
Received January 15, 2020, accepted February 8, 2020, date of publication February 24, 2020, date of current version March 2, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2975929

Low-Overhead Compressibility Prediction for
High-Performance Lossless Data Compression
YOUNGIL KIM 1, SEUNGDO CHOI 1, DAEYONG LEE 1, JOONYONG JEONG 1,
JAEWOOK KWAK 1, JUNGKEOL LEE 1, GYEONGYONG LEE 1, SANGJIN LEE1,
KIBIN PARK 1, JINWOO JEONG 1, WANG KEXIN1, (Student Member, IEEE),
AND YONG HO SONG1, 2, (Member, IEEE)
1Department of Electronics and Computer Engineering, Hanyang University, Seoul 15588, South Korea
2Samsung Electronics Company, Ltd., Hwaseong 18448, South Korea

Corresponding author: Yong Ho Song (yhsong@hanyang.ac.kr)

This work was supported in part by the Research and Development Program of MOTIE/KEIT (Developing Processor-Memory-Storage
Integrated Architecture for Low Power, High Performance Big Data Servers) under Grant 10077609.

ABSTRACT As big data has evolved over the past few years, a lack of storage space and I/O bandwidth has
become one of the most important challenges to overcome. To mitigate these problems, data compression
schemes reduce the amount of data to be stored and transmitted at the cost of additional CPU overhead. Many
researchers have attempted to reduce the computational load imposed on the CPU by data compression
using specialized hardware. However, space savings through data compression often comes from only
a small portion of data. Therefore, compressing all data, regardless of data compressibility, can waste
computational resources. Our work aims to decrease the cost of data compression by introducing a selective
data compression scheme based on data compressibility prediction. The proposed compressibility prediction
method provides more fine-grained selectivity for combinational compression. Additionally, our method
reduces the amount of resources consumed by the compressibility predictor, enabling selective compression
at a low cost. To verify the proposed scheme, we implemented a DEFLATE compression system on
a field-programmable gate array platform. Experimental results demonstrate that the proposed scheme
improves compression throughput by 34.15% with a negligible decrease in compression ratio.

INDEX TERMS Data compression, Huffman coding, LZ77 encoding, accelerator architecture, field
programmable gate array, estimation, compressibility.

I. INTRODUCTION
Recently, as mobile devices as well as information and
communication technology have evolved, the amount of
data to be stored and processed has increased explosi-
vely [1]–[4]. In particular, new IT technologies such as social
network services and the internet of things contribute much to
the increase in data production. To handle this explosive data
growth, large-scale data processing methods, such asMapRe-
duce [5], [6] and cloud computing [7] have been devel-
oped. Such applications are very data intensive, requiring
a large amount of storage space and huge I/O bandwidth
capacity [8]–[11]. Based on these extreme requirements,
systems with insufficient storage and computing resources
can suffer from serious performance degradation. Therefore,

The associate editor coordinating the review of this manuscript and

approving it for publication was Jonghoon Kim .

it is important to minimize the required storage space and I/O
bandwidth utilization.

Data compression schemes reduce storage space and I/O
bandwidth utilization requirements in exchange for increased
computational overhead for the CPU. The concept of data
compression has been widely applied in many applica-
tions to save storage space and transmission costs for
networks [12], [14]. In recent years, cloud storage and enter-
prise data centers have also utilized data compression to
reduce data management costs [6], [15]–[26]. According to
one study [17], compression phase constitutes a large portion
of the overall execution time of warehouse-scale computing.

There are two main types of compression: lossy and loss-
less. Lossy compression reduces the size of data by sacri-
ficing certain information that is difficult for humans to
perceive. Therefore, it is mainly used for compressing files
that are still usable with a small amount of lost data, such

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 37105

https://orcid.org/0000-0002-4240-6557
https://orcid.org/0000-0002-6847-9498
https://orcid.org/0000-0003-3092-1057
https://orcid.org/0000-0002-5411-8368
https://orcid.org/0000-0003-1890-2910
https://orcid.org/0000-0002-1153-9736
https://orcid.org/0000-0002-8186-573X
https://orcid.org/0000-0001-7302-2874
https://orcid.org/0000-0001-6485-0029
https://orcid.org/0000-0001-8757-547X

Y. Kim et al.: Low-Overhead Compressibility Prediction for High-Performance Lossless Data Compression

as multimedia files. In contrast, lossless compression guar-
antees the integrity of decompressed data. Such methods
have worse compression efficiency and higher complexity
than lossy methods. However, it has the advantage of the
complete restoration of the original data. Therefore, lossless
compression is used when the minimization of information
loss is critical, such as in text files.

Lossless compression is divided into three types:
dictionary-based compression, statistical compression, and
combinational compression [27]. Combinational compres-
sion comprises two or more compression algorithms: usually
a combination of dictionary-based and statistical compres-
sion [12], [27]. DEFLATE [28] is one of the most widely
used combinational lossless compression algorithms.

The compression quality and time complexity of data
compression algorithms have a trade-off relationship. As the
complexity of a data compression algorithm increases to
improve data compression quality [29], [30], it takes a longer
time to process data. Additionally, high-quality real-time
data compression requires several algorithms to operate
simultaneously [12], [27], [31]–[33], which increases the
computational demand on the processor. Although multicore
processors are generally used, the execution of data compres-
sion algorithms still imposes a major load on systems. This
is because most systems cannot handle other tasks while
compression algorithms are running.

For this reason, there have been many attempts to reduce
the computational load of data compression by utilizing
customized hardware resources, such as field-programmable
gate arrays (FPGAs) [34]–[41], graphics processing units,
and application-specific integrated circuits [42], [43]. These
methods decrease the computational load on the processor by
offloading a portion of the computations from the processor
to a hardware offloading engine. Furthermore, the offloading
engine accelerates offloaded computations through parallel
processing.

Additionally, to reduce the computational demand, selec-
tive compression is used, which selectively compresses
according to the compressibility of the data. All data does
not compress equally. According to one study [44], 86%
of compression savings comes from 50% of file-based
server data, indicating that there is a significant skew in the
data compressibility distribution. Compressing incompress-
ible data canwaste computational resourceswithout any addi-
tional space savings. Therefore, it is inefficient to compress
all data chunks while ignoring their compressibility. Selec-
tive data compression [12] based on the prediction of data
compressibility allows a compression system to efficiently
utilize limited computational resources.

Many previous studies have investigated techniques to
predict the compressibility of data chunks and improve
the performance of data compression based on prediction
results [12], [13], [22], [45]–[47]. However, these previous
studies have two limitations. First, previous studies do not
fully account for changes in the system in which compres-
sion works. In storage systems, compression is typically

performed on fixed-size chunks of data, for a variety of
reasons, such as read amplification, metadata overhead,
and IO parallelism [48], [49]. In this case, the compres-
sion efficiency of the preceding compression algorithm can
affect the compression efficiency of subsequent compres-
sion algorithms. Secondly, the existing methods do not
consider the hardware resource usage. Previous studies
mainly focus on software-centric compressibility prediction
methods. They do not address the hardware implementa-
tion of compressibility prediction. There are always limited
hardware resources available to implement processing units.
FPGAs have limited hardware resources available within
reconfigurable devices. Therefore, to leverage the full poten-
tial of the limited hardware resource, the amount of hardware
resources used to handle the same task should be minimized.

In this paper, we propose a DEFLATE compression
offloading engine using a selective data compression method
based on data compressibility prediction. The proposed
method analyzes input data chunks in an online manner to
predict data compressibility. Based on the compressibility
prediction results, the compression engine determines the
compression mode for each input data chunk. The contribu-
tions of this paper are as follows:
• Our heuristic-based compressibility prediction technique
provides an enhanced evaluation of the compression
efficiency of chunked-based compression. To accurately
estimate the compression efficiency of Huffman coding,
our method considers the input chunk size and the
compression ratio of the LZ77 additionally. As a result,
incompressible data chunks for Huffman coding can be
identified more accurately, which reduces the computa-
tion of the compressor.

• The proposed hardware cost reduction technique reuses
the computation of existing compression algorithms in
implementing compressibility prediction. It also reduces
the compressibility of computation for compressibility
prediction. These techniques significantly reduce the
overhead for the compressor to operate selectively,
increasing the work efficiency of the compressor.

• To evaluate the effectiveness of the proposed technique,
we implement a pipelined compression offload engine
for the DEFLATE algorithm. The implemented offload
is equippedwith the proposed compressibility prediction
method. The offload engine is synthesized for an FPGA
platform. The performance is measured by running
various benchmark applications.

The proposed scheme minimizes performance degradation
caused by the failure to predict data compressibility via paral-
lelization with data compression. Furthermore, we propose a
method to reduce hardware costs using statistical indicators,
such as shift operations and absolute values calculations,
which can be implemented using simple hardware logic.

To evaluate the effectiveness of the proposed technique,
we designed a DEFLATE compression engine equipped
with the proposed compressibility prediction method. The
performance of the proposed technique was measured on an

37106 VOLUME 8, 2020

Y. Kim et al.: Low-Overhead Compressibility Prediction for High-Performance Lossless Data Compression

FPGA platform. Experimental results demonstrate that the
prediction scheme achieves a 34.15% increase in throughput
by sacrificing only 0.09% of the compression rate for incom-
pressible data. According to synthetic experimental results,
compressibility prediction uses approximately 3.1% more
lookup tables (LUTs) compared to a compressor without such
capability.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the concepts of DEFLATE
compression and information entropy. Section 3 describes
related works. The motivation for the proposed compress-
ibility prediction scheme is detailed in section 4. Section 5
outlines features based on the analysis of DEFLATE
compression and the proposed compressibility prediction
scheme. Section 6 discusses the hardware implementation of
the proposed method. Experimental results are presented in
section 7. Section 8 concludes this work.

II. BACKGROUND
A. DEFLATE COMPRESSION ALGORITHM
DEFLATE [28] is a well-known lossless compression algo-
rithm that was first used in Zip and Gzip software. DEFLATE
utilizes Huffman coding and modified LZ77 encoding.
It encodes data using LZ77 encoding and dynamic Huffman
codes generated based on collected statistics. One of three
compression modes is selected for each input data chunk. The
remainder of the compression process is performed according
to the selected compression mode. Fig.1 presents a flow
diagram of the DEFLATE compression algorithm.

FIGURE 1. Flow diagram of the DEFLATE algorithm.

1) LZ77 ENCODING
The LZ77 algorithm is a dictionary-based compression algo-
rithm [50]. This algorithm searches for repeated strings in
input data and replaces them with a pointer to the preceding
string. Fig. 2 illustrates the LZ77 encoding process. Because
the first ‘‘right’’ does not have any previous appearance,
the original characters (denoted as literal) are emitted with
no modification. Next, the algorithm identifies the second
‘‘right’’ and replaces it with a pointer to the preceding
‘‘right’’. The pointer represents the relative position (denoted
as distance) of the preceding string and the length of the
string (denoted as length). The DEFLATE algorithm collects
statistical information for Huffman code generation during
LZ77 encoding. This process is referred to as statistics
collection. The statistical information includes the number of
unique symbols and appearance frequency of each symbol.

FIGURE 2. Example of LZ77 encoding.

2) HUFFMAN CODING
Huffman coding [51] is a type of entropy coding that
compresses data by replacing symbols with variable-sized
Huffman codes. Symbols with higher frequencies are
assigned relatively shorter Huffman codes compared to
symbols with lower frequencies.

Huffman coding is divided into two types: dynamic and
static. Static coding uses predefined Huffman codes and
compresses data using the same Huffman table, regardless of
the content of the data to be compressed. Dynamic coding
generates Huffman codes based on the occurrence frequency
of each symbol included in the raw data. It builds dynamic
Huffman trees with symbols as leaf nodes. Fig. 3 presents an
example of a Huffman tree. As shown in the figure, the leaf
nodes with higher frequency values are located closer to the
root node and are assigned relatively shorter codes.

Dynamic coding has the advantage of generating Huffman
codes that are optimized for the current input data. However,
it has a disadvantage in that the dynamic Huffman tree
must be transmitted with the encoded data stream. There-
fore, if the compression efficiency of the dynamic code is
poor, the encoded data can be larger than the original data.
Additionally, because the dynamic codes must be generated
independently for certain amounts of data, the data processing
speed is slower than that of static coding.

FIGURE 3. Dynamic Huffman tree build by Huffman algorithm.

3) MODES OF COMPRESSION
The DEFLATE algorithm runs on fixed amounts of input
data called data block (DB). DEFLATE has three different
compression modes (denoted as DEFLATE mode). Each DB
can be processed in three different ways [52]. The first mode,
which is called stored block mode (SBM), simply divides data
into DBs with no compression. This mode is suitable for
data with low compressibility because such data represents

VOLUME 8, 2020 37107

Y. Kim et al.: Low-Overhead Compressibility Prediction for High-Performance Lossless Data Compression

compressed or encrypted files. In the second mode, which
is called static Huffman mode (SHM), data is compressed
via LZ77 encoding and static Huffman coding. This mode
can be used when the efficiency of dynamic Huffman coding
is poor or when data must be compressed at high speed,
such as in real-time processing. The third mode, which is
called dynamic Huffman mode (DHM), compresses data via
LZ77 encoding and dynamic Huffman coding. This mode
is typically slower than the other modes but has greater
compression efficiency.

To select the best mode with the best compression
efficiency, the algorithm compares the length of each
compressed DB when each DEFLATE mode is used after the
dynamic Huffman code is generated. When DHM is used,
the compressed data length is calculated with the size of the
dynamic Huffman tree included.

B. INFORMATION ENTROPY
Information entropy is the average amount of information
related to an event, which indicates the uncertainty of the
event [53]. The formula for information entropy is as follows.

H (x) = −
n∑
i=1

p(i) log2 p(i) (1)

The higher the entropy of a symbol, the higher the uncer-
tainty of the symbol and the greater the amount of information
the symbol represents.

From the viewpoint of information entropy, files can
be divided into two types [54]. The first type is a
well-compressible text file. In the case of text files, such
as documents, web pages, and logs, most streams consist
of alphanumeric characters. Therefore, these files are easy
to predict which characters will appear in the data stream
because the number of characters that can appear is relatively
small. These files have low entropy. The second type is a
binary file that does not compress well. Binary files, such
as images, video, and sound files, have random data patters.
Therefore, these files make it difficult to predict which char-
acters will appear in the data stream and have high entropy
values.

III. RELATED WORK
A. Kattan et al. predicted the compression ratio of data
based on genetic programming [45]. Their method measures
compression ratios very accurately, but requires signifi-
cant time to construct that decision tree that is required to
predict the compression ratios. Our approach differs from this
method in that we predict compression ratios online using
several features that are computationally simple.

Culhane et al. presented three indicators that can measure
compression efficiency and changes in the compression effi-
ciency of several compression algorithms based on the three
indicators [46]. However, the authors presented only the indi-
cators and provided no discussion regarding how to utilize
them for efficient data compression.

Some studies have attempted to compress data selec-
tively or adaptively based on the compressibility of each
data chunk. One study measured data compressibility to
determine whether or not to compress data chunks stored
in the cloud [22]. The author estimated the compressibility
of an entire data chunk by compressing a portion of the
data chunk and measuring its compressibility. However, this
method has the risk of incorrectly measuring the compression
rate when the compressibility of a data chunk fluctuates.
We use the entire data chunk to accurately measure compress-
ibility, regardless of fluctuations in compressibility. To reduce
the implementation overhead, our compressibility estimation
process utilizes existing compression operations.

Another work discussed how to identify incompress-
ible data to perform real-time compression [12]. To eval-
uate compressibility online, the authors used a method for
compressing a portion of the data to measure compress-
ibility and a method for conjecturing compressibility based
on statistical values, such as byte entropy, core-set size,
and serial correlation coefficients. Such statistical values are
good indicators of compression efficiency. However, combi-
national compression does not consider the fact that the
compression rate of one algorithm can affect the compres-
sion efficiency of another. Furthermore, these studies only
discussed software-centric implementations. Logarithmic,
square, division calculations, and subsequent decimal calcu-
lations demand significant computation time and hard-
ware costs [55]–[57]. Our compressibility prediction method
compensates for these points. The compression rate of
Huffman encoding is evaluated by considering the effect of
chunk size and LZ77 compression efficiency on Huffman
encoding. Additionally, our compressibility measurement
method is designed for standard hardware implementations.
It reduces hardware costs by using several techniques. Our
proposed method also uses statistical indicators that can
be calculated with simple operations, such as shifting and
absolute-value calculations.

A research conducted by Peter et al. proposed an adaptive
compression system that searches for the most appropriate
compression algorithm by considering the type of the target
data and system conditions [13]. This system chooses the
compression algorithm that maximizes network throughput
based on CPU utilization and frequency, available network
bandwidth, and data compressibility. Data compressibility
is predicted by calculating the number of unique bytes that
appear more than a certain threshold value in a data chunk.
This approach differs from our approach in that it adaptively
selects various compression algorithms considering system
conditions, rather than selectively processing data using only
a single compression algorithm considering compressibility.

IV. MOTIVATION
A. SYSTEM OVERVIEW
As shown in Fig. 4, the baseline DEFLATE compressor
consists of an LZ77 encoder, Huffman code generator, and

37108 VOLUME 8, 2020

Y. Kim et al.: Low-Overhead Compressibility Prediction for High-Performance Lossless Data Compression

FIGURE 4. Block diagram of baseline DEFLATE compressor.

Huffman encoder. To handle data streams in parallel, data is
segmented into DBs that can be processed independently.

The LZ77 encoder generates an LZ77 encoded stream
(denoted as intermediate data block (IDB)) and calculates
the frequency of the symbols (denoting as symbol frequency)
appearing in a DB. The IDB and symbol frequency are trans-
mitted to the Huffman encoder and Huffman code generator,
respectively.

The Huffman code generator creates dynamic Huffman
codes that are optimized for the DB currently being
processed. After the dynamic Huffman codes are created,
the optimal DEFLATE mode is selected by comparing the
size of output data from each mode.

The Huffman encoder processes the original data or IDBs
according to the selected DEFLATE mode. When a data
chunk is compressed in the SBM, the Huffman encoder
appends a header indicating the format of the corresponding
data to the data chunk and arranges it according to the output
memory configuration. When compressing in DEFLATE
modes that include Huffman coding, the Huffman encoder
compresses the IDB using the appropriate Huffman code.

B. MOTIVATIONAL DATA
To measure the compressibility of each DB accurately, both
LZ77 encoding and dynamic Huffman code generation must
be performed regardless of whichDEFLATEmode is applied.
However, SHM does not require Huffman code generation
and SBM does not require both of Huffman code genera-
tion and LZ77 encoding process. Therefore, these processes
inevitably waste computational resources.

Fig.5 illustrates the amount of unnecessary computations
in the LZ77 encoder and Huffman code generator. For SHM
and SBM, unnecessary computations represent the number
of clock cycles consumed by the Huffman code gener-
ator or both of LZ77 encoder and Huffman code gener-
ator, respectively, to process DBs. Table 1 lists the types
of benchmarks used for experiments. As shown in the
experimental results, there are many unnecessary computa-
tions during DEFLATE compression, especially for incom-
pressible benchmarks, such as Media and Comp. In the
case of Repeat, most of the operations performed by the
Huffman code generator are unnecessary because most DBs
are compressed in SHM.

TABLE 1. Benchmarks.

FIGURE 5. Wasteful clock cycle count.

FIGURE 6. Simple overview of the selective compressor.

V. DESIGN EXPLORATION
A. DESIGN OVERVIEW
Fig.6 shows a system overview of the selective compressor.
It receives DBs and processes data according to the compress-
ibility of the DB. The system largely comprises two parts:
compressibility predictor and compressor. The compress-
ibility predictor predicts the compressibility of the input data
chunk to determines whether to compress the data chunk.
In detail, the compressibility predictor extracts features that
reflect compressibility from the input DB. The predictor also

VOLUME 8, 2020 37109

Y. Kim et al.: Low-Overhead Compressibility Prediction for High-Performance Lossless Data Compression

FIGURE 7. Symbol count CDFs for each DEFLATE mode.

analyzes the extracted features and generates information
about whether the hardware compressor can compress the
database. The hardware compressor receives the recommen-
dation and processes the DB accordingly.

B. KEY TECHNIQUES
Our design goal is to enable the compressor to compress data
with low computation and low hardware usage. To achieve
the design goals, we propose two key techniques. First,
we improve the accuracy of the algorithm of compress-
ibility prediction to reduce the computations required to
compress incompressible data. Next, we improve the resource
performance.

1) ENHANCED HEURISTIC-BASED
COMPRESSIBILITY PREDICTION
Compressibility prediction utilizes features that are relevant
to the behavior of each algorithm, because each algorithm
decides whether to compress the data. Most of the lossless
compression algorithms are based on Huffman encoding or
LZ77 encoding [12], [27]. Features related to LZ77 encoding
include pair distance from random distribution [12] and stan-
dard deviations of the differences of consecutive bytes and
XORed value of consecutive bytes [45], [46]. Features related
to Huffman coding includes symbol count, symbol frequency
distribution, etc. [12], [13], [45], [47].

Combinational compression generally consists of a
dictionary-based compression and statistical compres-
sion [12], [27]. In the case of the DEFLATE algorithm,
the input data is first compressed using LZ77 encoding, and it
is then compressed usingHuffman encoding. Previous studies
have evaluated the compression efficiency of each compres-
sion algorithm. However, they did not consider the fact that
the compression efficiency of the preceding compression
algorithm could affect the compression efficiency of the
subsequent compression algorithm.

The general DEFLATE algorithm performs Huffman
encoding after the LZ77 encoder processes enough input

data streams so that an intermediate data block of a certain
size is created. However, chunk-based compression [48], [49]
divides the data stream into a number of fixed-size chunks,
which are compressed independently. In this case, the input
data size of the Huffman encoder changes according to
the compression efficiency of the LZ77 encoding. Thus,
the compression efficiency of LZ77 encoding affects the
compression efficiency of Huffman encoding.

Fig.7 presents the change of compression efficiency in the
Huffman coding stage of chunk-based DEFLATE compres-
sion according to the number of symbols and the symbol
frequency distribution. Generally, the smaller the number of
symbols appearing in the DB and the higher the distribu-
tion between the frequencies of occurrence of each symbol,
the higher the compression efficiency of Huffman encoding.
However, as shown in figure, there are intervals that violate
this tendency. This is because the input data size of Huffman
encoding changes.

Fig. 8 shows the change of compression efficiency
according to the input size of Huffman coding. As shown
in figure, the compression efficiency decreases as the size of
the input data block decreases. If the compression efficiency
of Huffman coding is not good, there will be cases where the
output data is larger than the input data, owing to compres-
sion. Sometimes Huffman coding causes the output data to be
larger than the input data. In this case, Huffman coding does
not save space; it just wastes computations.

Our compressibility prediction algorithm considers
Huffman input size with existing features to determine
whether Huffman coding should be performed for the input
DB. DEFLATE uses SBM, which does not generate Huffman
codes when the size of output data is bigger than orig-
inal Huffman coding. Therefore, our proposed compressor,
using the DEFLATE algorithm, selects SBM by consid-
ering compressibility prediction algorithm as well as existing
features and Huffman input size.

Compressibility prediction usually precedes data compres-
sion. However, the size of the intermediate data block can be

37110 VOLUME 8, 2020

Y. Kim et al.: Low-Overhead Compressibility Prediction for High-Performance Lossless Data Compression

FIGURE 8. Compression efficiency by input size of Huffman coding.

known after LZ77 encoding is finished. Therefore, it may
be difficult to reflect the size of intermediate data input
to the Huffman encoder in the compression-rate predic-
tion. In this case, the size of the input data block to the
DEFLATE compressor and the predicted LZ77 encoder
compression efficiency can be used instead. In the proposed
compressor, owing to the hardware cost-reduction technique,
the compressor predicts compressibility after LZ77 encoding.
Therefore, our compressor uses the actual size of the interme-
diate data block. The implementation details are given in the
implementation issue section.

2) HARDWARE COST-REDUCTION TECHNIQUE
Implementing a compressibility predictor requires hardware
resources. The purpose of compression is to reduce wasted
computation and ultimately improve system throughput by
selectively bypassing incompressible DBs. However, because
hardware resources are limited, using large amounts of hard-
ware resources for compressibility prediction can also hinder
throughput improvements. As can be seen in Fig. 6, applying
selective compression to the actual DEFLATE compressor
results in a 14.1% increase in hardware resource consump-
tion. There is little benefit from selective compression, espe-
cially when compressible data is entered consecutively. In this
case, the performance of a compressor without a compress-
ible predictor might be better. Thus, hardware resource over-
head required to apply compressibility prediction should be
minimized.

In this paper, twomethods are used to achieve low resource
usage.
• Computation reuse for feature extraction: first, when
applying selective compression, we reuse the compu-
tations of the existing compression algorithm. The
features used to determine compressibility are mainly
probability statistical indicators, such as the number
of symbols in the data, the frequency of occurrence

of the symbols, and the variance of the frequencies.
Statistical compression also works based on the proba-
bility of occurrence of each occurrence symbol. Gener-
ally, dictionary compression mostly precedes statistical
compression when using combinational compression
algorithms [27]. Therefore, generation of symbol occur-
rence probability must be preceded. In other words, most
of the operations that scan data and calculate the number
and frequency of symbol occurrences used to calculate
these features include dictionary compression. By using
this, the resource usage of the compressibility predictor
can be reduced considerably.
The DEFLATE algorithm collects statistics during
LZ7 encoding and sends them to the Huffman
coding phase. Taking advantage of this, we imple-
ment the feature-extraction feature utilizing the
statistics-collection process performed in parallel with
LZ77 encoding. In addition, symbol frequency distri-
bution calculation is implemented using some Huffman
encoder operations. The implementation details are
given in the implementation issues section.

• Computation complexity reduction: many previous
researches have studied compressibility prediction [12],
[13], [22], [45]–[47]. However, these studies only
discussed software-centric implementations, such as
log, square, division, and floating-point operations,
all requiring significant computational time and hard-
ware costs. In this paper, we reduce the computational
complexity of compressibility prediction to minimize
this overhead. The detailed implementation description
is also given in the implementation issues section.

VI. IMPLEMENTATION DETAILS
This section describes our selective data compression system
based on data compressibility prediction. We apply the
compressibility prediction to the DEFLATE algorithm.
Specifically, the compressibility prediction enables the early
selection of the DEFLATE mode. The proposed compressor
design reflects the key techniques introduced earlier.

First, we explain the data flow of the proposed system and
major design goals. We then analyze the factors affecting
DEFLATE compression efficiency. Finally, we discuss our
compressibility prediction technique.

A. OVERVIEW OF PROPOSED SYSTEM
Fig. 9 illustrates the data flow in the proposed scheme.
This scheme is largely divided into two phases: the training
phase and compression phase. Features are statistical indi-
cators that represent data compressibility. The training
phase extracts features from the training data for predicting
data compressibility and builds a predictive model by
analyzing the extracted feature sets. The prediction model
learns to select the optimal DEFLATE mode based on
the variation of each feature. The training phase may
be performed only once prior to the compression phase.
The compression phase includes feature-extraction and

VOLUME 8, 2020 37111

Y. Kim et al.: Low-Overhead Compressibility Prediction for High-Performance Lossless Data Compression

FIGURE 9. Block diagram of proposed DEFLATE compression system.

compressibility prediction. Feature-extraction calculates the
statistical indicators for predicting the compressibility
of current DBs. Compressibility prediction predicts the
compressibility of the DBs by using the predictive model that
was generated in the training phase. Finally, the compressor
selects the appropriate DEFLATE mode according to the
prediction result and performs the remaining compression
operations.

B. ANALYSIS OF DEFLATE COMPRESSION RATE
This section analyzes the factors that affect the DEFLATE
compression ratio in terms of accurate data compressibility
prediction. Table 2 lists the necessary terminology. The data
compression rate of each DEFLATE mode is defined as
follows.
• CRdyn_mode ' CRLZ77 × CRdyn_Huff
• CRstt_mode ' CRLZ77 × CRstt_Huff
• CRstr_mode ' 1

Because the size of the header that contains informa-
tion regarding DBs is negligible, it is not considered.
First, we calculate the data compression ratio when using
DHM. The LZ77-encoded IDB consists of literals and
length-distance pairs. Therefore, the size of the IDB is
defined as follows.

(bitL × L)+ (bitP × P)

Length-distance pairs are encoded using literal-length
Huffman codes, distance Huffman codes, and the extra bit
required to extrapolate certain Huffman codes to their original
values. The average length of the dynamic Huffman codes is

TABLE 2. Major parameters for analysis of the DEFLATE compression rate.

close to the entropy of the symbols [52]. Therefore, when an
IDB is encoded, the size of the data is defined as follows.

tree+ (entL × L)+ [(entL + extL)+ (entD + extD)]× P

37112 VOLUME 8, 2020

Y. Kim et al.: Low-Overhead Compressibility Prediction for High-Performance Lossless Data Compression

FIGURE 10. 0KB < Dataidb ≤ 1KB.

Therefore, the data compression ratio of Huffman coding
is defined as follows.

(bitL × L)+ (bitP × P)
tree+ entL × L + (entL + extL + entD + extD)× P

Because most compressible DBs use DHM, there is no
need to measure DEFLATE compression efficiency accu-
rately when DEFLATE compression efficiency is high.
However, the compression efficiency of incompressible data
must be accurately measured. For this reason, we assume
that the compression efficiency of LZ77 encoding is very low
when the IDB contains very few length-distance pairs. If the
number of length-distance pairs is zero, the data compression
ratio of Huffman coding is defined as follows.

(bitL × L)
tree+ (entL × L)

(∵ P ≈ 0)

Therefore, the compression rate of DHM is defined as
follows.

∴ CRdyn_mode = CRLZ77 ×
bitL

tree
L + entL

(2)

Based on the same principle, the compression rate of SHM
is defined as follows.

∴ CRstt_mode = CRLZ77 ×
bitL

L_codestatic
(3)

C. FEATURES
This section discusses the features used for predicting
the compressibility of a DB. In our experiment, we used
zlib [28] to compress various types of files. According to
the DEFLATE compression ratio analysis presented above,
the DEFLATE compression ratio is largely influenced by
three main factors.

1) ENTROPY
According to (2), if entL increases, the DEFLATE compres-
sion rate decreases. This is because the larger entL is,
the longer the average length of the literal-length Huffman
codes, which reduces the compression effect on the data.

Because significant hardware resources are required to imple-
ment floating point operations and logarithms [55], [56],
we do not use entropy for compressibility prediction.

Instead, we focus on the two statistical indicators related to
entropy. cardinality and dispersion [62]. Generally, the larger
the cardinality of a set, the higher the entropy value of the
set. Entropy is maximized when the probability distribution
of a dataset is uniform. From the viewpoint of Huffman
coding, the cardinality and dispersion of a dataset are the
number of leaf nodes in the corresponding dynamic Huffman
tree and degree of distribution between the frequencies of
occurrence of each symbol (denoted as frequency disper-
sion), respectively. Both indicators are related to compression
efficiency. The average depth of each leaf node increases
as the number of leaf nodes increases, which results in a
decrease in compression efficiency. Additionally, it is easy
to generate efficient Huffman codes if some symbols appear
more frequently.

Fig. 10a presents the distribution of DEFLATE modes
selected by each DB according to their frequency dispersion
and number of Huffman nodes. The experimental results
reveal that the DEFLATE compression ratio decreases as
the number of Huffman nodes increases and the frequency
dispersion decreases. Based on these observations, the predic-
tion algorithm considers the number of Huffman nodes and
frequency dispersion of the DB as factors affecting compress-
ibility measurements. This method is denoted as entropy
filtering. Additionally, let feature space (FS) denote the space
representing the DEFLATE mode distribution according to
these two features. In the FS, the areas where the samples
of DHM, SHM, and SBM are concentrated are searched and
referred to as the dynamic Huffman area, static Huffman area,
and stored block area, respectively.

2) SIZE OF DYNAMIC HUFFMAN TREE
When a data stream is encoded using dynamic Huffman
codes, dynamic Huffman tree information must be appended
to the output data. treeL is the term representing the increase
in data size caused by the addition of dynamic tree infor-
mation. According to (2), the effect of dynamic Huffman
code information size on DEFLATE compression efficiency

VOLUME 8, 2020 37113

Y. Kim et al.: Low-Overhead Compressibility Prediction for High-Performance Lossless Data Compression

becomes smaller as the number of literals (i.e., size of the
IDB) increases. Because the size of a dynamic Huffman tree
is difficult to predict, this paper only focuses on the effect
of the size of the IDB on the DEFLATE compression ratio,
rather than the dynamic Huffman tree.

As mentioned, the compressibility prediction algorithm
for the existing DEFLATE algorithm does not consider the
size of the IDB. However, using the chunk-based compres-
sion method, the compressibility prediction algorithm must
consider it, because the IDB size varies drastically, depending
on the compression efficiency of the LZ77 encoding. Fig. 10
presents the change in FS as the size of the IDB changes.
As shown in Fig. 10, the smaller the IDB, the larger the
stored block and static Huffman area. This is because as the
IDB size increases, the overhead incurred by the addition
of the dynamic Huffman tree information becomes larger,
which results in degradation of the compression efficiency
of dynamic Huffman coding. This indicates that as the
size of IDB changes, and the condition determined to be
incompressible DB changes. In other words, symbol-count
and frequency-dispersion thresholds should be adjusted
according to IDB size. Therefore, it is necessary to use
different FSs according to the size of the IDB to predict data
compressibility.

When the size of the IDB is very small, the probability
of using static Huffman coding instead of dynamic Huffman
coding increases, even if the compression efficiency of the
dynamic Huffman code is very high. This is because the
dynamic Huffman tree size is relatively large compared to
the compressed data.

FIGURE 11. CDF graph of DHMDB and SHMDB numbers according to IDB
size.

When compressed in DHM and SHM, the best compressed
data blocks will be marked as DHMDB and SHMDB, respec-
tively. Fig. 11 shows the CDF of the number of DHMDB
and SHMDB, depending on the size of the IDB based on
the dataset described in Table 1 and some other 1.9 GB
random datasets belonging to the same categories. As shown

in the figure, almost all SHMDBs have very small IDBs.
This information is utilized to formulate the threshold with
which the compressibility prediction algorithm preferentially
selects the SHM. Thresholds are set heuristically in the same
way as in previous research [12]. Specifically, the point where
80% of the data blocks for which the selected SHMbelongs is
set as IDB threshold. Below this threshold, 80% of DBs that
choose SHM and 4% of DBs that choose DHM also belong.

3) COMPRESSION RATE OF LZ77 ENCODING
Due to the size of the dynamic Huffman tree information,
the size of the output data may be larger than the size of the
original data. In this case, the DEFLATE algorithm handles
the DB in SBM. However, the increase in data size caused by
Huffman coding is limited. Therefore, if the compression rate
of LZ77 encoding is higher than a certain threshold, the DB
is not compressed in SBM. This condition can be expressed
as follows.

CRLZ77 × CRHuff > 1 (4)

⇐⇒ CRLZ77 >
1

CRHuff
(5)

Fig. 12 illustrates the fact that the DEFLATE algorithm
does not use SBM when the compression rate of LZ77 is
above the threshold. Based on this observation, the proposed
algorithm excludes SBM from mode selection when the
LZ77 encoding compression rate of the DB is more than the
threshold. During the training phase, the maximum value of

1
CRHuff

is recorded. This value is called the CLZCR.

D. PROPOSED METHOD
This section describes the proposed data compressibility
prediction scheme. Specifically, we describe two phases
included in the proposed method: the training phase and
compression phase.

1) TRAINING
As discussed above, the training phase extracts features
from the training data and builds a predictive model. The
training data should consist of a sufficiently large dataset
of various data types to ensure the universality of the data.
Fig. 14 presents a block diagram of the training phase. While
training data is processed, a feature set for each DB is gener-
ated. All extracted feature sets are recorded. The feature
sets include the following statistics: Dataidb, CRHuff , #Node,
Frequencydis, DEFLATE mode, tree, and entL .
The recorded feature sets are classified into different

feature groups according to predetermined IDB size ranges
and the CLZCR. Classification is performed twice. Each
feature group has one FS and a CIDBS. The first classifi-
cation is performed based on the intermediate data size as
soon as the feature set is extracted. After feature-extraction
iteration is complete, the recorded feature sets belonging to
each intermediate feature group are reclassified into feature
groups based on their CLZCRs. The CLZCR is calculated as

37114 VOLUME 8, 2020

Y. Kim et al.: Low-Overhead Compressibility Prediction for High-Performance Lossless Data Compression

FIGURE 12. 0KB < Dataidb ≤ 1KB and CRLZ77 ≤ CRcri_LZ77.

FIGURE 13. Distribution of DEFLATE modes by compression rate of
LZ77 encoding and compression rate of Huffman coding.

FIGURE 14. Block diagram of the training phase.

the maximum value of 1
CRHuff

in each intermediate feature
group. Following the second classification, the CIDBS of
each feature group is calculated using the features belonging

to each feature set. The CIDBSs are computed as the point
where the CDF of the DB sample is 80% according to the
IDB size. Additionally, the DEFLATE areas for each feature
group are defined.

In this paper, we define the three areas as rectangles for
simplicity of algorithm. Each rectangle contains data clus-
ters in which the data samples for each DEFLATE mode
are continuously distributed in the FS. The rectangles are
defined as the regions between the maximum and minimum
values of the number of Huffman nodes of each data cluster
and are smaller than the maximum value of the frequency
dispersion of each data cluster. The dynamic Huffman area
is the remaining area excluding the other two areas.

2) FEATURE EXTRACTION
The DEFLATE compression system extracts the features
that are necessary for compressibility prediction during
LZ77 encoding. The features extracted through this process
are Dataidb, #Node, Frequencydis, and CRLZ77.

3) COMPRESSIBILITY PREDICTION
Alg. 1 is the compressibility prediction algorithm. The
compressibility prediction algorithm selects the appropriate
FS depending on the size of each IDB and the LZ77 compres-
sion ratio. Next, entropy filtering is performed using the
selected FS. First, the algorithm determines which area the
current DB belongs to base on the number of Huffman
nodes and frequency dispersion. It is assumed that all DBs

VOLUME 8, 2020 37115

Y. Kim et al.: Low-Overhead Compressibility Prediction for High-Performance Lossless Data Compression

Algorithm 1 Entropy Filtering
Input: Attributes of current DB
Output: DEFLATE mode
FS ← FS_Select(Dataidb,CRLZ77);
Area← Area_Select(FS, #Node,Frequencydis);
if Area == StoredBlock then

return SBM
else

if Dataidb < FS.Datacri_db then
return SHM

else
if Area == Static then

return SHM
else

return DHM
end if

end if
end if

belonging to a specific area are compressed in the corre-
sponding DEFLATE mode. However, in the FS, multiple
areas overlap. In this case, the mode with the highest priority
is selected. The selection priority decreases in the order of
SBM, SHM, and DHM. This is because the computational
cost decreases in the order of SBM, SHM, and DHM. There-
fore, if the current DB belongs to the stored block area,
the DB is processed in SBM. Otherwise, the algorithm calcu-
lates whether or not the IDB size of the DB is less than the
CIDBS. If the IDB size is smaller than the CIDBS, the current
DB is compressed in SHM. If not, the DEFLATE mode
is selected according to the area to which the current DB
belongs.

VII. IMPLEMENTATION ISSUES
In this section, we discuss the hardware implementa-
tion issues related to the proposed method. Specifically,
we describe how the proposed hardware cost-reduction tech-
niques are implemented. We also use a pipeline technique
to optimize performance when implementing the proposed
method.

A. COMPUTATION REUSE FOR FEATURE EXTRACTION
As mentioned above, we found similarities between the
computation of compressibility prediction and the compu-
tation of existing compression algorithms and used them to
minimize resource consumption. Reusing computation is a
simple but very efficient method to reduce resource consump-
tion. This technique can also be applied to combinatorial
compression, which includes statistical compression that
generates code based on static tables that record the frequency
of symbols occurrences. This subsection describes the oper-
ations of compressibility prediction can be eliminated.

The features extracted via the feature extraction process are
as follows: Dataidb, #Node, Frequencydis, and CRLZ77.

1) SIZE OF INTERMEDIATE DATA BLOCK (Dataidb)
The Huffman encoder needs to know how much intermediate
data should be compressed with the Huffman code table that
is currently transferred. Therefore,Dataidb is calculated in the
statistics-collection process, and the information is sent to the
Huffman encoder.

2) NUMBER OF HUFFMAN NODES(#Node)
Because the Huffman code generator needs to know how
many nodes to generate dynamic Huffman code, #Node is
also generated during the existing statistics collection.

3) COMPRESSION RATE OF LZ77 ENCODING (CRLZ77)
CRLZ77 is the input block size (Datadb) of the LZ77 encoding
divided by the size of the currently generated intermediate
data block (Datadb). As mentioned above, Dataidb is created
during the statistics collection process, and only the value of
Datadb needs to be generated. Fig. 15 illustrates the layout of
the compressed data when using each DEFLATE mode [40].
For SBM, the length of the original data block is included
in the compressed data block. Therefore, in the case of the
compressor supporting SBM,Datadb is calculated to be trans-
ferred to the Huffman encoder during the statistics collection
process. It is assumed that our compressor supports SBM.

FIGURE 15. Layout of the compressed data.

4) DISPERSION OF FREQUENCIES (Frequencydis)
Finally, a calculation ofFrequencydis is required.Frequencydis
can be calculated using the following equation:∑#Node

i=1 (Frequencyi − Average_Frequency)2∑#Node
i=1 Frequencyi

(6)

To calculate Frequencydis, the average frequency must
be calculated. Average frequency is the summation of
symbol frequencies divided by the number of occurred
symbols (#Node). Average frequency can be calculated using
following equation:∑#Node

i=1 Frequencyi
#Node

(7)

The statistics collection process includes scanning the
input data stream, calculating the frequency (Frequencyi)
of each occurred symbol, and calculating the number of
occurred symbols (#Node). Additionally, Huffman encoding
fetches the frequencies of all symbols to sort the Huffman

37116 VOLUME 8, 2020

Y. Kim et al.: Low-Overhead Compressibility Prediction for High-Performance Lossless Data Compression

FIGURE 16. Operations removed by the computation-reuse technique.

nodes by frequency. Therefore, apart from these calculations,
the following calculations only require additional logic.
• Accumulating all symbol frequencies
• Accumulating the square of the difference between the
frequency of each symbol and average frequency

• Division operations
Among these, computation complexity-reduction simpli-

fies second operations and replaces third operations with
simple shift operations.

Fig. 16 describes the results of applying the computation-
reuse technique. The red and green parts contain the
calculations implemented by reusing the existing DEFLATE
operations. Therefore, for compressibility prediction, only
the blue parts needs to be additionally implemented.

B. PIPELINING FREQUENCY DISPERSION CALCULATION
The frequency dispersion calculation can be initiated after
feature extraction is complete. To calculate the frequency
dispersion, the frequencies of all symbols must be read
and the cumulative calculation results of the numerator and
denominator in (6) must be obtained.

Therefore, the frequency dispersion calculation takes
a relatively longer time compared to the other feature
calculation steps, which may degrade compression perfor-
mance. To prevent performance degradation, we paral-
lelized frequency dispersion calculation and Huffman code
generation.

To generate dynamic Huffman code, the Huffman code
generator searches for the two Huffman nodes having the
smallest frequency values. The DEFLATE algorithm sorts the
Huffman nodes according to their frequencies to search for

FIGURE 17. Space-time diagram of the proposed compressor pipeline.

these twoHuffman nodes [28]. The frequencies of all symbols
are read for the sort operation. Simultaneously, the frequency
dispersion is calculated in parallel while sorting the Huffman
nodes. After the frequency dispersion calculation is finished,
the DEFLATE mode is selected. If DHM is selected, the rest
of the compression process is performed. In other cases,
Huffman-code generation is aborted. The Huffman encoder
then processes the current DB in the selected DEFLATE
mode. Fig. 17 presents an example of a pipelining frequency
dispersion calculation.

C. COMPUTATION COMPLEXITY REDUCTION
1) FREQUENCY DISPERSION CALCULATION
Statistical variation is a measure of how datasets are
distributed. There are various types of indicators for statis-
tical dispersion. A general statistical indicator of how far

VOLUME 8, 2020 37117

Y. Kim et al.: Low-Overhead Compressibility Prediction for High-Performance Lossless Data Compression

each item in a set is separated from the mean is variance.
When frequency dispersion is defined as the variance of each
symbol frequency, it is calculated as follows:∑#Node

i=1 (Frequencyi − Average_Frequency)2∑#Node
i=1 Frequencyi

(8)

In this case, multipliers and dividers that consume signifi-
cant hardware resources are necessary to perform the square
operation. However, average absolute deviation can be calcu-
lated using the following equation:∑#Node

i=1 |Frequencyi − Average_Frequency|∑#Node
i=1 Frequencyi

(9)

Average absolute deviation uses an absolute operation that
requires two subtractions andmultiplexing operations. There-
fore, using absolute average deviation instead of variance
as an indicator of frequency dispersion reduces hardware
resource utilization.

D. COMPRESSIBILITY PREDICTION
In Alg. 1, FS_Select and Area_Select perform the following
operations:

Datadb
Dataidb

≥ δ (10)∑#Node
i=1 |Frequencyi − Average_Frequency|∑#Node

i=1 Frequencyi
≤ α (11)

As shown above, division, which consumes significant
hardware resources [57], is necessary for (10) and (11).
Furthermore, considering the operand types, floating-point
operations are required, which further increases hardware
resource utilization [55]. To solve this problem, we convert
the division operations into multiplication operations and
approximate all real operands as the sum of powers of 1

2 .
Experiments have shown that this approach can reduce
LUT usage by approximately 82.9% compared with using
dividers. Because multiplication of 1

2 can be converted
into an arithmetic right-shift operation, all real divisions
are converted into the sum of integer multiplications and
right-shift operations. If a real number value is approximated
using this method, an error may occur in the calculation
result. However, when approximating a decimal using the
sum of (12)

k such that 1 ≤ k ≤ n, the error, e, is 0 ≤ e <
(12)

n, which is negligible. A proof of this operation has been
omitted owing to lack of space.

VIII. EXPERIMENTAL RESULTS
A. EXPERIMENTAL ENVIRONMENT
To evaluate the proposed technique, we implemented a
DEFLATE compressor with the proposed compressibility
prediction technique in Verilog register-transfer-level code.
We synthesized the compression engine using Xilinx Vivado.
The target FPGA was the xcku025-ffva1156-1-I. The synthe-
sized design operates at a target frequency of 200 MHz.

Training for the compressibility prediction technique was
performed using a modified version of zlib [28].

The baseline system for this experiment consisted of the
LZ77 encoder, Huffman code generator, and the Huffman
encoder. The three modules operate in a pipelined manner.
In this experiment, we measured the performance changes in
the Huffman code generator and Huffman encoder, which are
affected by the compressibility prediction technique. Addi-
tionally, we discuss the effects of performance changes in
the two modules on overall compressor performance. There-
fore, the LZ77 encoder should not be a performance bottle-
neck and the proposed compression system implements two
LZ77 encoders to support one Huffman code generator and
one Huffman encoder. Also, the data to be compressed is
divided into 4-KB chunks so the two LZ77 encoders can
operate in parallel.

B. BENCHMARKS
Table 1 lists the types of files used for experimentation.
During the training phase and data compression process,
different files belonging to the same category, except for the
Canterbury and Calgary files, were used. The files used for
training and data compression were 320 MB and 32 MB,
respectively.

Fig. 18 presents the ratio of DEFLATE modes selected by
the DBs included in each benchmark when the benchmarks
were compressed. Based on the results of this experiment,
the benchmarks were divided into five categories: normal,
txt, repeat, bin, and incomp). The normal category includes
the Canterbury and Calgary files.
Normal contains various types of files ranging from text

files to executable files. Most of the files are compressed in
DHM and are relatively compressible compared to the other
benchmarks.
Txtfiles are compressedwell because they are composed of

a limited set of characters, such as alphanumeric characters.
Huffman compression efficiency is relatively high for these
files. All DBs in txt select DHM.
Repeat files have data patterns in which several characters

are repeated many times. For this reason, these files have
very high LZ77 encoding compression efficiency. They are
also compressed well by dynamic Huffman coding because
they contain only alphabet characters. However, based on
the high compression efficiency of the LZ77, most files
are compressed in SHM, which does not require appending
dynamic Huffman trees to the output data stream.

In the case of bin, LZ77 compression efficiency is high
because it contains significant repeated data. However,
the compression efficiency of Huffman coding is not good
because of the variety of characters appearing in the files.
Therefore, when the files are compressed, SHM is selected
relatively more often compared to the other benchmarks.
Incomp includes multimedia files and weather information

data. Because multimedia files and weather data are already
compressed, they are incompressible. Experimental results
revealed that incompfiles contain manyDBs that select SBM.

37118 VOLUME 8, 2020

Y. Kim et al.: Low-Overhead Compressibility Prediction for High-Performance Lossless Data Compression

FIGURE 18. DEFLATE modes percentages selected by the DBs included in each benchmark.

C. TYPES OF ENTROPY FILTERING
To investigate the effects of features on the proposed
compressibility prediction method, we performed entropy
filtering in several different ways. We used four different
entropy filtering schemes. The first scheme measures
compressibility based on the frequency dispersion and
number of Huffman nodes, and is called single FS (S-FS).
The next scheme uses multiple FSs based on the sizes
of the IDBs and is called multiple FS (M-FS). feature
filtering (FF)measures compressibility using the CIDBS and
LZ77 encoding compression ratio in addition to S-FS. Finally,
the scheme using all variables is calledM-FS+FF.

D. ACCURACY
Fig. 19 presents the changes in DEFLATE mode and
DEFLATE compression ratio when the benchmarks
were compressed with various entropy filtering schemes.
We derived several observations from this experiment.

(a) Two experimental results show that the prediction accu-
racy of M-FS+FF is the best. Additionally, it is shown that
there is no significant difference in the DEFLATE compres-
sion ratiowhen the compressibility predictionmethod is used.

(b)M-FS considers more features than S-FS, but often has
lower accuracy than S-FS. This can be observed for themedia,
comp, and bin categories. This is because the overlap between
multiple areas becomes large when the IDB size is small
for M-FS. This increases the number of DBs that select the
high-priority DEFALTE mode. As shown in the figure, when
M-FS compresses bin and media, the ratio of the DBs that
select SBM increases compared to that in S-FS. In the case of
comp, the percentage of DBs selecting SHM increases.

(c) The compressibility prediction accuracy of S-FS+FF
and M-FS+FF is better than that of S-FS and M-FS, respec-
tively. S-FS+FF andM-FS+FF predict compressibility more

FIGURE 19. Compression rate differences compared to original method
based on the inclusion of entropy filtering schemes.

accurately in overlapping areas by considering the CIDBS
and CLZCR. For this reason, especially in benchmarks that
contain many DBs belonging to overlapping regions, such as
incomp, prediction accuracy is greatly improved by FF.

(d) The normal and repeat categories show no change
in prediction accuracy with entropy filtering, except for
M-FS+FF. This is because all features must be used for
compressibility prediction to select a static Huffman area in
overlapping regions.

We evaluate the effects of reflecting the size of IDB
in compressibility prediction. To evaluate this, benchmarks
containing SHMDBs are collected and compared before and
after compressibility predictions considering IDB size. The
frequency dispersion and the number of symbols that are used
as features for predicting data compressibility in S-FS are
the features widely used in previous studies [12], [45]–[47].
Therefore, set S-FS to baseline. SHMDB is the DB that can be
best compressed when compressed with SHM. Fig. 20 shows
the change in SHMDB that is selected when multiple FSs
are used for S-FS and CIDBS is used for filtering. As you

VOLUME 8, 2020 37119

Y. Kim et al.: Low-Overhead Compressibility Prediction for High-Performance Lossless Data Compression

FIGURE 20. Accuracy of the SHMDB detection rate.

can see in Fig. 20, when using baseline, there is no DB to
select SHM. On the other hand, considering the size of IDB,
we can see that 71.3% of SHMDB is processed in SHM. This
means that the proposed compressibility prediction algorithm
evaluates the compression efficiency of Huffman encoding
more accurately than the existing algorithm.

E. PERFORMANCE
Fig. 21a illustrates the throughput of the compressor for each
entropy filtering scheme. Additionally, Figs. 21b and 21c
present the average clock cycles consumed by the Huffman
code generator for processing a DB and the clock cycles for
which each module was stalled by processing delays in the
other modules.

In general, the proposed technique improves compressor
throughput. In the cases of incomp and repeat, the proposed
method greatly improved the throughput of the compressor.
Media, comp, and repeat showed 39.6%, 28.7%, and 60.2%
throughput improvements, respectively. Much of comp and
mediawere compressed in SBM. In the case of repeat, almost
all files were compressed in SHM. Therefore, the compress-
ibility prediction technique reduces the execution time
consumed by Huffman code generation, which increases the
throughput of the compressor.

As shown in Fig. 21b, the compressibility prediction
technique reduced the execution time of the Huffman code
generator for processing media, comp, and repeat by 39.2%,
28.5%, and 90.5%, respectively.

Additionally, according to Fig. 21c, the number of clock
cycles for which each module in the compressor was stalled
based on processing delays in the other modules was reduced
by 93.1%, 88.9%, and 99.4%, respectively. These two sets
of experimental results suggest that the proposed method
increases the throughput of the compressor by reducing the
amount of computation that the Huffman code generator
handles. Normal and txt showed no increase in compressor
throughput because most of the files in these categories were
compressed in DHM.

Compressibility prediction using only a few features may
result in performance degradation of the compressor. In the
cases of normal and repeat, the throughput of the compressor
decreased by up to 0.003% and 0.28%, respectively. When

FIGURE 21. Compression throughput with each entropy filtering scheme.

compressing media, the throughput tends to decrease as the
prediction accuracy increases. This is because as the accuracy
of prediction increases, the percentage of DBs processed in
SBM decreases.

F. RESOURCE CONSUMPTION
We analyzed LUT usage by synthesizing a DEFLATE
compressor to evaluate the proposed technique in terms
of resource consumption. First, we evaluate the effective-
ness of the two hardware cost-reduction techniques. Fig. 22
shows the hardware resource consumption of compressibility
predictor (i.e., CP) and selective compressor (i.e., SC) when
utilizing the computational reuse technique (i.e., CRT) and
the computation complexity reduction technique (i.e., CCR).
As shown in the figure, two proposed techniques reduce the
hardware resource consumption of CP and SC by 82.34% and
10.15%, respectively.

37120 VOLUME 8, 2020

Y. Kim et al.: Low-Overhead Compressibility Prediction for High-Performance Lossless Data Compression

FIGURE 22. Hardware resource consumption of compressibility predictor
and selective compressor when using proposed cost-reduction
techniques.

TABLE 3. Total LUT consumption.

Table 3 shows the hardware resources of the FPGAs that
were consumed by each compressor before and after applying
the proposed technique. The proposed compressor consumes
approximately 3.1% more hardware resources than the base-
line compressor. Additionally, Table 3 also shows the amount
of hardware resources consumed by each hardware module
for feature-extraction and compressibility prediction, respec-
tively. The feature-extractionmodule operates in parallel with
the LZ77 encoder. Additionally, the compressibility predic-
tion module operates simultaneously with the Huffman code
generator. Therefore, as the number of LZ77 encoders and
Huffman code generators increases, the amount of hardware
resources consumed by each module increases.

IX. CONCLUSION
This paper presented a low-cost compressibility predic-
tion technique for high-performance lossless compression.
We described an input DB analysismethod for data compress-
ibility prediction. The proposed method determines the
compression mode of a DB during data compression based
on the analysis results. Because the determination of the
compression mode is faster than the actual compression
process for each mode, the prediction method reduces the
amount of computational resources wasted for compressing
uncompressed data. It also improves the overall perfor-
mance of the compressor by efficiently utilizing the computa-
tional resources. Experimental results demonstrated that the
proposed method improves compression engine throughput
by approximately 34.15%. Our analysis indicated a compres-
sion ratio loss of approximately 0.17% and an increase in

hardware resource usage of approximately 3.1%, which are
negligible.

ACKNOWLEDGMENT
The authors are grateful to the anonymous reviewers for their
valuable feedback and comments.

REFERENCES
[1] U. Sivarajah, M. M. Kamal, Z. Irani, and V. Weerakkody, ‘‘Critical anal-

ysis of big data challenges and analytical methods,’’ J. Bus. Res., vol. 70,
pp. 263–286, Jan. 2017.

[2] P. Barnaghi, A. Sheth, and C. Henson, ‘‘From data to actionable knowl-
edge: Big data challenges in the Web of things,’’ IEEE Intell. Syst., vol. 28,
no. 6, pp. 6–11, Nov./Dec. 2013.

[3] J. Chen, Y. Chen, X. Du, C. Li, J. Lu, S. Zhao, and X. Zhou, ‘‘Big data
challenge: A datamanagement perspective,’’Frontiers Comput. Sci., vol. 7,
no. 2, pp. 157–164, Apr. 2013.

[4] M. A. Vasarhelyi, A. Kogan, and B. M. Tuttle, ‘‘Big data in accounting:
An overview,’’ Accounting Horizons, vol. 29, no. 2, pp. 381–396,
Jun. 2015.

[5] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data processing on
large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[6] Y. Chen, A. Ganapathi, and R. H. Katz, ‘‘To compress or not to compress–
compute vs. IO tradeoffs for mapreduce energy efficiency,’’ in Proc. 1st
ACM SIGCOMM workshop Green Netw. (Green Netw.). New York, NY,
USA: ACM, 2010, pp. 23–28.

[7] Aws Global Infrastructure. Accessed: Sep. 27, 2019. [Online]. Available:
https://aws.amazon.com/ko/about-aws/global-infrastructure/

[8] T. Davenport and J. Harris, Competing on Analytics: Updated, with a New
Introduction: The New Science of Winning. Brighton, MA, USA: Harvard
Business Press, 2017.

[9] C. Mullins. (1999). Database Trends. [Online]. Available: http://
www.bwdb2ug.org/Presentations/DatabaseTrends.pdf

[10] M. Atkinson, Uk e-Science Grid Infrastructure Meets Biological Research
Challenges, document, 2002.

[11] H. Liu and D. Orban, ‘‘GridBatch: Cloud computing for large-scale
data-intensive batch applications,’’ in Proc. 8th IEEE Int. Symp. Cluster
Comput. Grid (CCGRID), May 2008, pp. 295–305.

[12] D. Harnik, R. I. Kat, O. Margalit, D. Sotnikov, and A. Traeger, ‘‘To zip or
not to zip: Effective resource usage for real-time compression,’’ in Proc.
FAST, 2013, pp. 229–242.

[13] P. A. H. Peterson and P. L. Reiher, ‘‘Datacomp: Locally independent adap-
tive compression for real-world systems,’’ in Proc. IEEE 36th Int. Conf.
Distrib. Comput. Syst. (ICDCS), Jun. 2016, pp. 211–220.

[14] T. Summers and S. A. Engineer, ‘‘Hardware based gzip compression, bene-
fits and applications,’’ CORPUS, vol. 3, no. 2.75, pp. 2–68, 2008.

[15] R. Kothiyal, V. Tarasov, P. Sehgal, and E. Zadok, ‘‘Energy and perfor-
mance evaluation of lossless file data compression on server systems,’’ in
Proc. Israeli Experim. Syst. Conf. (SYSTOR). New York, NY, USA: ACM,
2009, pp. 4:1–4:12.

[16] B. Nicolae, ‘‘High throughput data-compression for cloud storage,’’ in
Proc. 3rd Int. Conf. Data Manage. Grid Peer-To-Peer Syst. Berlin,
Germany: Springer-Verlag, 2010, pp. 1–12.

[17] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, ‘‘Profiling a warehouse-scale computer,’’ in
Proc. 42nd Annu. Int. Symp. Comput. Archit. (ISCA). NewYork, NY, USA:
ACM, 2015, pp. 158–169.

[18] D. C. Marinescu, Cloud Computing: Theory and Practice. SanMateo, CA,
USA: Morgan Kaufmann, 2017.

[19] K. Soo Yim, H. Bahn, and K. Koh, ‘‘A flash compression layer for Smart-
Media card systems,’’ IEEE Trans. Consum. Electron., vol. 50, no. 1,
pp. 192–197, Feb. 2004.

[20] Y. Park and J.-S. Kim, ‘‘ZFTL: Power-efficient data compression support
for NAND flash-based consumer electronics devices,’’ IEEE Trans.
Consum. Electron., vol. 57, no. 3, pp. 1148–1156, Aug. 2011.

[21] W.-T. Huang, C.-T. Chen, Y.-S. Chen, and C.-H. Chen, ‘‘A compression
layer for NAND type flash memory systems,’’ in Proc. 3rd Int. Conf. Inf.
Technol. Appl. (ICITA), vol. 1, Jul. 2005, pp. 599–604.

[22] B. Nicolae, ‘‘On the benefits of transparent compression for cost-effective
cloud data storage,’’ in Transactions on Large-ScaleData- andKnowledge-
Centered Systems III. Springer, 2011, pp. 167–184.

VOLUME 8, 2020 37121

Y. Kim et al.: Low-Overhead Compressibility Prediction for High-Performance Lossless Data Compression

[23] Btrfs Compression, Transparent File Compression. Accessed:
Sep. 30, 2019. [Online]. Available: https://btrfs.wiki.kernel.org/index.
php/Compression

[24] T. Makatos, Y. Klonatos, M. Marazakis, M. D. Flouris, and A. Bilas,
‘‘ZBD:Using transparent compression at the block level to increase storage
space efficiency,’’ in Proc. Int. Workshop Storage Netw. Archit. Parallel
I/Os, May 2010, pp. 61–70.

[25] R. Filgueira, M. Atkinson, Y. Tanimura, and I. Kojima, ‘‘Applying selec-
tively parallel I/O compression to parallel storage systems,’’ in Proc. Eur.
Conf. Parallel Process. Springer, 2014, pp. 282–293.

[26] DB-Engines Database Management Systems Popularity Ranking.
Accessed: Sep. 30, 2019. [Online]. Available: http://db-
engines.com/en/ranking

[27] J. Zhang, Real-Time Lossless Compression of SoC Trace Data, document,
2015.

[28] P. Deutsch and J.-L. Gailly, ZLIB Compressed Data Format Specification
Version 3.3, document RFC 1950, 1996.

[29] Genomic Data 101: 2018 Edition, an Introduction to Genomic Data, Front
Line Genomics Mag., 2018.

[30] Petagene. Transparent Lossless Compression. [Online]. Available: https://
www.petagene.com/cost-calculator/

[31] C. Burns, B. Tuv-El, J. Quintal, and J. Tate, IBM Real-time Compression
in IBM SAN Volume Controller and IBM Storwize V7000. 2015.

[32] R. Tretau, J. Kim, B. Nolte, G. Nunn, and F. Schneider, Introduction to
IBM Real-time Compression Appliances. IBM Redbooks, 2013.

[33] G. Pekhimenko, C. Guo, M. Jeon, P. Huang, and L. Zhou, ‘‘TerseCades:
Efficient data compression in stream processing,’’ in Proc. USENIX Annu.
Tech. Conf. (USENIX ATC), 2018, pp. 307–320.

[34] A. Martin, D. Jamsek, and K. Agarawal, ‘‘Fpga-based application accel-
eration: Case study with GZIP compression/decompression streaming
engine,’’ in Proc. ICCAD Special Session 7C, 2013.

[35] J. Ouyang, H. Luo, Z. Wang, J. Tian, C. Liu, and K. Sheng, ‘‘FPGA imple-
mentation of GZIP compression and decompression for IDC services,’’ in
Proc. Int. Conf. Field-Program. Technol., Dec. 2010, pp. 265–268.

[36] M. S. Abdelfattah, A. Hagiescu, and D. Singh, ‘‘Gzip on a chip: High
performance lossless data compression on FPGAs using OpenCL,’’ in
Proc. Int. Workshop OpenCL (IWOCL). New York, NY, USA: ACM, 2014,
p. 4.

[37] J. Fowers, J.-Y. Kim, D. Burger, and S. Hauck, ‘‘A scalable high-
bandwidth architecture for lossless compression on FPGAs,’’ in Proc.
IEEE 23rd Annu. Int. Symp. Field-Program. Custom Comput. Mach.,
May 2015, pp. 52–59.

[38] J. Matai, J.-Y. Kim, and R. Kastner, ‘‘Energy efficient canonical Huffman
encoding,’’ in Proc. IEEE 25th Int. Conf. Appl.-Specific Syst., Archit.
Processors, Jun. 2014, pp. 202–209.

[39] W. Qiao, J. Du, Z. Fang, M. Lo, M.-C.-F. Chang, and J. Cong, ‘‘High-
throughput lossless compression on tightly coupled CPU-FPGA plat-
forms,’’ in Proc. IEEE 26th Annu. Int. Symp. Field-Program. Custom
Comput. Mach. (FCCM). New York, NY, USA: ACM, Apr. 2018, p. 291.

[40] S. Rigler, W. Bishop, and A. Kennings, ‘‘FPGA-based lossless data
compression using Huffman and LZ77 algorithms,’’ in Proc. Can. Conf.
Electr. Comput. Eng., 2007, pp. 1235–1238.

[41] S. Choi, Y. Kim, and Y. H. Song, ‘‘False history filtering for reducing
hardware overhead of FPGA-based LZ77 compressor,’’ J. Syst. Archit.,
vol. 88, pp. 110–119, Aug. 2018.

[42] (2015). Aha374/Aha378 PCI Express Compression and Decompres-
sion Accelerator Card. [Online]. Available: http://www.aha.com/Uploads/
aha374-378_brief_rev_c1.pdf

[43] Dx2040, High Performance Scalable Solutions for Data Analytics,
Storage, and Networking. [Online]. Available: https://www.exar.com/
content/document.ashx?id=21618

[44] A. El-Shimi, R. Kalach, A. Kumar, A. Oltean, J. Li, and S. Sengupta,
‘‘Primary data deduplication-large scale study and system design,’’ inProc.
USENIX Conf. Annu. Tech. Conf. (USENIX ATC). Berkeley, CA, USA:
USENIX Association, 2012, p. 26.

[45] A. Kattan and R. Poli, ‘‘Genetic-programming based prediction of data
compression saving,’’ in Proc. Int. Conf. Artif. Evol. (Evol. Artificielle).
Springer, 2009, pp. 182–193.

[46] W. Culhane, ‘‘Statistical measures as predictors of compression savings,’’
Ph.D. dissertation, Ohio State Univ., Columbus, OH, USA, 2008.

[47] D. A. Owusu, ‘‘Modeling outputs of efficient compressibility estimators,’’
Ph.D. dissertation, Univ. Minnesota, Minneapolis, MN, USA, 2018.

[48] S. Lee, J. Park, K. Fleming, Arvind, and J. Kim, ‘‘Improving performance
and lifetime of solid-state drives using hardware-accelerated compres-
sion,’’ IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1732–1739,
Nov. 2011.

[49] X. Zhang, J. Li, H. Wang, D. Xiong, J. Qu, H. Shin, J. P. Kim, and
T. Zhang, ‘‘Realizing transparent OS/apps compression in mobile devices
at zero latency overhead,’’ IEEE Trans. Comput., vol. C-66, no. 7,
pp. 1188–1199, Jul. 2017.

[50] J. Ziv and A. Lempel, ‘‘A universal algorithm for sequential data compres-
sion,’’ IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337–343, May 1977.

[51] D. A. Huffman, ‘‘A method for the construction of minimum-redundancy
codes,’’ Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sep. 1952.

[52] D. Salomon, A Concise Introduction to Data Compression. London, U.K.:
Springer-Verlag, 2008.

[53] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, Jul./Oct. 1948.

[54] R. Lyda and J. Hamrock, ‘‘Using entropy analysis to find encrypted and
packed malware,’’ IEEE Secur. Privacy Mag., vol. 5, no. 2, pp. 40–45,
Mar. 2007.

[55] G. Frantz and R. Simar, Comparing Fixed- and Floating-Point DSPS.
Dallas, TX, USA: Texas Instruments, 2004.

[56] R. Gutierrez and J. Valls, ‘‘Low cost hardware implementation of logarithm
approximation,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19,
no. 12, pp. 2326–2330, Dec. 2011.

[57] S. Hashemi, R. I. Bahar, and S. Reda, ‘‘A low-power dynamic divider for
approximate applications,’’ in Proc. 53rd Annu. Des. Autom. Conf. (DAC).
New York, NY, USA: ACM, 2016, p. 105.

[58] Matt Powell. (2001). The Canterbury Corpus. [Online]. Available: http://
corpus.canterbury.ac.nz/descriptions/

[59] Marie Lebert. Project Gutenberg. [Online]. Available: http://www.
gutenberg.org/

[60] Core.2 Global Air-Sea Flux Dataset. [Online]. Available: https://
rda.ucar.edu/datasets/ds260.2/

[61] NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Fore-
cast Grids. [Online]. Available: https://rda.ucar.edu/datasets/ds083.3/

[62] K. Conrad, Probability Distributions and Maximum Entropy.

YOUNGIL KIM received the bachelor’s degree in
media communication engineering from Hanyang
University, Seoul, South Korea, in 2012, where
he is currently pursuing the Ph.D. degree in elec-
tronics and computer engineering.

His research interests include high-performance
computing, lossless data compression, and 3D
integrated circuit.

SEUNGDO CHOI received the bachelor’s and
master’s degrees in electronics and computer engi-
neering from Hanyang University, Seoul, South
Korea, in 2012 and 2014, respectively, where he
is currently pursuing the Ph.D. degree.

His research interests include high-performance
computing, computer architecture, and low-power
systems.

DAEYONG LEE received the B.S. degree from
the School of Electronic Engineering, Soongsil
University, Seoul, South Korea, in 2014, and
the master’s degree from the Department of
Electronics and Computer Engineering, Hanyang
University, Seoul, in 2017. He is currently
pursuing the Ph.D. degree with the Department of
Electronics Engineering, Hanyang University.

His research interests include embedded
systems and nand flash memories.

37122 VOLUME 8, 2020

Y. Kim et al.: Low-Overhead Compressibility Prediction for High-Performance Lossless Data Compression

JOONYONG JEONG received the bachelor’s
degree in information systems from Hanyang
University, where he is currently pursuing the
integrated M.S./Ph.D. degree in electronics and
computer engineering. His research interests
include computer architecture, big data, and key
value store systems.

JAEWOOK KWAK received the B.S. degree
from the Department of Electronic Engineering,
Hanyang University, South Korea, in 2015. He is
currently pursuing the Ph.D. degree with the
Department of Electronics and Computer Engi-
neering, Hanyang University.

His research interests include computer archi-
tecture, embedded systems, and nand flash-based
storage systems.

JUNGKEOL LEE received the B.S. degree from the
Department of Electronic Engineering, Hanyang
University, South Korea, in 2014. He is currently
pursuing the Ph.D. degree with the Department of
Electronics and Computer Engineering, Hanyang
University.

His research interests include embedded com-
puting and the IoT devices.

GYEONGYONG LEE received the B.S. degree
from the Department of Electronic Engineering,
Hanyang University, South Korea, in 2014. He is
currently pursuing the Ph.D. degree with the
Department of Electronics and Computer Engi-
neering, Hanyang University.

His research interests include embedded com-
puting and nand flash memories.

SANGJIN LEE received the bachelor’s degree
in electronics and computer engineering from
Hanyang University, South Korea, in 2014. He is
currently pursuing the Ph.D. degree with the
Department of Electronic and Computer Engi-
neering, Hanyang University.

His research interests include storage systems
based on non-volatile memory, system architec-
ture, and host interface.

KIBIN PARK received the bachelor’s degree
from the Department of Computer Science and
Engineering, Hanyang University, in 2015. He is
currently pursuing the Ph.D. degree with the
Department of Electronics and Computer Engi-
neering, Hanyang University.

His research interests include non-volatile
memories, embedded systems, and hardware
acceleration.

JINWOO JEONG received the B.S. degree
from the Department of Electronic Engineering,
Hanyang University, South Korea, in 2015. He is
currently pursuing the Ph.D. degree with the
Department of Electronics and Computer Engi-
neering, Hanyang University.

His research interests include nand flash-based
storage systems and error-correction codes.

WANG KEXIN (Student Member, IEEE) received
the B.S. degree from the School of Optoelectronic
Engineering, Changchun University of Science
and Technology, in 2017. She is currently pursuing
the master’s and Ph.D. degrees with the Depart-
ment of Electronic and Computer Engineering,
Hanyang University, Seoul, South Korea.

Her research interest is in high-performance
solid-state drive (SSD) architecture.

YONG HO SONG (Member, IEEE) received the
bachelor’s and master’s degrees in computer engi-
neering from Seoul National University, Seoul,
South Korea, and the Ph.D. degree in computer
engineering from the University of Southern Cali-
fornia, Los Angeles, CA, USA, in 1989, 1991, and
2002, respectively.

He is currently a Professor with the Department
of Electronics Engineering, Hanyang University,
Seoul, and the Senior Vice President of Samsung

Electronics Company, Ltd. His current research interests include system
architecture and software systems of mobile embedded systems that further
include SoC, NoC, multimedia on multicore parallel architecture, and nand
flash-based storage systems.

Dr. Song has served as the Program Committee Member for several presti-
gious conferences, including the IEEE International Parallel and Distributed
Processing Symposium, the IEEE International Conference on Parallel and
Distributed Systems, and the IEEE International Conference on Computing,
Communication, and Networks.

VOLUME 8, 2020 37123

