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ABSTRACT

The increasing use of various pesticides (e.g., organophosphate, organochlorine, carbamates, and pyrethroid) has helped to improve agricultural
productivity by minimizing the potential crop losses associated with insect attacks. Owing to their highly recalcitrant nature, most pesticides
and their residues often accumulate in the environment to exert deleterious effects on human health and various ecosystems. Among a variety
of remediation options, biological approaches have attracted a widespread attention for the treatment of pesticide in soil/water systems due to
their environmentally benign nature. In this regard, this review article was organized to highlight the recent advancements in the application
of various bioremediation approaches for the degradation/removal of pesticides from soil/water matrixes along with the catabolic capacity of
microorganisms. Our discussions were expanded further to emphasize identification of specific bacterial communities/strains, such as Bacillus
sp. and Pseudomonas sp. This review is expected to provide an overview of the modern biotechnological methodologies along with the associated
merits and hurdles for the effective abatement of pesticides.

Keywords: Bioreactors, Degradation factors, Microbial degradation, Organophosphate pesticides, Organochlorine insecticides, Soil remediation

use of pesticides and associated environmental contaminants are
expected to become worse in the foreseeable future. Approximately
2.4 million metric tons of pesticides were used worldwide (as of
2014) to control various insects, weeds, fungi, and other unwanted
organisms in agricultural and urban environments [4]. Due to ex-
cessive application, pesticide residues were reported to remain
in the environment longer than 10 years and are detected at a
level of u gL.! in water resources or ug kg in soils [5]. Human
exposure to pesticides at a relatively high concentrationcan occur
through soils and drinking water, thereby threatening human health
and potentially causing fertility disorders due to their high carcino-
genicity and neurotoxicity [6, 7].

Due to the detection of pesticides and residues in water sources,

1. Introduction

Pesticides produced as insecticides, herbicides, fungicides, and
in many other forms have been used for agricultural or horticultural
purposes [1]. This revolutionary development in agriculture tech-
nologies enhanced the crop yield while reducing the risk of crop
loss or quality deterioration [2]. However, these substances are
commonly dispersed contaminants due to their toxicity, persistence,
and degradation by-products.

Pesticides have become essential features in modern agriculture
for economical pest management and better crop production accom-
panied by the rapid growth of the global population, e.g., 1.1%
increase of pesticide use in 2016 over the previous year [3]. The
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many studies have focused on developing physicochemical tech-
nologies for wastewater treatment to remove such residues [8-10].
However, conventional techniques suffer from critical dis-
advantages, such as equipment complexity, high operating costs,
excessive sludge generation, and toxic wastes as byproducts. To
solve these issues, many studies suggested the use of biological
methods for treating a wide range of pesticides, due to their cost-ef-
fective, highly selective, and environmentally benign nature [11-14].
However, the use of biological approaches is also limited by require-
ments such as a need to be compatible with the environment,
uncomplicated access of the microbial population to the pesticide
molecules, and procurement of suitable pesticide-degrading micro-
organisms [15]. Despite decades of research, the scale-up of pesticide
bioremediation approaches from lab-scale into field trials has been
very challenging.

The term “bioremediation” is the method of pollutant bio-
degradation in nature based on the metabolic capacity of microbes
to breakdown various organic compounds like pesticides [16, 17].
In pesticide bioremediation, microbes with specifically/genetically
enhanced functionality utilize pesticide molecules for their meta-
bolic activity through conversion into environmentally benign prod-
ucts/metabolites [18]. A brief summary of the literature on the
general properties of pesticides and bioremediation is provided
in Tables 1 and 2, respectively.

This review focuses on the impact of various factors (e.g., pesti-
cide structure, concentration, pH, temperature, and moisture) on
the biodegradation of pesticides and the major techniques that
are available for pesticide assays in soils. The latest bioremediation
approaches on the degradation of organophosphate, organochlorine,
carbamates, and pyrethroid pesticides in soil and water are also
discussed. In this review, authors sought to highlight the advantages
and drawbacks of the present bioremediation approaches for pesti-
cides through an in-depth analysis and comparison with conven-
tional physicochemical methods. The results of this effort will
help us to enhance our knowledge of this highly challenging field

o
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e.g.zinc phosphate

' ' '

@ Plant based Animal based

Natural
e.gPutrescent whole
egg. dried blood

Microorganism
based

Synthetic Natural
egAllethrin e g Nicotine

Synthetic
egfFish oil

| I S

) ] )
Organophosphate

Bacterial Fungal Viral
eg.Baclls unga

Organochorines Carbamates

thuringienisis eg Pseudoyyma

e.g-Chlorpyrifos eg-Linden eg-Carbaryl flocculossa

of research. Furthermore, we highlight the use of microorganisms
to understand the catabolic ability of the target soil and to demon-
strate the benefit of combining traditional bioremediation techni-
ques with molecular techniques.

2. Chemistry of Pesticides

Pesticides are classified by their nature, feedstock, and pest control
capability. Depending on the pesticide’s origin, it is classified as
a chemical pesticide or a bio-pesticide. Chemical pesticides are
further divided into four main types, namely organophosphates,
organochlorines, carbamates, and pyrethroids. Bio-pesticides are
derived naturally from living organisms, including bacteria, fungi,
and plants. They can commonly be classified into three major groups,
microbial, biochemical, and plant-incorporated protectants. Further,
the classification of pesticides can also be made based on their
pest-controlling capabilities: insecticides (for insects), nematicides
(for nematodes), fungicides (for fungi), herbicides/weedicides (for
weeds), algaecides (for algae), and rodenticides (for rats) (Figure 1
and 1S; Pesticides can be applied directly to specific plant parts
or above-ground to be transported into the soil and to soil-based
organisms. Depending on the application method, a fraction of the
pesticide, ranging from 30.0-90.0%, infiltrate directly into the soil
system [21, 22]. The impacts of various pesticides on specific soil
organisms, soil food chains, and biological soil functions can vary
depending on the type or amount of pesticides, soil environment,
and soil biota. The impacts can be expanded to the health of the
entire soil community with noticeable damage to various soil func-
tions [23]. Pesticides are degraded by both biotic and abiotic processes
into intermediate or secondary products that may have even worse
toxicity than the parent pesticide. Biodegradation of pesti-
cides/herbicides is also greatly influenced by soil conditions (e.g.,
temperature, moisture, organic matter content, and pH) along with
microbial characteristics and pesticide solubility [24].

o / \
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Fig. 1. Classification of several types of pesticides and examples: (a) on the basis of inorganic and organic pesticides, (b) on the basis of ionic forms.
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Fig. 2. Optical sensing strategies for pesticides: (a) description of the signal-on fluorometric strategy for cetylcholinesterase inhibitors; (b) design
of the dual-readout (colorimetric and fluorometric) assay for pesticides; (c) schematic illustration of GQD-ATC/AuNPsfluorometric detection
of AChE and its inhibitors; (d) illustration of the fluorescent detection of OPs through the inner-filter effect of gold nanoparticles on RF-QDs.

As the world population increases, the consumption of pesticides
has dramatically increased and accelerated to maximize agricultural
productivity and to satisfy food demand. However, its effects on
long-term sustainability, soil degradation, water nitrification, natu-
ral resource management, and climate change are still unclear,
as shown in Fig. 2 [25, 26]. The residual levels of pesticides in
foods have been monitored and regulated based on the maximum
residue level (MRL), as established by phyto-sanitary studies. In
2007, approximately 2.3x10° tons of pesticides were used world-
wide, and their sales in 2014 reached 52 billion USD [27]. In the
European Union, more than 800 pesticides have been authorized,
although fewer than 300 pesticides are used in practice [28-30].
As of 2016, China was the largest consumer of agricultural pesticides
(1.81x10° ton y™), followed by the US (3.86x10° ton y"), Argentina
(2.65%10° ton y), Japan (5.2%10* ton y'), and India (4.0 x10*
ton y). The potential crop losses by pests without any pesticides
varied from ~50.0% (e.g., barley) to~80.0% (e.g., sugar, cotton,
and beet) [31]. Actual losses with proper pesticides are estimated
to be 26.0-30.0% for soybeans, sugar, barley, beets, cotton, and
wheat, while they are 35.0% for maize, 39.0% for potatoes, and
40.0% for rice [31].

3. Physicochemical Methods as Pesticide
Treatments

3.1. Extraction

Extract is a commonly used lab-scale method to remove pesticides
from soils and water systems; this technique includes solid-phase
extraction (SPE) and liquid-liquid extraction (LLE) [32]. For the
LLE technique, chlorinated solvents (e.g., tetrachloroethane, chlor-

obenzene, and carbon tetrachloride) or n-hexane are widely used
to determine the toxicity of pesticides. Supercritical extraction
(SC-CO,) was used to treat organophosphate pesticides. In SC-CO,,
pesticide removal depends on the solubility of the pesticide, the
critical temperature, and pressure of supercritical CO, [29].
Unfortunately, there is no breakdown of pesticides into less toxic
compounds. This technique requires a high operation cost to main-
tain the critical temperature and pressure [33]. An average removal
of 90.0% was reported for organophosphate pesticides in a very
short time (e.g., 20 min) at a temperature of 90.0°C and a pressure
of 235 atm (Table 3). The major disadvantages of this process are
high cost and limited operational conditions (i.e., no decomposition
of pesticides below the SC-CO, temperature). The nature of pollu-
tants such as pesticides is also crucial to determine the suitability
of separation methods. This may be due to the fact that the selection
of a suitable solvent is very crucial to remove the pollutants such
as pesticides. Pesticides in diverse forms (e.g., suspensible concen-
trates, granules, controlled-release formulations, and baites) require
special attention and treatment. Comparisons of diverse approaches
have been made for the extraction of pesticides using liquid-liquid
extraction (LLE), solid-phase extraction (SPE), and solid-phase mi-
cro-extraction (SPME) against enriched river water samples. These
authors have reported that the SPE is better than LLE because
of 10 times less soil sample requirements which contained the
pesticides or other organic pollutants [29-33]. In general, compared
to liquid-liquid extraction, solid phase extraction can be exercised
with a small amount of samples.

3.2. Adsorption

Adsorption is a method to remove pesticides in which a certain
adsorbate is transferred selectively to the surface of an insoluble
immobile phase, i.e., the adsorbent. Adsorption is classified by
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the type of bonding between the adsorbed species and the adsorbent,
i.e., physisorption (by weak van der Waals forces) or chemisorptions
(by covalent bonding). Pesticide residues need to be treated physi-
cally or chemically to avoid water contamination [34]. Residual
removal of pesticides by conventional methods is being applied
in wastewater treatment facilities through chemical oxidation, sed-
imentation, flocculation, coagulation, and filtration (using tradi-
tional sorbents). Nonetheless, they may not be effective enough
[35]. In contrast, the adsorption method using activated carbon
appears to be the most effective because it can remove a wide
range of organic compounds from water. Activated carbon is one
of the most extensively used adsorbent materials because of its
porous in nature and high surface area (Table 3). Similarly, a study
found that rice straw biochar showed similarities to activated carbon
and removed 95.0% of atrazine at 10 mg L" [10]. Another researcher
reported that the adsorption doses of lindane and Malathion were
around 5.0 mg L and 200-250 um, respectively, when using acti-
vated carbon as an adsorbent [36]. Removal efficiency of 95.0%
was also observed for biochar derived from rice husk for the sorptive
removal of atrazine (at an initial concentration of 10 mg L. The
disadvantages of adsorption-based methods are the relatively high
capital cost and progressive deterioration in the sorption capacity
as the number of cycle increases. Also, the conventional adsorbents
often lack target specific functional sites on their surfaces to lower
the adsorption capacities of pesticide. In this regard, future research
should be directed to properly assess the performance of novel
sorbents (e.g., metal-organic frameworks) towards the removal of
pesticides. The surface of conventional adsorbents can also be
suitably modified to enhance pesticide adsorption capacity.

3.3. Coagulation/flocculation

Pesticide levels in drinking water have significantly increased,
and thishasbecome a major concern [37].The European Parliament
& Council (EPC, 2000) [38] set a concentration limit of 0.1 mg
L for pesticides in drinking and groundwater for a single pesticide
and 0.5 mg L for the total content of all pesticides [39, 40]. Removal
efficiencies of common pesticides methyl parathion and chlorpyr-
ifos were 79.0% and 82.0%, respectively, using commercial coagu-
lants alum and ferric chloride [41]. The coagulant dose, initial
pH, and type of coagulant were considered to estimate the removal
of chlorpyrifos and methyl parathion.

In a wastewater treatment plant, coagulation/flocculation is a
general step in the physicochemical process. Coagulation is a meth-
od used to remove humic substances, heavy metals, phenols, and
cyanides from industrial alkaline wastewater, landfill leachate, and
drinking water [42]. The mechanisms involved in pesticide pollutant
removal include a combination of entrapment, adsorption, charge
neutralization, and interactions with the aggregation of insoluble
precipitates/polymers, as shown in Table 3[42].

3.4. Nano-filtration (NF) and Reverse Osmosis (RO) Membranes

Various membrane technologies were developed in the mid-1980s,
followed by progress in related factors or variables, such as the
capacity to reject salt, resistance to chemicals, and pressure
requirements. These developments have led to the fabrication of
nano-filtration (NF) membranes, and subsequently, and the pro-

duction of ultra-low-pressure reverse osmosis (RO) membranes [43].
There are differences between the technologies mentioned above
like nano-filtration and reverse osmosis membranes in terms of
extraction yield, simplicity of operation, investment cost, operation
time, safety, and degree of automation. All of them have comparative
advantages relative to the traditional solvent extraction such as
extraction, distillation method, pressing, and sublimation according
to the extraction principle. Regardless of the technology selected
for the extraction, subsequent steps are needed for separation, purifi-
cation, and final concentration. The next section will introduce
conventional and non-conventional separation methodologies.

Nanofiltration is a pressure-driven membrane process used for
removing solutes with molecular weight in the range of 200-1,000
gmol ™, typically from aqueous streams [170]. The operating pres-
sures of reverse osmosis and nanofiltration are 100 - 300 and 50
- 150 psi [170]. A myriad of commercial NF/RO membranes have
been investigated for the effective removal of a large number of
pesticides (e.g., atrazine, diazinon, and dichlorovos) from various
water matrixes [44]. The selection of a suitable membrane plays
a pivotal role in the removal of pesticides from drinking water.
The removal of pesticides by membranes is primarily governed
by the physicochemical properties of the pesticide (e.g., molecular
weight and size, acid disassociation constant, and hydro-
philicity/hydrophobicity. In general, the sieving effect (size ex-
clusion principal) is the prime mechanism for the membrane-based
treatment of pesticides [45-47] estimated the operating cost for
aNF plant to be € 0.23 m® at a permeate output rate of 20,000
m’d”, which implied an approximately 9.0% hike in the price
of potable water. Water was treated by mixing with a NF permeate.

Membranes with an average pore size smaller than pesticide
molecules may retain the target compounds depending on the phys-
icochemical affinity of the pesticide molecules towards the
membrane. Membranes are commercially used to remove pesticides
from raw water for producing potable water [46] due to their easy
operation. However, membrane fouling decreases the efficiency
of pesticide removal from water [44].

3.5. Ultraviolet (UV)-Fenton

Ultraviolet (UV)-Fenton oxidation is an accelerated photoreaction
in the presence of a catalyst. In the UV-Fenton reaction, UV light
is absorbed by an adsorbate substrate and used for the removal
of a wide range of pesticides. Hydroxyl radical-based advanced
oxidation processes (AOPs) have been developed to remove pesti-
cides, including atrazine, and hydroxyl radicals can be generated
by UV photolysis of hydrogen peroxide [48]. This process is much
faster than bioremediation in treating pesticides. However, it is
costly and requires very high energy consumption and strong oxidiz-
ing chemical doses, which are the major drawbacks for AOPs [49].
The Fenton reaction has widely been applied in the treatment
of wastewater pesticides [50]. Many organophosphate pesticides
can be removed by UV-Fenton techniques. The advantages and
disadvantages of various operation conditions are shown in Table
3. UV-Fenton oxidation is also a very common method for treating
wastewater containing the pesticide pyrimethanil. For example,
100 mg L™* DOC needs 46 Wm™ irradiation along with a total cost
of € 0.76-1.39 m™ (10.5% of this is for ion cost).
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4. Bioremediation

Although a wide array of research and development has been under-
taken in the area of pesticide abatement form soils, the transfer
of these technologies to the field is very challenging. In the sub-
sequent sections, authors highlight the benefits of combining con-
ventional bioremediation methods with the molecular techniques
reported. Bioremediation is a greener route to remove many pollu-
tants from the environment [14, 51]. Microbe-assisted degradation
of pesticides is governed by the access of pesticide molecules to
a pesticide-consuming microbial population and the activity of
this population [52]. Nature keeps the concentration of pesticides
in soil in check through the consumption of toxic pesticide mole-
cules by indigenous microbial populations, thus bringing benefits
for both agriculture and ecology [21, 53, 54]. However, the natural
biodegradation kinetics of pesticides is very slow because of their
highly recalcitrant molecular structure. These pesticide molecules
remain persistent in soil. As a result, microbiological investigations
are essential for developing new and advanced biotechnological
tools for the detoxification of pesticides by highly selective microbial
species [22].

Bioremediation technology utilizes the natural biodegradation
process of hazardous pollutants in its favor by significantly elevating
the activity and development of these organisms to convert toxic
compounds into environmentally benign products. Bacteria, fungi,
or plants can be used to treat pesticides for various contaminated
sites. These microbes play a crucial role in the breakdown of hazard-
ous pesticide molecules. An estimate revealed that 1-g soil carries
more than one hundred million bacteria (including 5,000-7,000
unique strains) and more than 10,000 colonies of fungi [55]. Natural
attenuation (usage of indigenous microbial population) can be effec-
tively utilized for the removal of toxic pollutants from the environ-
ment [56]. In recent decades, many researchers have focused on
the application of in-situ biodegradation of hazardous compounds
with naturally occurring microbial populations [54]. The strains
of Acinetobacter johnsonii, Lysini bacillus, Bacillus sp., and
Pseudomonas sp. have been isolated from contaminated soils and
sludge generated from agricultural and industrial sites and used
for degradation of pesticides [57]. Table 2 shows the degradation
of pesticides using specific microorganisms.

The capability of fungal populations to convert a myriad of
toxic compounds into environmentally benign species has attracted
a great deal of scientific attention for bioremediation applications
[58]. The uniqueness of fungi lies in the fact that they secrete
diverse extracellular enzymes. Although several soil bacterial spe-
cies aregenerally omnipresent in a wide array of moist soils, fungi
display a higher removal tendency for pesticides, even in semi-arid
and aridsoils. Highly recalcitrant pesticides such as the chlorinated
triazine herbicide 2-chloro-4-ethylamine-6-isopropylamino-1,3,4-
triazine (atrazine) have been transformed by the white-rot fungi
Phanerochaete chrysosporium and Pleurotus pulmonarius, yielding
hydroxylated and N-dealkylated metabolites [59].

The biodegradation of atrazine, malathion, and parathion was
carried out in a two-stage integrated aerobic treatment plant (IATP)
using Bacillus sp. (consortia) isolated from an agricultural field
[22, 54]. The influent stream containing these pesticides (initial
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chemical oxygen demand COD of 123 mg L") was fed to the first
reactor which was fed to the second reactor. The maximum removal
of pesticides in IATP was greater than 90%. Further, these studies
attempted the biodegradation of atrazine in synthetic wastewater
by the isolated microbial Alcaligenes sp. S3 from an agricultural
field in an alternating aerobic-anoxic lab-scale pilot plant [21].
Wastewater contaminated with atrazine at 200 mg L' and a COD
value of 1,356 mg L' was treated across varying flow rates.
Accordingly, 90.6% removal of COD was obtained at a flow rate
of 300 mLh™ on the 122™ day of operation [54]. The performance
of coupled system was studied with an initial atrazine concentration
of 300 mg L™ to yield a maximum removal efficiency of 93.0%
for the coupled treatment system of UV-Fenton and biological meth-
od [169]. Malathion removal has been reported around 89.0% in
batch packed bioreactor [169]. In comparison, continuous packed
bioreactor was also operated at various flow rates (5-30 mLh™)
over a period of 75 days. The inlet loading rates and elimination
capacities were reported in the range of 36-216 and 7.20-145.4
mgl'd", respectively with an average removal efficiency of more
than 90.0% under steady state conditions [169].

Highly efficient colonization and contaminated soil exploration
can be achieved using fungal populations due to their high branching
and filamentous growth mode [60]. Highly filamentous fungal spe-
cies (e.g., white-rot fungi) possess great advantages over most bacte-
rial strains in terms of the wide range of hazardous compounds
that they can oxidize [58]. Moreover, many fungal species are highly
resistant to high concentrations of toxic compounds (e.g., pesticides)
as compared to bacterial species [61]. As such, they are considered
to be mighty biotechnological tools (many genetically modified
fungal species have already been patented) in the field of bio-
degradation of soil pollutants [62].

4.1. Types of Bioremediation

4.1.1. Bio-stimulation

In bio-stimulation, vitamins, substrates, oxygen, and other required
nutrients are added to stimulate the microbial activity for enhancing
pesticide degradation. The addition of stimulating nutrients brings
fresh carbon sources, which results in swift depletion of the available
stocks of the main inorganic nutrients (e.g., phosphorus and nitro-
gen) [63]. Bio-stimulation has effectively been utilized for removing
pesticides from the environment. The supplementary nutrients in-
clude organic/inorganic additives such as nitrate and phosphate.
These supplementary nutrients could be essential for inducing
enzyme formation and as co-metabolic substrates in the bio-
degradation pathway of pesticides [63]. To stimulate the microbe-as-
sisted degradation of pesticides, a variety of water-soluble nutrients
(e.g., NH;NOs, NaNO;, KNOs, K;HPO,, and MgNH,PO,) are added
to fertilizers [64].

As a general principle, the N:P ratio is maintained between
5:1 and 10:1 for 1-5% N by weight of pesticide for the abatement
of pesticides. These specific quantities might be inaccurate/in-
sufficient for sites contaminated with different types of hazardous
compounds [65]. Lima et al. [64] investigated the impact of soil
inoculation with Pseudomonas sp. and bio-stimulation with citrate
(< 4.8 mg g" of soil sample) on the microbe-assisted degradation
of atrazine at very high concentrations (i.e., 20 to 200 times higher
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than the recommended dosage [RD]) (Table 4). Interestingly, at
a very high atrazine concentration (i.e., 200 times higher than
the RD value), the addition of citrate greatly boosted the removal
efficiency from 79.0to 87.0% [64]. These authors noted that very
high levels of atrazine (i.e., 62 mgg” soil) can efficiently be removed
by subsequent bio-stimulation and inoculation of soil with
Pseudomonas sp.

4.1.2. Bio-augmentation

Bio-augmentation implies the addition of exogenous microbial pop-
ulations with particular catabolic activities into a polluted site
or a biological reactor to promote the biodegradation process. This
might be an on-site or off-site operation that involves the addition
of native microbes to contaminated sites for the elimination of
hazardous pollutants [16, 66] and is widely recognized as an effective
biotechnological approach for improving the degradation of pesti-
cides in polluted water and soils [63]. Bio-augmentation has effec-
tively been engaged for degrading a wide array of hazardous pollu-
tants (e.g., NHs, H,S, petroleum products, and other organic con-
taminants) present in water and soils (Table 4) [67, 68]. The main
advantages of the bio-augmentation are the addition of pre-grown
microbial cultures to enhance microbial populations at a site to
improve contaminant clean up and to reduce clean up time and
cost.

A few case studies have been conducted on soil bio-augmentation
for pesticide abatement (Table 4). Lima et al. [64] investigated
the impact of inoculation of soil samples with Pseudomonas sp.
on the microbe-assisted degradation of atrazine in a polluted soil
(the atrazine concentration was in the range of 20-200 times higher
than RD) (Table 4). It was reported that 99.0% atrazine removal
was achieved in the first 8 days (without citrate addition) aftersoil
bio-augmentation for the soil having an atrazine concentration of
20 times higher than RD [64]. Under similar conditions, 79.0%
removal was obtained for the soil having an atrazine concentration
as high as 200 times higher than RD. Similarly, Wang et al. [69]
reported a high atrazine removal efficiency for Arthrobacter sp.
based bio-augmentation of agricultural soil samples containing 400
mg kg’ of atrazine (Table 4). Bio-augmentation with Arthrobacter
sp. displayed 90.0% and 70.0% removal of atrazine after the first
three days for sterile and non-sterile soil samples, respectively.

Bio-augmentation of chloropyrifos using Alcaligenes faecalis has
been conducted. Native cabbage plants were cultivated in the soil
rich in chlorpyrifos at 100 mg kg" and bio-augmented with a strain
of Alcaligenes faecalis. The study reported 100% chlorpyrifos re-
moval after the first 12 days, whereas only 22.0% removal was
attained in the control (Table 4) [70]. Similarly, Ahmad et al. [71]
introduced Bacillus pumilus into soil samples rich in chlorpyrifos
at 50 mg kg" and observed a 97.5% chlorpyrifos removal as compared
to only 11.0% removal in the control (Table 4). Lakshmi et al.
[72] also reported that the bio-augmented chlorpyrifos-rich soil
samples at 50 mg kg'were individually treated with strains of
Pseudomonas fluorescens and Bacillus subtilis. The average chlor-
pyrifos degradation was observed to be in the range of 85.0-92.0%
after the first 30 days for these bacterial strains as compared to
only 34.0% chlorpyrifos removal in the control (Table 4).

The agricultural use of dichloro-diphenyl-trichloroethane (DDT)
has been banned in the United States since 1973, although its
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residues/byproducts are still found to be persistent in soils around
the globe. As a result, detoxification of such contaminated sites
is a crucial task, and various bioremediation approaches are being
actively used for this purpose. Recent investigations have elucidated
that various fungal species can effectively remove DDT from the
soils. This great potential of fungi was shown by Purnomo et al.
[73]. The authors studied the capability of Gloeophyllum trabeum
and Daedalae dickinsii to degrade DDT in polluted sterile/non-sterile
soils. They observed that the introduction of these brown-rot fungi
into an artificially contaminated sterile soil resulted in 41.0 and
15.0 % degradation of DDT by G. trabeum and D. dickinsii,
respectively. For non-sterile soil samples, G. trabeum and D.
Dickinsii lowered the initial amount of DDT by approximately 43.0
and 32.0 %, respectively, when compared to the control (Table 4).

4.2. Factors Influencing the Bioremediation of Pesticides
Insoil

The fate of pesticide molecules in soils is very complicated in
interdependent physicochemical and biological processes. These
complex interactions directly govern pesticide transport within
the soil as well as their transfer from soil to air, food, and water.
The chemical characteristics of pesticide molecules and soil charac-
teristics govern the extent of the influence of the processes men-
tioned above.

4.2.1. Structures of pesticides

The structures of pesticides determine their physicochemical prop-
erties and inherent biodegradability. Pesticides are more susceptible
to microbial attack and biodegradation if there are polar substituent
on the phenyl ring, e.g., -OH, -COOH, and -NH,, whereas halogen
or alkyl substituent tends to make the pesticide more resistant
to biodegradation [5, 74]. Minor alteration in a structural substitute
causes a drastic change in the susceptibility of a compound towards
bio-transformation [22]. During the pesticide biodegradation proc-
ess, the chemical structures of pesticides might drastically be
changed by either oxidation or reduction of active functional groups,
causing the breakdown of their complex structures into small mole-
cules, such as carbon dioxide, nitrate, phosphate, ammonia, and
water [75]. The 2D structures of selected pesticides are shown
in Table 1. The toxicities of organochlorine pesticides are relatively
lower as compared to organophosphate and carbamates pesticides.
The toxicological properties are analogous to organochlorine pesti-
cides that have similar structures, such as chlordane and heptachlor.
The toxicity can vary depending on the position of the substituting
chlorine in the molecule [76].

Chlorinated hydrocarbons (such as pentalene, dieldrin, and DDT)
are unable to biodegrade because they are insoluble in water and
have a high sorption affinity in soil [29]. In contrast, carbofuran
and 2,4-dichlorophenoxyacetic acid (2,4-D) have different molec-
ular structures and can be biodegraded in few days in field soils
[54]. A minor difference in the position or nature of a substituent
in the same class of pesticides can significantly influence the degra-
dation rate [21, 54].

4.2.2 Pesticide concentration
The concentration of a pesticide in a soil (P) is a crucial parameter
for determining the biodegradation rate (i.e., -d[P]/dt) in nature.
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The degradation of numerous pesticides follows pseudo-first-order
kinetics, where the biodegradation rate depends on the residual
pesticide concentration [77]. The biodegradation rate decreases
proportionally with the residual concentration of the pesticide (i.e.,
d[P}/dt = -k[P]), where d[P]/dt is the pesticide concentration gradient
with respect to time, and k is the biodegradation rate constant.

The half-life values of Inceptisol, Vertisol, and Ultimo are essen-
tially independent of the initial pesticidedose, i.e., 10.1-31.0 d (1.0
ug kg™ soil) vs. 13.0-29.2 d (10.0 pg kg’ soil) [78]. In theory, the
pesticide concentration for a 20-day half-life should decay to 0.2%
of its initial concentration after 180 days. However, the bio-
degradation rate, k, is smaller at higher initial concentrations. The
concentrations of pesticides (e.g., atrazine, carbofuran, cypermeth-
rin, and chloropyrifos) used in experimental studies are given in
Table 2. A half-life is the time required to reduce the amount
of a given pesticide to a half level. This occurs as it dissipates
or breaks down in the environment. After two half-lives, about
25% will remain. Several pesticides (e.g., DDT, HCH, endosulfan,
BHC, and atrazine) belong to such ubiquitous compounds which
persist in soil and sediments due to less bioavailability. Odukkathil
and Vasudevan reported that the half life of less bio-available pesti-
cides (e.g., DDT, HCH, endosulfan, BHC, and atrazine pesticides)
ranges from 100 to 200 d [77]. Most of these residues are adsorbed
on soil particles, and they are unavailable to the soil microbes
for further degradation. In this review, an attempt has been made
to present a brief idea on ‘major limitations in pesticide bio-
degradation in soil’ based ona few case studies.

4.2.3. Soil types

The soil characteristics (e.g., organic matter content, concentration
of clay minerals, water content, and pH) affect pesticide bio-
degradation in soil [78]. Soil plays an important role in microbe-as-
sisted pesticide degradation in the environment. Soil particles can
absorb the pesticides, thereby regulating bio-availability and influ-
encing the persistence of pesticides [77]. The activity of micro-
organisms towards pesticide biodegradation can be influenced by
soil characteristics such as clay content and type of organic matter.
A number of variables (e.g., soil type, pH, and clay content) can
greatly influence the persistence of pesticidesunder field conditions
including bifenthrin, chlorpyrifos, cypermethrin, fenvalerate, per-
methrin, and isofenphos. It has been further confirmed that the
degradation rates of metalaxyl and propachlorin in soils were de-
pendent on the soil conditions. The half-lives of metalaxyl and
propachlor were 10 and 19 days for pasture soils, 36 and 2.6 days
for arable soils, and 6.1 and 8.2 days for pine forest soils, respectively.
Imidacloprid biodegradation and diazinon were faster in silty loam
soil, followed by sandy loam and sandy soils [77].

4.2.4. Moisture content

Water is important for the motion and diffusion of pesticide mole-
cules, and the presence of wateris vital for the microbe-assisted
degradation of pesticides. Typically, the biodegradation of pesti-
cides is observed to be very slow in dry (or negligible moisture
content) soil samples. The transformation rate of pesticides is di-
rectly proportional to the moisture content in the soils [79].
Herbicides (e.g., atrazine and trifluralin) generally degrade at higher
rates underanoxic conditions as compared to an oxygen-rich
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environment. DDT is fairly stable in aerobic soils but degrades
very slowly with the formation of 2,3-dihydrodiol-DDT and 4-chlor-
obenzoic acid as metabolites in submerged soils [80].

4.2.5. Temperature

The molecular configurations of pesticide molecules govern the
impact of temperature on their stability. Temperature impacts sorp-
tion of pesticides by changing their solubility and rate of hydrolysis
in a soil sample in terms of salvation (G) and hydrolysis rate [81].
Growth of microorganisms and their activity are optimal in a well-de-
fined physiological temperature range of 25-35°C. Hence, pesticide
degradation is optimal in a mesospheric temperature range of
25-40°C [82]. A temperature range of 15-40°C is thought to be suitable
for the biodegradation of a pesticide by isolated pesticide-consuming
bacterial strains [81, 83]. The optimal degradation temperature
range of pesticides is shown in Table 2. Qingyan et al. [82] reported
atrazine degradation at a temperature of 30°C and found 95.0%
removal at a concentration of 500 mg L. Many studies for different
pesticides, including carbofuran, chlorpyrifos, and DTT, showed
that they were degraded in a temperature range of 25-30°C, as
shown in Table 2 [20, 83-85]. Temperature mainly affects the metab-
olism of bacterial species, such as Pseudomonas sp., Bacillus sp.,
and Alcaligenes sp., which perform well in a temperature range
of 25-30°C [84-87].

4.2.6. Soil acidity

Soil acidity is an important parameter influencing the bio-
remediation of pesticides [88]. Essentially, the biodegradation of
a pollutant molecule depends upon the particular enzymes pro-
duced by a microbial population. These enzymes operate in narrow
pH ranges, as most bacterial species prefer an optimum soil pH
range of 6.5-7.5, similar to their intracellular pH. The pH of soil
plays an important role in regulating pesticide adsorption and other
biotic and abiotic degradation processes. It influences the adsorption
tendency of a pesticide (on clay and organic matter), as well as
the pesticide molecule’s mobility, speciation, and bioavailability
[89]. The effect of soil pH on the biodegradation of pesticide mole-
cules largely depends upon their chemical susceptibility towards
hydrolysis catalyzed by a base or an acid [19, 81]. Bacterial metabo-
lism performs well at neutral pH; hence, bioremediation studies
are typically performed at pH 7.0. For example, Das et al. [85]
conducted a study of atrazine degradation at pH 7.0 by Pichia
kudriavzevii and found an efficient removal of 94.3%.

4.2.7. Organic matter

The organic matter present in soil can either decrease the pesticide
biodegradation (through stimulation of pesticide sorption) or elevate
microbial activity (through pesticide co-metabolism) [79]. The or-
ganic matter present in soil also influences biodegradation of pesti-
cide molecules by supplying essential nutrients for cell growth
and by governing their mobility via the adsorption/desorption proc-
ess [90]. The bacteria-mediated biodegradation of organochlorine
insecticides (e.g., benzenehexachloride [BHC], DDT, Methoxychlor,
and heptachlor) was enhanced upon the introduction of organic
carbon sources to flooded soils [91]. A minimum amount of organic
matter (greater than 1%) can secure an active population of autoch-
thonous microbes capable of degrading pesticides. The introduction
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of wheat residue-derived biochar liberated micronutrients stimu-
lated the growth of the microbial population for pesticide degrada-
tion in soil [92]. Organic matter can also be a co-substrate, which
increases the microbial activity (production rate and biofilm for-
mation) in a soil. Co-metabolism of microbes enables the bio-
degradation of pesticides present at relatively low concentrations;
hence, microorganisms consume co-substrates to meet their carbon
and energy needs. Soils enriched with organic matter contain a
source of potential co-substrates, which can facilitate co-metabolic
biodegradation of pesticides. The addition of a carbon-rich substrate
to contaminated soil is used in bioremediation to stimulate the
microbial activity and facilitate co-metabolism [93]. Tan et al. [94]
reported that Bacillus sp. could degrade 98.5% triazophos at 100
mg L' from sewage sludge wastewater via co-metabolism when
fed with nutrients, such as peptone, yeast extract, and glucose.

4.3. Bioremediation Techniques: Developments and Applications

4.3.1. Isolation of pesticide-biodegrading microbes and their char-
acterization

The biodegradation rate of pesticides is typically very slow as com-
pare to other reported techniques. To ensure sufficient degradation
rate, specific microorganisms should be selected (Table 2). The
isolation of naturally occurring effective microorganisms from a
contaminated site is an important step in bioremediation. Therefore,
many researchers have worked on the isolation, characterization,
and biodegradation of pesticides [54]. Another researcher showed
the degradation of 300 mg L chloropyrifos using the Pseudomonas
species isolated from an agricultural field and observed the removal
efficiency greater than 91.0 % (Table 5). Geed et al. [54] used
isolated Bacillus sp. S, for the degradation of Malathion at 300
mg L and achieved 90.0% removal in a continuous packed bed
bioreactor (Table 5).

In recent years, a wide array of microbial strains has successfully
been isolated that are capable of degrading hazardous compounds
that were previously thought to be non-degradable, suggesting that
microorganisms are rapidly evolving under the influence of rampant
environmental contamination (Darwin’s theory: the survival of the
fittest species for the situation)to be able to degrade pesticides
more effectively. Recently, the soil-derived microbial consortium
capable of degrading a mixture of pesticides was analyzed using
PCR-amplified 16S rRNA fragments [57]. The analysis detected
16S rRNA sequence types that represented organisms closely related
to known pesticide-degrading bacteria (e.g.,Bacillus species) [95].
Several researchers have isolated the bacterial species and charac-
terized for the effective pesticides degradation which are summar-
ized in Table 2.

Isolation of atrazine-biodegrading species from herbicides con-
taining wastewater was characterized by 16S rRNA [96]. The thermal
cycle operated at 94°C for 5 min for initial denaturation, followed
by 35 cycles at 94°C for 30 s, 55°C for 30 s, and 72°C for 30 s,
and a final incubation at 72°C for 10 min. Yang et al. [97] isolated
the novel bacterial Citricoccus sp. strain TT3 from the wastewater
outfall of a pesticide factory (Table 5). Citricoccus sp. strain TT3
was analyzed using 16S rRNA at an operating cycle consisting
of preheating to 95°C for 2 min, 35 cycles of denaturation at 95°C
for 30 s, annealing at 58°C for 30 s, extension at 72°C for 90 s,
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and a final extension for 5 min at 72°C. Similarly, various micro-
organisms, such as Rhodococcus sp. strain, Bacillus sp.,
Acinetobacter, Stenotrophomonas sp., and Fischerella sp., were iso-
lated and characterized by 16S rRNA for pesticides such as DDT,
endosulfane, lindane, parathion, malathion, and methyl parathion,
as given in Table 5 [29, 98-102].

4.3.2. Cultivation in the laboratory to develop microbial populations
Microorganisms capable of mineralizing a variety of pesticides un-
der laboratory conditions have been isolated [5, 54]. These micro-
organisms were cultured in nutrient media as a co-substrate (i.e.,
glucose, nutrient broth, and yeast extract). The laboratory-grown
microbes were commonly used for degradation experiments.
Laboratory culturing of microorganisms is very important for effi-
cient bioremediation in the field.

Isolation of an atrazine-degrading bacterial strain was done by
procuring 25-mL of enriched sludge from anaerobic waste-
water/municipal treatment provision in Israel [96] (Table 5). The
sludge sample was incubated in a 250-mL flask under an oxygen-rich
environment at 28°C in the presence of atrazine as the only source
of nitrogen [96]. Stepwise incremental addition of atrazine was
done from 7 to 30 mg L™ over a period of 14 days. Three unique
microbial colonies were observed via DNA sequencing analysis.

An isolated chloropyrifos-degrading species and contaminated
soil samples were procured from an agricultural field in Varanasi,
India (Table 5). The sampling site was utilized for extensive agricul-
tural operations for several years and was greatly exposed to chlor-
pyrifos pesticide. Enriched bacterial isolate cultures were acquired
from the contaminated soils by utilizing a suitable mineral salt
medium (MSM). A chlorpyrifos stock solution at 25.0 mg L was
added into the MSM medium and left for a week-long incubation
period. The control was based on a culture medium carrying only
chlorpyrifos (e.g., without bacterial strains). The onset of turbidity
can be an indicator of the growth of a bacterial population. Afterward,
the vials that had a turbid appearance were placed on Luria Broth
(LB) and minimal salt medium (MSM) agar culture plates holding
chlorpyrifos populations; they were subsequently incubated at 30°C
for 7 days.

An enrichment methodology was developed to isolate DDT- and
endosulfane-degrading species using pesticide-contaminated
(endosulfan and DDT) soils procured in large amounts from an
insecticide facility in Cochin, India [98] (Table 5). Briefly, an enrich-
ment medium was used to dissolve the contaminated soils along
with the addition of an inoculums and minimalistic DDT as the
only energy/carbon source with subsequent incubation. The enrich-
ment process was repeated three times, and the resulting microbial
culture was sequentially diluted and spread onto culture plates
containing tryptic soy agar (TSA). Similarly, many researchers iso-
lated microorganisms from pesticide-contaminated soils and waste-
water using the cultivation methods in laboratories [101, 102].

4.3.3. Bench studies of microbes in a pesticide-contaminated soil
The simplest strategy of bioremediation is improving the bio-
degradation performance of a microorganism through the addition
of a ‘specialist’ organism. Microorganisms exhibit novel and high
catabolic activity towards a target pollutant. The targeted pollutants
are broken down into metabolites ina series of enzymatic reactions.
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Many oxidase/reductase enzymes play important roles in pesticide
breakdown. Batch-scale experiments have been performed by many
researchers to understand the proper functioning of microbes.
Bacterial colony growth was studied to ascertain the toxicity of
a pollutant. Biodegradation of a pollutant was confirmed by using
the available organic load and bacterial role. The progress of bio-
remediation and the production of metabolites were examined using
various analysis methods, e.g., GC, FT-IR, and GC-MS. The pesticide
metabolites were easily identified, and their toxicity was determined
with respect to their parental compound [5, 54, 95].

Generally, acatabolic process occurs in microorganisms to break-
down pesticides. This may depend on what type of pesticide degra-
dation is involved. The breakdown of any compound by microbial
cells takes place through three unique processes, namely hydrolysis,
reduction or oxidation, and addition. The hydrolysis of a pesticide
molecule generally takes place in a water-rich environment. The
oxidation or reduction of pesticide molecules is accompanied by
a change in the pesticide’s redox state [103]. The occurrence of
either oxidation or reduction is governed by the presence of co-sub-
strates in the environment. Finally, microbes add a new functional
group to the pesticide molecule during the addition process. The
strategy of addition is employed by microbes when the conditions
prevailing in its surroundings are unfavorable for the other types
of reactions. Although the addition process requires energy, the
addition of a functional group elevates the susceptibility of the
pollutant molecule towards biodegradation [96].

4.4. Field Applications of Pesticide Bioremediation Techniques

There are two basic treatment options depending on the site selected
for pesticide treatment: in-situ and ex-situ bioremediation. In-situ
bioremediation techniques involve on-site treatment of the hazard-
ous material, whereas ex-situ approaches involve off-site treatment
of toxic pollutants.

4.4.1. In-situ techniques

The in-situ technique involves the stimulation of microbial activity
by adding microbes and nutrients and by optimizing factors asso-
ciated with the environment at the polluted sites [104]. These techni-
ques involve treating polluted substances at the selected site of
the pollutant. Site excavation is not required; hence, there is little
or no disruption to the soil structure. In-situ bioremediation involv-
ing the biological degradation of organic contaminants under natu-
rally prevailing conditions can be described as a process whereby
organic pollutants are biologically degraded to CO,, water, or other
minimally toxic products under natural conditions. It is an econom-
ical, low-maintenance, environmentally benign, and sustainable
undertaking for the detoxification of contaminated sites, as shown
in Table 6. Seech et al. [104] reported a case study on the in-situ
treatment of dieldrin in soil using the cycled DARAMEND treatment.
Nearly 2,600 tons of dieldrin-contaminated soil was removed in
the coastal areas of Florida, the United States in November2004.
The total operation cost was estimated to be approximately 12.5
USD yd®. The most practical in-situ methodologies and their salient
features are as shown in Table 6.

4.4.2. Ex-situ techniques
Ex-situ techniques involve excavating/removing the polluted soil
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from selected sites and transporting it to another site for treatment.
Ex-situ techniques are evaluated according to the cost of the treat-
ment, type of pollutant, depth of pollution, geographical location,
and degree of pollution. Methods include land farming and compost-
ing for off-site rehabilitation of polluted materials in specifically
assigned locations. As a result of the added requirement of polluted
soil excavation and transport, the operational cost of ex-situ ap-
proaches can be much higher than in-situ techniques, as shown
in Table 6. Moreover, the biodegradation kinetics and consistency
of the process outcomes for in-situ and ex-situ techniques is microbe
dependent [105]. In-situ bioremediation is preferred over ex-situ
for environmental rehabilitation of polluted soils and aqueous eco-
systems [105]. The practicality of a specific biotechnological ap-
proach depends on multiple parameters, such as the condition
of the contaminated site, native microbial populations, and the
amount and toxicity of pesticide present. Ex-situ bioremediation
techniques are shown in Table 6.

A case study on ex-situ treatment was carried out for initial
concentrations of toxaphene, DDT, DDD, and DDE of 29, 94, 132,
and 94 mg kg, respectively [104]. These authors reported that
the remediation goals (> 90% removal) were reached on various
organochlorine pesticides (OCPs) in groundwater/saturated soils
in the United States. The ex-situ bioremediation goals were reached
in the treatment cell using 3-12 treatment cycles. The number
of treatment cycles required to reach the remedial goal was primarily
dependent on the initial concentrations of the target pesticides.
Their results indicated that the initial concentrations of toxaphene,
DDT, DDD, and DDE (i.e., 189, 81, 180, and 25 mg kg, respectively)
were reduced to 10, 9, 52, and 6 mg kg", respectively. These changes
correspond to removal and destruction efficiencies (RDEs) of 95.0,
89.0, 71.0, and 76.0 %, respectively. The treatment cost per ton
varied in relation to their initial concentration, ranging from 29-63
USD t*, and average treatment cost would be ~55 USDt" for
4,500tons of contaminated soil.

4.5. Hybrid Bioreactors

Pesticide treatment in bioreactors has the benefit of continuous
monitoring of waste processing under controlled conditions.
Bioreactor technology can be customized in wide-ranging arrange-
ments to maximize microbial degradation [63]. Yadav et al. [5]
studied the degradation of chlorpyrifos through Pseudomonas sp.
in batch and continuous reactors using polyurethane foam as the
packing media. They optimized the process parameters for max-
imizing the removal efficiency of chlorpyrifos through batch experi-
ments and determined the following optimal parameters: pH 7.5,
a temperature of 37°C, a DO of 5.5 mg L, and a chlorpyrifos
concentration of 500 mg L. Further, the bioreactor operating under
continuous mode was run at different flow rates from 10-40 mLh™
and displayed 91.0% removal of chlorpyrifos at steady state. Geed
et al. [54] employed the integrated aerobic treatment plant (IATP)
to treat synthetic wastewater containing atrazine, Malathion, and
parathion using isolated Bacillus sp. (Consortia) from an agricultural
field. The maximum COD removal of synthetic wastewater in IATP
was greater than 90.0%.

Multiple types of bioreactors are available all around the globe
including continuous, batch, sequential, membrane, airlift, and
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fluidized bed, biofilm, and hybrid systems [106, 107]. Although
such bioreactors have the great advantage of control, they suffer
from the drawbacks of high operation/capital costs along with the
requirement of polluted site excavation. Other off-site bio-
degradation techniques include land farming, composting, and
bio-piles. These methods are found to have various disadvantages,
such as large space requirement, extended treatment duration, mass
transfer problems, and restricted bio-availability of contaminants
[108]. Table S1 shows the different types of bioreactors used for
bioremediation.

Hybrid processes that are an effective combination of multiple
treatment methodologies have been proposed. Some may have the
ability to effectively remove organic pollutants. The synergistic effects
can effectively be utilized to enhance the abatement of pesticides
through the combination of multiple processes. For example, the
presence of activated carbon can elevate the biodegradability of pre-
viously highly recalcitrant pesticide molecules via adsorption [109].

Interestingly, combining suspended biomass with biofilm has
been proposed as an innovative strategy for potential enhancements
in pesticide biodegradation due to biodiversity expansion in the
treatment system. The utilization of bio-filtering setups consisting
of bio-films grown on fixed beds has intensively been investigated
with the main emphasis on porous media biofiltration processes
(e.g., sand filters) [110]. The retention time plays a crucial role
in controlling the suspended biomass culture-based conventional
systems for organic pollutants. Therefore, the best performance
can be anticipated using biofilm processes at low loadings (resulting
in a more diverse bacterial colony). Luo et al. [35] investigated
the short-term removal rates of pesticides during 24-h batch experi-
ments through acclimatized as well as non-acclimatized biomasses
supported on a sponge. A continuous bench-scale moving bed
biofilm reactor (MBBR) was also set up for a long-term assessment
of 100 days to remove selected organic pollutants. In their sub-
sequent study, Luo et al. [35] compared the removal of pollutants
using a conventional membrane bioreactor (MBR) and a hybrid
MBBR-MBR system. The observed results showed that the hybrid
MBBR-MBR system was better for the abatement of recalcitrant
pesticides.

The fouling of membranes was greatly lowered in the hybrid
reactor due to the variation in the soluble species of the micro-
organisms and the extracellular polymeric materials. Additionally,
an improvement in the pesticide removal was attained with a novel
configuration of a plant built on an up-flow anaerobic sludge blanket
(UASB) reactor integrated with a hybrid aerobic MBR at room
temperature with alow hydraulic retention time (HRT) [109].
Interestingly, significant removal of aqueous pesticide molecules
was observed due to the synergistic effect of the combination of
cross-linked enzyme aggregates of laccase (CLEA-laccase) and mi-
crofiltration membranes [111]. The sequential treatment steps can
also be used to treat pesticide-rich wastewater through aerobic
or anaerobic processes [19, 112].

The levels of pesticides in water have increased due to their
excessive use in the modern agricultural domain. Choosing a suit-
able water treatment method for pesticide removal depends on
the type of pesticide and the efficacy of the treatment process.
Both single-treatment and hybrid methods are thoroughly described
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and critically discussed [5, 35, 54, 108-110]. The use of hybrid
removal techniques offers the potential opportunities to develop
innovative options. Furthermore, the decentralization of water treat-
ment was also discussed as a means to improve effluent water
quality at lower prices. Many affordable techniques such as activated
sludge and adsorption by agricultural adsorbents showed high effi-
cacy in treating high levels of different pesticides.

4.6. Economic Cost and Sustainability of Bioremediation

Bioremediation technology is considered to be a highly economic
approach compared to conventional pesticide abatement tech-
nologies (approximate savings of 65.0-85.0 %). For instance, the
incineration of contaminated soil costs approximately 250-500 USD
t, whereas biotechnological approaches are estimated to require
an operational cost of 40-70 USD t* [113]. The estimated cost of
microbe-assisted treatment of contaminated soil is approximately
one-third cheaper than that of conventional soil remediation methods
[114]. Bio-treatment typical costs of incineration and landfill disposal
are 50-130, 300-1,000, and 200-300 USDm™, respectively [106, 115].

Various biotechnological approaches have been applied for mi-
crobe-assisted degradation of pesticides in contaminated soils (e.g.,
on-site subsurface techniques, land-farming/engineered oil pile
methods, and fully blended soil slurry reactors for ex-situ abatement
of contaminated excavated soils). The aim of bioremediation is
to stimulate the optimum process environment to catalyze the
growth of appropriate microorganisms and use them to decompose
pollutants. Modern biological treatment systems have successfully
been applied for the abatement of a wide range of pesticides.

However, many studies have shown that bioremediation ap-
proaches are kinetically slow and have not been able to lower
pesticide concentrations to environmentally accepted values. Due
to its poor performance historywith the rash of “quick-fix” method-
ologies (but without proper field trials and validation), potential
users have become more unwilling to adopt biological treatment
technologies [116]. The costs of analyses and sampling increases
substantially in the case of non-homogeneous process conditions
which resulting in highly elevated operational costs. Advent of
modern biotechnological tools can help accelerate bioremediation
operation and provide higher process reliability [17, 30, 117].
Timeframe may range from 5-25 years for natural processes, 0.5-3
years for in-situ sub-surface processes, 1-18 months for soil compost-
ing processes, 1-12 months for land-farming and slurry phase sys-
tems, and 15 days for accelerated slurry phase systems [118].

5. Conclusions and Future Work

The physicochemical processes involved in the removal of pesti-
cides from various environmental matrixes were described at the
beginning of this review to provide a clear contrast with the sub-
sequently discussed biological approaches. The physicochemical
approaches are often energy intensive and costly in nature for
practical implementation for pesticide treatment. Some phys-
icochemical processes often require the application of chemical
compounds to worsen environmental pollution issues and to ampli-
fy the overall operational costs. Among all available methods, bio-
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remediation methods are the most promising, eco-friendly, and
inexpensive approaches for the effective degradation of various
pesticides present in the environment. Various microorganisms
have been employed as biological agents for the degradation of
pesticides into either non-toxic or less toxic byproducts.
Bioremediation approaches combined with conventional techni-
ques can be used to detoxify and remove hazardous pesticides
in heavily contaminated soils with > 95% removal efficiency and
incidental benefits.

Although bioremediation has proven to be a promising tool for
the degradation/detoxification of pesticides, its sustainability in
the field is still questionable. It would be difficult to achieve com-
plete degradation/detoxification of pesticides in nature since the
biochemical pathways of microbial species are strongly dependent
on the physicochemical properties of soils. Therefore, further re-
search is imperative for a better understanding of degradation path-
ways by microbes and their interactions with soils having various
contaminants and different environmental conditions.

Bioremediation has a critical limitation for pesticide abatement
in terms of maintaining optimum conditions for the growth of
microbial populations. The rate of pesticide degradation is also
very slow and time-consuming. Pesticide degradation, the explora-
tion of specific microbes for specific pesticides, optimization of
the process parameters, development of a highly efficient bioreactor,
and verification of natural, easily available, and highly porous
packing media should be further investigated.

Advanced biotechnological/microbiological tools and genetic en-
gineering can help provide swift advancements in the area of pesti-
cide bioremediation by developing robust and highly adaptable
microbial strains and by improving the treatment facilities/tech-
nologies that already exist. Using these tools, genes may be targeted
that are responsible for biodegradation, and further studies can
be done to obtain better results. Further collaborations between
genetic engineers, biochemists, environmental engineers, and mi-
crobiologists are required to overcome the various hurdles remain-
ing in the present bioremediation methodologies and to further
improve the research and development directions as recommended.
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