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The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas systems, including dead
Cas9 (dCas9), Cas9, and Cas12a, have revolutionized genome engineering in mammalian somatic cells.
Although computational tools that assess the target sites of CRISPR-Cas systems are inevitably important
for designing efficient guide RNAs (gRNAs), they exhibit generalization issues in selecting features and do
not provide optimal results in a comprehensive manner. Here, we introduce a Comprehensive Guide
Designer (CGD) for four different CRISPR systems, which utilizes the machine learning algorithm,
Elastic Net Logistic Regression (ENLOR), to autonomously generalize the models. CGD contains specific
models trained with public datasets generated by CRISPRi, CRISPRa, CRISPR-Cas9, and CRISPR-Cas12a
(designated as CGDi, CGDa, CGD9, and CGD12a, respectively) in an unbiased manner. The trained CGD
models were benchmarked to other regression-based machine learning models, such as ElasticNet
Linear Regression (ENLR), Random Forest and Boruta (RFB), and Extreme Gradient Boosting (Xgboost)
with inbuilt feature selection. Evaluation with independent test datasets showed that CGD models out-
performed the pre-existing methods in predicting the efficacy of gRNAs. All CGD source codes and data-
sets are available at GitHub (https://github.com/vipinmenon1989/CGD), and the CGD webserver can be
accessed at http://big.hanyang.ac.kr:2195/CGD.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR) system is an adaptive defense mechanism employed by
bacteria and archaea against invading viruses or foreign plasmids
[1]. Reprogramming of these defense mechanisms to generate gene
knockouts [2] has revolutionized the use of the CRISPR system in
various applications, from medicine to crop seed enhancement
[3]. In human genetics, in particular, CRISPR-based functional
screening approaches have become popular in genome-wide stud-
ies [4–7]. CRISPR-based functional screening systems can be
divided into three categories: dead Cas9(dCas9)-mediated knock-
down (CRISPRi) and activation (CRISPRa) [5], Cas9-mediated
knockout [4,6], and Cas12a-mediated knockout [7].

Previous studies evaluated thousands of guide RNAs (gRNAs),
assigning them efficiency scores that were utilized to develop com-
putational models such as CRISPRko v1 [8], SSC [9], and CRISPRko
v2 [10] of effective target sites. However, these gRNA datasets
appear to display a skewed distribution, according to the selection
methods and the essentiality of the target genes, causing biased
training and overfitting. To design efficient gRNAs for generating
DNA double strand breaks, a large-scale dataset of gRNAs and their
associated indel ratios are required. Recently, CINDEL [7], CRISPR-
DT [11], DeepCpf1 [12], and DeepCas9 [13] studies have produced
high-throughput datasets of gRNA sequences with efficiencies to
train their own models. In the process of model development,
diverse features, including sequences as well as the epigenetic sta-
tus of target sites, were incorporated to improve these models.
However, the algorithms utilized to build these models were
selected without proper benchmarking or generalization in select-
ing features. Due to these limitations, the predictive ability of a
given model is less effective across all CRISPR systems. Thus, an
optimal algorithm suitable for the all of the datasets is necessary.

In this study, we developed the Comprehensive Guide Designer
(CGD), a consortium of regression-based machine learning models
for CRISPRi, CRISPRa, Cas9, and Cas12a. Our Elastic Net Logistic
Regression (ENLOR) models, suitable for tackling the generaliza-
tion problem over datasets generated by the respective CRISPR-
Cas systems, outperformed other previous models. Therefore,
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CGD could provide useful guidelines for selecting effective target
sites and assist users in designing more efficient gRNAs.
2. Materials and methods

2.1. Workflow of CGD

CGD integrates our four predictive models for gRNAs, desig-
nated as CGDi, CGDa, CGD9, and CGD12a, built based on ENLOR.
The step-by-step process for designing gRNAs with high target effi-
ciency is shown in Fig. 1.
2.1.1. Input sequence
An input DNA sequence(s) of a genome, - contig or chromosome

is required. The minimum and maximum lengths of the input DNA
sequence are 100 nt and 10,000 nt, respectively. Multiple input
sequences can be submitted in a FASTA format.
2.1.2. PAM identification and segregation of gRNA sequences
CGD predicts gRNA sequences based on the PAM motifs of the

respective nuclease (NGG for Cas9, CRISPRi and CRISPRa, and TTTV
for Cas12a).
Fig. 1. Schematic CGD workflow. CGD processes the input DNA sequence (genome/
contig/chromosome) in FASTA format, calculates scores for all possible target sites
and corresponding gRNAs, and displays all efficient gRNAs and their target sites
with their scores.
2.1.3. Scoring of gRNA sequences
The score of each gRNA sequence is calculated based on weights

estimated by the ENLOR algorithm for each CRISPR system. The
weights of features vary depending on the CRISPR system (Supple-
mentary Table 1). The final score is generated by summing the
ðweightÞ � ðscaled valueÞ of the features. The value of each feature
was standardized with the Z score.

2.1.4. Potential target sites
The score range is [0, 1]; gRNAs with scores > 0.5 were selected

as efficient gRNAs along with their target sequences and position.

2.2. Datasets

The datasets used in this study were either downloaded from
our previous study [7] or other previous studies [4–6,12,14–20].
Because different activity scores, such as depletion, enrichment,
or indel ratio, were applied to each dataset (which correspond to
different CRISPR systems), the activity scores were standardized
by Z scoring. For CRISPRi, CRISPRa, and Cas9 systems, genome-
wide screening datasets [4–6,21,22] were used for training for sev-
eral reasons, such as 1) a higher number of gRNAs targeted to each
gene (6–20 gRNAs per gene) as well as a high number of targeted
genes; 2) gRNAs targeted to different sites within genes, giving a
comprehensive view of targeting efficiency; and 3) the incorpora-
tion of control gRNAs, which reduces false positives. For Cas12a,
the high-throughput data, with 15,000 gRNAs sequences, gener-
ated by Kim et al. were used for training [12].

The datasets generated by different CRISPR-Cas systems (CRIS-
PRi, CRISPRa, Cas9, and Cas12a) were categorized based on the
essentiality and functions of the target genes (Supplementary
Fig. 1 and Supplementary Table 2). If a dataset contained >100
gRNAs and associated activities, we categorized efficient and inef-
ficient gRNAs using the method adopted by Xu et al. [9] (Supple-
mentary Fig. 2). If a dataset contained fewer than 100, we
categorized the top 20% gRNAs as efficient and considered the rest
as inefficient. The efficient and inefficient gRNAs were designated
as class 1 and class 0, respectively.

For training and testing of the models, the datasets for each
CRISPR system were randomly divided into training (75%) and test
(25%) data (Supplementary Table 3; Supplementary Data). To eval-
uate the trained models, independent test datasets were compiled
from small-scale datasets (Supplementary Table 4). Here, Evers’
and Radzisheuskaya’s datasets [16,17] for CRISPRi, Beottcher’s
and Simeonov’s datasets [23,24] for CRISPRa, Indel and Shalem’s
datasets [6,9,14,15,18–20] for Cas9, and Kleinstiver-Chari’s
[25,26] and Kim’s datasets [7] for Cas12a were applied in the
evaluation.

2.3. Features

The features utilized in this study were categorized into two
parts: sequence and structure. In total, 609 features (604 for
sequence and 5 for structure) were selected for the CRISPRi, CRIS-
PRa, and Cas9 models, and 689 (684 for sequence and 5 for struc-
ture) were selected for the Cas12a model.

2.3.1. Sequence features
1) Position-independent nucleotides: the identity of each

nucleotide (A/T/G/C) in a gRNA sequence, irrespective of the posi-
tion; 2) Position-independent dinucleotides: the composition of
dinucleotides in a guide RNA sequence, irrespective of the position;
3) Position-specific nucleotides: a ‘‘one-hot” encoding of nucleo-
tide sequences, in which the presence or absence of a nucleotide
(A/T/G/C) at a specific position of the target sequence is designated
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by 1 or 0, respectively (4 � 30 = 120 features for Cas9, CRISPRi, and
CRISPRa; 4 � 34 = 136 features for Cas12a); 4) Position-specific
dinucleotides: a ‘‘one-hot” encoding of dinucleotide sequences, in
which the presence or absence of a dinucleotide at a specific posi-
tion of a target sequence is designated by 1 or 0, repsectively (16 �
29 = 464 features for Cas9, CRISPRi, and CRISPRa; 16 � 33 = 528
features for Cas12a).
2.3.2. Structural features
1) GC count: the number of G or C in a given gRNA sequence.

Because the GC count for a specific gRNA has a non-linear relation-
ship with its activity, the GC counts were converted into a binary
value: GC high (1 for GC count > 9 else 0 for CRISPRi, CRISPRa,
and Cas9; 1 for GC count > 10 else 0 for Cas12a) and GC low (1
for GC count � 9 else 0 for CRISPRi, CRISPRa, and Cas9; 1 for GC
count� 10 else 0 for Cas12a); 2) Melting temperature: the thermo-
dynamic feature that indicates the stability of gRNA-target pairs,
computed using Le Novere’s equation [10,27]; 3) Self-folding
energy: the secondary structure of the gRNA was computed using
Vienna RNA package [28,29]; 4) Shannon entropy: the information
content of gRNA sequences [30], which was calculated using the
Shannon equation [31].
2.4. Benchmarking machine learning algorithms

We have trained and benchmarked four regression-based
machine learning algorithms—ENLOR, ENLR, RFB, and Xgboost—
with inbuilt feature selection methods (Supplementary Note).
ENLOR and ENLR are regularization techniques, incorporating
logistic or linear equations. They implement LASSO [32] and Ridge
[33] regularization modules for feature selection and bias reduc-
tion [34]. These algorithms were implemented using glmnet pack-
age in R. RFB is an ensemble learning algorithm that uses bagging
to develop a prediction model. This algorithm was implemented
using the Random Forest and Boruta package in R. Xgboost is
another ensemble learning method that uses extreme gradient
boosting framework. It employs optimal regularization and penal-
ization to boosted trees [35].
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2.5. Training and validation of CGD models

To optimally train and benchmark machine learning algorithms,
we applied a nested cross-validation (CV) approach that reduces
overfitting and stringent bias and minimizes a loss function in
algorithms by selecting features and optimizing parameters. The
workflow of nested CV is shown in Fig. 2a. The data were randomly
subsampled to construct ten cohorts. Each cohort included 75%
training and 25% test data. Subsets and the complete set of each
cohort were randomly sampled across CRISPR systems (Supple-
mentary Table 5). All subsets and the complete training dataset
across the CRISPR system underwent inner ten-fold CV to optimize
the parameters. Then, the subsets and the complete training data-
set were tested using the aforementioned algorithms with fixed
test data for each CRISPR system. This procedure was repeated
for ten cohorts, and the results were averaged.
2.6. Performance metrics

Receiver operating characteristics (ROC) and area under the
curve (AUC) values were used to evaluate the metrics by varying
the threshold. To further evaluate the classification power of our
models and existing methods with independent test data, Kol-
mogorov–Smirnov (KS) test was performed for predicted efficient
and inefficient gRNAs.
3. Results

3.1. Performance analyses of benchmarking machine learning
algorithms

Performance analyses using ROC and AUC showed that ENLOR
robustly outperformed other algorithms across all CRISPR-Cas sys-
tems (Fig. 2b–i and Supplementary Fig. 3). The performance analy-
ses with subsets of data showed that none of the models were fully
converged yet, indicating that more data would help improve the
models. With these results, we implemented ENLOR in our CGD
models.
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Fig. 3. Evaluation of CGD using independent test data. Comparison of existing machine learning algorithms, including deep learning algorithms, and our CGD models on
independent test data using the KS test. The numbers of efficient (Eff) and inefficient (Ineff) gRNAs are indicated on the x-axis for machine learning (CGD9, CGDi/a, CGD12a,
CINDEL 1.0, SSC, and CRISPRko v1/2) or deep learning (DeepCas9/Cpf1) algorithms. a–d Box plots representing the classification efficiency of different algorithms with P values
as an indicator of competence for the respective datasets for CRISPRi (a), CRISPRa (b), Cas9 (c), and Cas12a (d).
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3.2. Evaluation of our CGD models with existing tools using
independent test data

Our CGD models were compared with other existing tools, such
as CRISPRko v1 [8], CRISPRko v2 [10], SSC [9], CINDEL [7], CRISPR-
DT [11], DeepCas9 [13], and DeepCpf1 [12], using independent
datasets (Supplementary Table 4). Our CGD models outperformed
the other models in predicting efficient gRNAs (Fig. 3). The CGD
models stratified efficient gRNAs in a better manner than other
methods for all independent datasets generated by the respective
CRISPR systems. For some datasets, previous methods failed to
classify efficient gRNAs (Fig. 3).

We also compared the sensitivity of the models identifying effi-
cient gRNAs in CRISPR libraries developed for humans [36,37].
Across CRISPR systems, our models outperformed previous models
(Fig. 4).

3.3. Common features of ENLOR models

The ENLOR algorithms select features relevant to on-target
gRNA activity along with their weights, which indicate their contri-
bution to the model. Thus, the features for calculating gRNA activ-
ity can vary according to the model. In the final models, 83 features
for CGDi, 82 for CGDa, 84 for CGD9, and 215 for CGD12a were
selected with positive or negative weights (Supplementary
Table 1). When the feature sets of each model were compared,
the majority of features appeared to be distinct to individual mod-
els; however, some were found in more than one model. In partic-
ular, four features were fully shared, two of which were related to
thermodynamic measures (GC content and self-folding energy);
the other two were sequential features related to the seed region
of the respective CRISPR system (Supplementary Fig. 4). In fact,
thermodynamic features and seed sequences have been shown to
be common factors that determine gRNA efficiency [38,39].
Although the four features were selected across all CRISPR systems,
their weights varied, probably due to differences in the acting
mechanisms of gRNAs [7,10,40]. CGD12a and CGDi consider GC
content to be a more important contributor, indicating that Cas12a
and CRISPRi activities are more dependent on the thermodynamic
status of the target sites and gRNAs.

3.4. CGD web system

We built a web-based CGD model (http://big.hanyang.ac.kr:
2195/CGD). The web program runs with a Python script; it finds
all candidate gRNAs with CGD scores for each CRISPR system in
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Fig. 4. Sensitivity of models for identifying efficient gRNAs in human gRNA libraries. The
for each CRISPR library, namely Dolcetto (n = 55,521) for CRISPRi (a), Calabrese (n = 16,25
Cas12a (d). In each plot, the models are shown along the x-axis, and the sensitivity (the
the input DNA sequence. The candidate gRNAs are then mapped
to the human reference genome (hg19) to extract their genomic
coordinates with scores.
4. Discussion and conclusion

Here, we introduced CGD computational models that predict
efficient gRNAs and their target sites for CRISPRi, CRISPRa, Cas9,
and Cas12a systems. By benchmarking regression-based machine
learning algorithms with a generalization algorithm and optimiza-
tion, we selected ENLOR as a machine learning algorithm for CGD
models. CGD models outperformed previous models that imple-
ment heuristic and machine learning methods.

Our study developed computational models for canonical PAMs
(NGG for Cas9 and TTTV for Cas12a). However, recent CRISPR stud-
ies have also employed non-canonical PAMs recognized by Cas9
and Cas12a to improve the specificity of gene editing [41–45].
We thus applied our machine learning framework to non-
canonical PAMs (NGH) using a dataset published by Kim et al.
[45], resulting in performances comparable with that of the previ-
ous deep learning model (Supplementary Fig. 5). The CGD model
for non-canonical PAMs has also been integrated into the CGD
webserver.

The performance of our computational models varies over the
different datasets generated by each CRISPR system because the
experiments that produced the data were intentionally designed
by different groups with distinct purposes, such as targeting essen-
tial or all genes; targeting coding sequences, introns, or untrans-
lated regions; genome-wide screening approaches with positive
or negative selection; and targeting synthetically designed target
sequences (Fig. 3). These heterogeneous designs could lead to
biases in gRNA sequence composition, changing the training data
space. In fact, gRNA activities appeared to vary greatly depending
on whether positive or negative selection was used for functional
screening and whether essential genes were targeted (Supplemen-
tary Fig. 2). Hence, to train a robust model for each CRISPR system,
the biggest datasets with the same type of selection and with
gRNAs targeting essential genes were integrated to form a large-
scale dataset. We used approximately 6000 gRNAs and their activ-
ities for training and validation of CRISPRi, 1000 for CRISPRa,
approximately 3000 for Cas9, and approximately 15,000 for Cas12a
(Supplementary Table 3).

Integration of all possible datasets is hindered by the different
distributions of gRNA activity that result from the different types
of selection and experiments (Supplementary Fig. 2). In fact, some
c d
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4) for CRISPRa (b), Brunello (n = 76,442) for Cas9 (c), and Mini human (n = 1963) for
percentage of efficient gRNAs identified) is shown on the y-axis.
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independent test datasets (the Radzisheuskaya, Boettcher, and
Simenov datasets) display relatively worse results than others
(Fig. 3a and b), partly due to the data-specific distribution of gRNA
activity. The performance of the CGD models in terms of the pre-
diction of efficient gRNAs can be diminished just by integrating
such heterogeneous datasets. This issue could be mitigated by
incorporating proper normalization and regularization methods
to penalize and reduce data-associated noise and biases.
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