximum or minimum function value
k is placed at a contact point between the two functions
f (x, y) = k and c(x, y) = 0 [18] Because the two functions
have a common tangent at the contact point, their gradient
vectors are parallel to each other:

∇x,yf = −λ∇x,yc. (1)

The relative magnitude of the two gradient vectors is
defined by λ, which is referred to as a Lagrange multiplier.
Therefore, a solution to (1) is an optimal point (x, y) for func-
tion f (x, y) given c(x, y) = 0. The Lagrangian function L for
function f (x, y) is given by L (x, y, λ) = f (x, y)+ λc (x, y).
The gradient vector of L is expressed as ∇x,y,λL (x, y, λ) =
∇x,y [f (x, y)+ λc (x, y)]+∇λ [λc (x, y)]. This equation leads
to the following equivalence:

∇x,y,λL (x, y, λ) = 0⇐⇒

∇x,yf = −λ∇x,yc & c (x, y) = 0,

satisfying the condition in (1) and constraint c(x, y) = 0.
Therefore, a solution to (1) is acquired by solving
∇x,y,λL (x, y, λ)= 0. The same holds for a multivariable
function f (x) (x = [x1, x2, . . . , xn]) with multiple con-
straints c(x) = 0, where c(x) = [c1(x), c2(x), . . . , ck (x)]. Its
Lagrangian function is expressed as L (x, λ) = f (x)+λ·c (x),
where λ = [λ1, λ2, . . . , λk ].

For discrete x, a discrete Lagrangian function Ld is defined
to minimize f (x) subject to c(x) = 0 as proposed by
Wah and Wu [19]:

Ld (x,λ) = f (x)+ λ · H(c (x) ), (2)

where H is a continuous transformation function satisfying{
H (c (x)) = 0 if c (x) = 0
H (c (x)) > 0 otherwise.

(3)

The discrete LMM accepts not only equality but also inequal-
ity constraints such as h(x) ≤ 0. In this case, the inequality
constraint is converted to an equality constraint c(x) such that
c(x)=max(0, h(x)), which indicates c(x)= 0 when h(x)≤ 0.

Similarly, the inequality constraint h(x)≥ 0 can be converted
to c(x) (= min(0, h(x))).

Because the minimal value of f (x) is concerned, we evalu-
ate the direction of maximum potential drop (DMPD) for Ld
at a point xi with a given λi as follows:

1xLd (xi,λi) = xi+1 − xi,

where xi+1 = argmin
xi+1 ∈α(xi)

= Ld (xi+1,λi). Therefore, the x

value on the subsequent iterative step (xi+1) causes the largest
decrease in Ld, which is chosen from a set of user-defined
neighborhood points α including the current point xi. Subse-
quently, λ is updated such that

λi+1 = λi + ηH (c (xi)) . (4)

Here, the update rate for λ is determined by η. The opti-
mal x and λ are reached by iterating this update step until
H (c(x))= 0, i.e., c(x)= 0, which indicates the local minimal
value of f (x) [19].

B. APPLICATION OF DISCRETE LMM TO OPTIMIZATION
OF SPIKING NEURON DISTRIBUTION
We consider an SNN with Q neurons distributed overM neu-
romorphic cores. To describe the SNN topology, we define
matrix T

(
∈ ZQ×Q;T [i, j] ∈ {0, 1}

)
. Matrix T indicates the

synaptic connection from presynaptic neuron i to postsynap-
tic neuron j such that T [i, j] = 1 when the connection is
present, and T [i, j] = 0 otherwise. The distribution of Q
neurons over M neuromorphic cores is defined by matrix X(
∈ ZQ×M ;X [i, j] ∈ {0, 1}

)
such that X [i, j]= 1 when neuron

i is placed in core j, and X [i, j] = 0 otherwise. The product
T [i,:]X [:, j] results in the number of synaptic connections
from presynaptic neuron i to its postsynaptic neurons in core j.
Note that [i,:] ([:, i]) denotes all elements in the ith row
(column).

The discrete LMM minimizes the objective function f in
(2), which should be chosen considering the architecture of
a multicore neuromorphic processor. Here, we consider the
duplication of presynaptic state variables over multiple cores
as a critical cause of inefficient usage of memory. When
a core includes multiple postsynaptic neurons of a presy-
naptic neuron in a different core, the postsynaptic neurons
can share the presynaptic state variables [4], [20] Therefore,
irrespective of the number of such postsynaptic neurons,
the presynaptic state variables are duplicated once in the core.
In this case, the number of such duplications is one—equal to
the number of neuron-to-core, rather than neuron-to-neuron,
connections as for Loihi [4]. Considering this architectural
aspect, we chose the total number of neuron-to-core con-
nections (NNC) as the objective function. The neuron-to-core
connection number for a given neuron and core is binary;
Neuron 1 in Fig. 1(a) has a fan-out connection with Core 2 so
that the neuron-to-core connection number is one unlike the
neuron-to-neuron connection number, which is two in this
specific case. Note that the total neuron-to-core connection
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number NNC includes connections of neurons to their own
cores, i.e., self-connections.

To evaluate NNC, we express a neuron-to-core connection
map using matrix P that is defined as

P [i, j] =

{
1 if T [i, :]X [:,j] > 0
0 otherwise.

(5)

A nonzero element P[i, j] indicates the presence of con-
nection from neuron i to core j. Therefore, adding all ele-
ments in matrix P yields the number of neuron-to-core
connections NNC:

NNC =
∑Q−1

i=0

∑M−1

j=0
P [i, j]. (6)

Given SNN topology T, NNC is a function of X only, which
defines the distribution of the neurons over multiple cores.

We consider three constraints (c1, c2, and c3) regarding the
architecture of a multicore neuromorphic processor.
• Constraint 1: each neuron is placed in a single core.
• Constraint 2: each core can hold maximal N neurons in
total.

• Constraint 3: each core can hold maximal S synapses in
total.

Constraint 1 indicates no duplication of a neuron over
multiple cores. Constraints 2 and 3 mainly arise from the
limited capacity of memory in a core as for Loihi [4].
Note that it is commonplace to place neurons and their
fan-in synapses in the same core for efficient evaluation
of synaptic transmission [20] Thus, the synapses in Con-
straint 3 are fan-in synapses. Constraints 1, 2, and 3 can be
expressed as

∀i, c1 [i] =
∑M−1

j=0
X [i, j]− 1 = 0, (7)

∀j, c2 [j] = max
(∑Q−1

i=0
X [i, j]− N , 0

)
= 0, (8)

and

∀j, c3 [j] = max
(∑L−1

i=0
T [i, :]X [:, j]− S, 0

)
= 0, (9)

respectively. Vector c1 with elements in (7) is aQ-long vector
because the index i is in the range 0 – (Q-1). Vectors c2 and c3
areM -long vectors with elements in (8) and (9), respectively.
Similar to NNC(X), c1, c2, and c3 are functions of X given
SNN topology T.

Considering the objective function NNC and three con-
straints, a discrete Lagrangian function Ld is given by

Ld (X,λ1,λ2,λ3)

= NNC + [λ1 · H (c1)+ λ2 · H (c2)+ λ3 · H (c3)] . (10)

The Lagrange multipliers λ1, λ2, and λ3 have the same
dimension as c1, c2, and c3, respectively. Transformation
function H was considered to be H (x) = x2, satisfying the
requirement (3). All elements of matrix X were initialized to
zero, whereas the elements of vectors λ1, λ2, and λ3 were
initialized to one. The update rate η was set to 0.1. The set

of neighborhood points α to find the DMPD at a given point
X is defined as α (X) =

{
X ′:
∥∥X ′ − X∥∥1 ≤ 1

}
, where ||x||1

means the L1 norm of x. Because matrix X is a Q×M binary
matrix, it has Q × M neighborhoods with an L1 distance
of one. Therefore, |α(X)| = Q × M+1, including X’=X
(L1 norm = 0). For a given SNN topology T, matrix X
and multipliers λ1, λ2, and λ3 are updated iteratively to find
the minimal NNC. The optimal X is reached when c1, c2,
and c3 become zero, satisfying the constraints in (7), (8),
and (9). At the optimal X, the second term of the right hand
side of (10) becomes zero so that the NNC value equals the
Lagrangian function Ld. This optimization process is written
in the pseudocode in Algorithm 1.

Algorithm 1 Updating the Neuron Distribution Matrix X(
∈ ZQ×M

)
Given Network Topology Matrix T

(
∈ ZQ×Q

)
Output: Optimized neuron distribution matrix Xopt

initialize X, λ1, λ2, λ3
while True do
evaluate Ld and NNC for X
if Ld = NNC then
Xopt← X
break

end if
{X(0), X(1), . . . , X(Q×M )}← α(X) // X(0)

← X
for i = 1 to Q×M do

evaluate L(i)d for X(i)
t // using (5) – (10)

if L(i)d < Ld then
Ld← L(i)d
X← X(i)

end if
end for
λ1← λ1 + ηH (c1(X(0)))
λ2← λ2 + ηH (c2(X(0)))
λ3← λ3 + ηH (c3(X(0)))
return Xopt

When considering a large SNN, the matrix calculations
with Q×Q topology matrix T need prohibitive memory and
calculation costs. Fortunately, a feedforward SNN allows us
to use subsets of matrix T instead of the full matrix when
the neurons are indexed layer-wise. For instance, the feed-
forward SNN in Fig. 2(a) has total O layers (each layer is
indexed qk ; 1 ≤ k ≤ O) each with Qk neurons. Therefore,
Q =

∑O
k=1Qk . For convenience, we introduce a new variable

sumk (1 ≤ k ≤ O) that indicates the cumulative number
of neurons until the kth layer such that sumk =

∑k
m=1Qm

and sum0 = 0. The neurons in layer qk are indexed from
sumk−1 to sumk -1. Therefore, in matrix T, the subset for the
topology of layers qk and qk+1 only is T [sumk−1:(sumk -1),
sumk :(sumk+1-1)], which is referred to as submatrix Tk (Qk×
Qk+1) Note that [a: b] denotes the elements from index a to b.
A schematic of submatrices in matrix T for the feedforward
SNN is shown in Fig. 2(b). In this case the product T [i,:]X [:, j]
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FIGURE 2. Schematic of a feedforward network with total O layers, each
with Qi neurons. (b) Submatrix Ti (1 ≤ i ≤ O− 1) for the feedforward
connection from the i th to the (i + 1)th layer.

in (5) and (9) is modified to Tk [i-sumk−1,:]X [sumk :
(sumk+1-1), j] for k satisfying sumk−1 ≤ i < sumk , improv-
ing the efficiency in the matrix multiplication.

All symbols in this study are listed in Table 1.

TABLE 1. Symbols.

C. ESTIMATION OF DATA DUPLICATION
AND MEMORY USE
The data (presynaptic state variables) duplication caused by
separate pre- and postsynaptic neurons can be evaluated using
optimal matrix X given topology matrix T. The number of
data duplications equals the number of neuron-to-core con-
nections except self-connections, denoted byNNC1. TheNNC1
value is evaluated as follows:

NNC1 =
∑Q−1

i=0

∑M−1

j=0
P [i, j] (1− X [i, j]). (11)

Assuming a bit width of nv for each synaptic state vari-
able, additional memory usage due to the data duplication

(memdup) is nvNNC1 bits. The toal memory allocated to the
synaptic state variables (excluding the duplicated ones) over
all cores is nvQ. Assuming that each neuron (membrane
potential) and each synapse (weight) consumes nn- and ns-
bit memory, the memory allocated to the all neurons and
synapses are nnQ and nss, respectively. Adding them up
yields the memory usage (mem0) that is not subject to opti-
mization and generally occupies the majority of memory
capacity. The ratio of memdup to mem0 (rdup) is

rdup = nvNNC1/ [(nn + nv)Q+ nss] .

Although there are other data required for membrane poten-
tial and synaptic weight updates, they are often shared among
all neurons and synapses in the same core instead of being
assigned to each neuron and synapse. Therefore, their fraction
is negligible.

For simplicity, we assume that all variables are given the
same bit width (nv = nn = ns) unless otherwise stated.

III. OPTIMIZATION RESULTS
Different learning algorithms base weight update on different
data. The data that are duplicated for the learner to access
depend on learning algorithm. Here, we optimized the spatial
distribution of neurons for STDP [13], [14] and eRBP [16],
which are renowned two- and three-factor learning rules,
respectively. The algorithm was implemented in Python
on a workstation (CPU: Intel Xeon Silver 4110 2.10GHz,
GPU: Titan RTX). The codes to run on CPU and GPU are
available on-line (https://github.com/guhyunkim/Optimize-
neuron-distribution). All optimization results are summarized
in Table 2.

A. SPIKE TIMING-DEPENDENT PLASTICITY RULE
The simple STDP rule is an event-driven learning algorithm
of locality, which bases the direction of a weight change on
the temporal order of pre- and postsynaptic events [13], [14]
The weight change is determined by the temporal distance
between pre- and postsynaptic events, which decays exponen-
tially with the temporal distance. This rule is an event-driven
algorithm because the weight is ad hoc updated upon both
pre- and postsynaptic events, i.e., a fan-in synaptic weight
is updated when the post- or the presynaptic neuron fires
a spike. Each neuron is given a state variable that reads
low-pass filtered spikes. A schematic of the simple STDP
rule for a pair of pre- and postsynaptic neurons in Fig. 3(a) is
shown in Fig. 3(b). Consider pre- and postsynaptic neurons
placed in two different cores. When the postsynaptic neuron
fires, the presynaptic state variable is read to determine the
weight change (potentiation), whereas when the presynaptic
neuron fires, the postsynaptic variable is addressed to deter-
mine the degree of depression. In case of depression, the
learner has the direct access to the current fan-in synaptic
weight and postsynaptic state variable in the same core. How-
ever, in case of potentiation, the learner needs the presynaptic
state variable in the different core; therefore, the presynaptic
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TABLE 2. Optimization results.

state variable should be duplicated in the core with the fan-in
synapse and postsynaptic neuron.

For the STDP rule, the number of neuron-to-core connec-
tions (NNC) is proportional to the number of state variable
duplications, so that the duplication number is minimized by
minimizing NNC. We applied the optimization method to the
following four cases.

Case 1: Single-layer SNN over cores (N ≥ Q; S ≥ s).
Wefirst optimized the distribution of neurons in a single-layer
SNN over four neuromorphic cores (M = 4). The
SNN consists of 64 input neurons and 64 output neurons
(64-64 network). Note that a Q1-Q2-. . . -QO network means
a fully connected feedforward network (FCFFN) of total
O layers, each with Qi neurons. Unless otherwise stated,
the FCFFN in this study is not given feedback connec-
tions. Each core accommodates maximal 128 neurons and
4,096 synapses (N = 128; S = 4, 096). Fig. 3(c) shows the
changes in NNC(grey dots) and Ld (red dots) over iteration.
On the 695th step, NNC became the same as Ld, satisfying
the constraints (6), (7), and (8); consequently, the iteration
terminated. Fig. 3(d) points to NNC minimized to 64. The
distribution of neurons over four cores is shown in Fig. 3(e);
all 128 neurons are located in the identical core, which is
the optimal distribution to minimize NNC given the suffi-
cient capacity of a single core (N = 128; S = 4, 096) to

accommodate all neurons and synapses. Note that because
NNC includes self-connections, the value does not fall to
zero. For comparison, we evaluated the average NNC value
(< NNC >) for random distribution of 128 neurons in the
64-64 network over the four cores, which was averaged on
5,000 trials. The < NNC > and Q values are co-plotted in
Fig. 3(d).

Case 2: Single-layer SNN over cores (N < Q; S < s).
Another task is to distribute the same network (64-64) over
four cores with insufficient core capacity to map all neurons
and synapses onto a single core (M = 4;N = 40; S =
1, 500). The changes in NNC and Ld with iteration number
are shown in Fig. 3(f); the optimal distribution was acquired
on the 709th iteration step, yielding an NNC of 192. For the
optimal distribution, the NNC value and the distribution over
four cores are shown in Fig. 3(g) and (h), respectively. Unlike
the previous case, the insufficient capacity of each core causes
the 128 neurons distributed over all four cores. Fig. 3(g)
also shows the < NNC > value for random distribution of
the neurons; its comparison with the optimal NNC indicates
a decrease in NNC by 25%, implying a 25% decrease in
neuron-to-core communication and 12.5% decrease in data
duplication in rdup.
Case 3: Multilayer SNN over cores (N < Q; S < s).

A 1024-256-64-16 FCFFN was distributed over 16 cores
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FIGURE 3. Optimal distribution of neurons over the given number of cores, each with an STDP learner.
(a) Topology of a presynaptic neuron (n1) and postsynaptic neuron (n2). (b) Weight (w21) change upon a
presynaptic spike and two postsynaptic spikes considering the state variables s1 and s2 for neurons n1 and
n2, respectively. Case 1 (64-64 network; M = 4; N = 128; S = 4,096): (c) changes in the number of
neuron-to-core connections NNC and discrete Lagrangian function Ld with iteration. When optimal
(satisfying the constraints), the two function values are equal. (d) Optimal NNC value in comparison with the
average value for random distributions. (e) Optimal distribution of neurons over four cores. Case 2
(64-64 network; M = 4; N = 40; S = 1,500): the same set of data is given in (f), (g), and (h) as for Case 1.
Case 3 (1024-256-64-16 network; M = 16; N = 128; S = 32,768): (i), (j), and (k). Case 4 (random recurrent
network; Q = 2,048; M = 16; N = 256; S = 4,096): (l), (m), and (n). Missing NNC data points in (c), (f), and
(i) indicate that NNC = 0.

(M = 16), each with N = 128 and S = 32, 768. The
optimization process is plotted in Fig. 3(i); the process is
completed on the 10,520th iteration step, resulting in an NNC
of 9,536. The optimization reduces the NNC value by 55%
compared with the< NNC > value on 5,000 trials (Fig. 3(j)).
The distribution is shown in Fig. 3(k). Additionally, the opti-
mization reduces the data duplication in rdup by 52.8%.
Case 4: SNN with random sparse connections (N < Q;

S < s). This network is equivalent to a recurrent SNN
(Q = 2, 048). The connections within the network were
randomly given at a probability of 0.01; the average number
of synapses < s > is approximately 41,900 because < s >≈
0.01Q2. This network was mapped onto 16 cores (M = 16),
each with N = 256 and S = 4, 096. The optimization
process and optimal distribution over the 16 cores are shown
in Fig. 3(l) and (n), respectively. Comparedwith the< NNC >

value, the optimization process reduces theNNC value by 44%
(Fig. 3(m)) and the rdup value by 35.5%.

B. EVENT-DRIVEN RANDOM BACKPROPAGATION
ALGORITHM
The eRBP is an example of a three-factor learning rule that
bases the weight change on (i) presynaptic event, (ii) post-
synaptic state variable, and (iii) sum of feedback error sig-
nals[16]. Here, the postsynaptic state variable (factor ii) is
the weighted sum of all inputs from its presynaptic neurons.

A topology of pre- and postsynaptic neurons with an error
signaling terminal is illustrated in Fig. 4(a). Fig. 4(b) shows
a schematic of the eRBP algorithm considering the three
factors. Unlike the STDP rule, in the eRBP algorithm,
the weight is updated upon a presynaptic event only. There-
fore, the presynaptic variable is unnecessarily duplicated in
the core of the postsynaptic neuron. Instead, the sum of
feedback error signals (factor iii) from the output neurons is
duplicated in the associated cores. In this regard, the choice
of the objective function f in (2) is twofold: (Case 5) the
total number of neuron-to-core connections including both
feed-forward and feed-back connections as in the previous
section (NNC) and (Case 6) the number of output neuron-
to-core connections only (NONC).
We chose a 1024-256-64-16 FCFFN with full feedback

connection (output layer fully connected to all hidden lay-
ers) to optimize its distribution over multicores (M = 16;
N = 128; S = 32, 768). The feedback connections were
considered in topology matrix T. The optimization process
for Case 5 (f = NNC) is shown in Fig. 4(c). The optimal
NNC value is below 45% of the average NNC for random
distributions of neurons over 16 cores as shown in Fig. 4(d).
The optimal distribution of neurons is plotted in Fig. 4(e).
The optimization process with another objection function f
(= NONC) (Case 6) yielded the evolution of optimal NONC
(144) and Ld with iteration as plotted in Fig. 4(f). Note that
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FIGURE 4. Optimal distribution of neurons over the given number of cores, each with an eRBP learner. (a) Topology of a
presynaptic neuron (n1) and postsynaptic neuron (n2) with an error signaling terminal. (b) Weight (w21) change upon a
presynaptic spike considering the three factors. A 1024-256-64-16 feedforward network was mapped optimally onto 16 cores
(M = 16; N = 128; S = 32,768) with an objective function of neuron-to-core connection number NNC. (c) Changes in NNC and
Ld with iteration. (d) Optimal NNC value compared with average NNC value for random distributions. (e) Optimal distribution of
the neurons over 16 cores. The same network was mapped onto the same cores with an objective function of output
neuron-to-core connection number NONC. For this case, the data corresponding to (c), (d), and (e) are shown in (f), (g), and (h),
respectively. Missing NNC data points in (c) and (f) indicate that NNC = 0.

update rate η was set to 0.01 for Case 6. The optimal NONC
value compared with < NONC > for random distributions of
neurons is shown in Fig. 4(g). Fig. 4(h) shows the optimal
distribution of neurons over 16 cores. It is noteworthy that
the distribution in Fig. 4(h) is considerably similar to that
in Fig. 4(e). Specifically, the final NNC value in Case 6 is
9,808, which is comparable to the optimal NNC value (9,680)
in Case 5. In addition, the optimal NONC value in Case 6 is
144, which is equal to the final NONC value in Case 6. This is
because either objective function leads to the neurons (in the
same layer) congregated over the least number of cores.

IV. DISCUSSION
Different multicore neuromorphic processors differ for their
architecture, and thus the model architecture assumed in this
study needs to be modified accordingly. Given the diversity
in architecture, it is prohibitive to apply the optimization
method to every architecture. Instead, we consider another
commonplace architecture of multicore processors, which
needs a different objective function. Frequently, multicore
neuromorphic processors are given local channels for local
event routing when a pre- and postsynaptic neuron are placed
in the same core [1], [21] In this case, local events barely
impose workloads on the network router that is dedicated to
inter-core routing only; therefore, an appropriate objective
function is the number of neuron-to-core connections other
than self-connections NNC1 in (11). Because data duplication
for the learner is proportional to this connection number,
optimizing this number also minimizes data duplication.

With the same constraints as (7), (8), and (9), the dis-
crete LMM optimally distributes the neurons over cores with
(Case 7) the STDP and (Case 8) eRBP learner. Fig. 5(a), (b),
and (c) show the optimization for a 1024-256-64-16 FCFFN

embedding the STDP learner (M = 16;N = 128; S =
32, 768). The optimal NNC1 value is 7,680 (39% of the aver-
age NNC1 value on 5,000 trials). Recalling that the optimal
NNC for the same case was 9,472, the optimal NNC1 value is
smaller than the NNC because self-connections are excluded.
The same objective function successfully applied to a
1024-256-64-12 SNN with feedback connections to incor-
porate the eRBP leaner into the core as for the network
in Section III.B (Fig. 5(d), (e), and (f)). All data are listed
in Table 2.

Equal activities of all neurons underlie the choice the
objective functions NNC, NONC, and NNC1. Practically, neu-
rons vary in activity, and neurons with high activities give
more workloads to network routers than those with low activ-
ities. Therefore, inhomogeneous neuronal activity should be
considered to optimize neuron-to-core connections to mini-
mize the workload of the network router. Because neuronal
activity is the temporal average of spikes, the temporal aver-
age of the workload is proportional to the activity. We intro-
duce another objective function NNC2, implying the temporal
average of the workload given a neuronal activity vector A,
where A[i] indicates the activity of neuron i. The objective
function NNC2 is defined as

NNC2 =
∑Q−1

i=0

∑M−1

j=0
P [i, j]A[i].

With this objective function and the constraints (7), (8),
and (9), the discrete LMM optimally distributes the inho-
mogeneous neurons over cores. We applied the objective
function NNC2 to a 1024-256-64-12 FCFFN with the STDP
learner (Case 9; M = 16;N = 128; S = 32768). Half the
neurons in each layer were given an activity of two, whereas
the others were given an activity of one. The results are
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FIGURE 5. Optimization with the number of neuron-to-core connections except self-connections (NNC1) as an
objective function. (a) Optimization procedure of distribution of neurons in a 1024-256-64-16 FCFFN over
16 cores (M = 16; N = 128; S = 32,768), each with the STDP learner. (b) Optimal NNC1 value compared with the
average NNC1 value for random distributions. (c) Optimal distribution of the neurons over 16 cores.
A 1024-256-64-16 FCFFN with full feedback connection was mapped onto the same cores, each with the eRBP
learner. For this case, the data corresponding to (a), (b), and (c) are shown in (d), (e), and (f), respectively. Missing
NNC data points in (a) and (d) indicate that NNC = 0.

shown in Fig. 6 and Table 2. The reduction in NNC2 by the
optimization exceeds 66%, implying a 66% reduction in the
workload of the router.

The data duplication metric rdup is a relative quantity to the
major memory usage (mem0)—mostly for synaptic weights.
For the STDP learner (Cases 1, 2, 3, 4, 7, 9), the reduction in
data duplication and memory usage in absolute scale varies
within a range of 0.0055mem0 – 0.17mem0, depending on
network topology (Table 2). Notably, the recurrent network
(Case 4) takes the largest advantage of optimization in terms
of memory saving (reduction in memory usage by 17% of
mem0), while a reduction by approximately 4% of mem0 is
expected for the FCFFN. The large rdup forCase 4 is due to a
small mem0 value arising from sparse synaptic connections.
It should be noted that the estimation assumes the same bit-
width (nv = nn = ns). The reduction in memory usage by the
neuronal distribution optimization becomes more obvious by
decreasing the precision of synaptic weight, e.g., nv = nn =
2ns and nv = nn = 4ns (Fig. 7(a)).

Compared with the STDP, the eRBP algorithm inherently
needs negligible data duplication. This is because the total
number of feedback connections is much lower than that of
feedforward connections (q4× (q2+ q3) � q1q2+ q2q3+
q3q4). Therefore, the reduction in memory usage is negligible
irrespective of the precision of synaptic weight as shown in
Fig. 7(b).

There have been a number of learning rules proposed to
date besides the two rules addressed in our study. They vary
in complexity, e.g., the number of variables and the locality of
variables (global or local). Particularly, they differ in the goal
to achieve; accordingly, the rules can be categorized as two
groups (Groups 1 and 2) by and large. The rules in Group 1
aim at reproducing biological synaptic plasticity behaviors in
activity and temporal domains, e.g., STDP [13], [14], [22]
and Bienenstock-Cooper-Munro rule [23], [24]. The vigor-
ous studies that have been conducted over the past decades
have enriched the diversity in model to various degrees of

biological plausibility [25] As a rule of thumb, the repro-
ducibility tends to increase with the rule complexity. Thus,
high reproducibility as a performance metric needs large
hardware resources.

The rules in Group 2 are rather oriented towards high-
level functionalities, such as classification, prediction, and
recognition, which are currently dominated by deep learn-
ing. Although attempts to seek the biological plausibility of
these rules are still made, the accuracy of such high-level
functionalities is a prior metric of performance. This trend
in rule development is relatively new so that the master rule
that is universally applicable to domain-specific SNNs has
not been found yet. However, recent studies have proposed
several feasible methods to train SNNs using real-world
datasets [16], [26]–[29]

As stated in Introduction, learning rules that are poten-
tially embedded in neuromorphic processors need to meet
the constraints imposed by neuromorphic hardware design.
In this regard, the spike-dependent synaptic plasticity (SDSP)
rule satisfies the constraints [30] The SDSP rule is a presy-
naptic event-driven learning rule with two key postsynaptic
variables: membrane potential and calcium concentration.
The calcium concentration is a low-pass filtered postsynaptic
spikes. The direction of weight change is determined by
these neuronal variables when a presynaptic spike arrives at
the postsynaptic neuron. Because no data in a source core
needs to be duplicated in other cores, this learner is free
from any data duplication issues. A modified SDSP learner
was successfully embedded in a recent neuromorphic proto-
type (MorphIC) with four cores [5].

The last issue is to map a biologically plausible massive
SNN onto the multicore architecture of concern in this study.
Such an SNN includes large numbers of fan-in and fan-out
synapses, which amount to approximately 4,000 synapses per
neuron on average [31] Recently, a real-time simulation of a
massive SNN has successfully been done on the SpiNNaker
neuromorphic hardware, which is flexible in the distribution
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FIGURE 6. Optimization with the number of neuron-to-core communications (NNC2) as an objective
function. (a) Optimization procedure of distribution of neurons in a 1024-256-64-12 FCFFN over
16 cores (M = 16; N = 128; S = 32768), each with the STDP learner. (b) Optimal NNC2 value
compared with the average NNC2 value for random distributions. Optimal distribution of the neurons
over 16 cores, sorted according to (c) neuronal activity and (d) layer index. Missing NNC2 data points
in (a) indicate that NNC2 = 0.

FIGURE 7. Reduction in total memory usage by the optimization of
neuronal distribution for (a) the STDP (Cases 1, 2, 3, 4, 7, and 9) and
(b) eRBP (Cases 5, 6, and 8). The reduction was evaluated for different
precisions of synaptic weight.

of neurons and synapses [32] The hypothetical architecture
of our concern may not be able to host such a massive SNN
mainly because of the limited on-core memory capacity. One
of the key assumptions on neuronal and synaptic distribu-
tions is that neurons and their fan-in synapses are placed
in the same core, which is undermined when each neuron
has a large number of fan-in synapses beyond the capacity
of the core S. A feasible workaround may be to employ a
multi-compartment neuron (rather than point neuron) model.
Because a single neuron consists of multiple compartments
(dendrites), the total fan-in synapses of a neuron are dis-
tributed over the compartments. Given the limited number of
synapses per core S, the compartments are distributed over
multiple cores with their fan-in synapses. In this method,
a challenge is communication between a somatic compart-
ment and multiple dendritic compartments (separate from the
somatic one). Event data packets are the only data allowed
in inter-core communication; therefore, sending dendritic
potential data to the somatic compartmentmay be impossible.
An indirect way to let the soma know the dendritic potential
is to send a dendritic spike to the soma. Then, the soma
can evaluate the dendritic potential (= preset threshold for

dendritic spiking), which decays out subsequently at a given
somatic time constant. The same holds for the other dendrites;
therefore, the soma can integrate all dendritic potentials in
time.

V. CONCLUSION
The success in optimal distribution of neuron over cores in a
multicore neuromorphic processor demonstrated the discrete
LMMas a simple solution to a large reduction in event routing
congestion, which is a critical obstacle to scaling up SNN.
The discrete LMM employed the number of neuron-to-core
connections as an objective function with several realistic
constraints: no duplication of neuron in multiple cores, and
the limited numbers of neurons and synapses per core. When
a multicore neuromorphic processor embedding the STDP or
eRBP learner was optimized, a 55% reduction in the num-
ber of neuron-to-core connections was achieved in Case 3
(STDP learner) and Case 5 (eRBP learner) compared with
random distribution of neurons over cores. This reduces the
workload on the network router and data duplication by 55%.
Although the objective function and constraints may need
modifications depending on the specific processor architec-
ture, the discrete LMM likely offers a robust solution to
the optimal distribution of neurons as shown for a different
architecture with local event routing channels.
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