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ABSTRACT: For many shallow water flows, it is sufficient to consider the depth-averaged equations, referred as the 

shallow water equations, which are two-dimensional in the horizontal plane, since the length scale of the vertical 

direction is much smaller than that of the horizontal directions. Assuming that the pressure distribution is hydrostatic, 

the mathematical formulation and its numerical implementation are considerably simplified. In this study, a numerical 

model is newly developed to investigate various free surface fl  ow problems. The governing equations are the Navier–

Stokes equations with the pressure decomposed into the sum of a hydrostatic and a hydrodynamic components. The 

equation for the free surface movement is a depth–averaged continuity equation which is a free surface equation. These 

governing equations are simultaneously solved by using a finite difference method with a semi–implicit method and 

fractional step method. At the first step, the vertical momentum equations are discretized by using an implicit method 

over the vertical direction. In the second step, the discrete horizontal momentum equations are projected on to the free 

surface equation. Finally, the hydrodynamic pressure and final velocity field are calculated. To verify the accuracy and 

stability, the present numerical model  is applied to move practical problems such as the run–up process of solitary 

waves attacking a circular island. The numerically obtained maximum run–up heights around a circular island are 

compared with available laboratory measurements. A very reasonable agreement is observed. 
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INTRODUCTION 

Numerical simulation of shallow water flows based 

on incompressible Navier–Stokes equations is 

extensively applied in hydraulic and coastal studies such 

as waves interacting with structures or over varying 

topographies. Due to an increase in computer capacities 

in recent years, three–dimensional numerical models are 

developed extensively and applied for many hydraulic 

and coastal problems.  In many numerical shallow water 

models, it is simulated assuming a hydrostatic pressure 

distribution in depth. In most cases, where the vertical 

acceleration component is small, sufficient accuracy for 

simulating most free surface flows is obtained by using 

numerical models, which assume the hydrostatic 

pressure approximation. It simplifies the coupled three–

dimensional set of equations to be solved. However, 

hydrostatic pressure approximation is only applicable for 

simulating flows where the horizontal scale of motion is 

much larger than its vertical scale. Hydrostatic pressure 

assumption is no longer valid for flows over bed 

topographies of abrupt variations, flows with sharp 

density gradients and short wave motions, where the 

ratio of the vertical to horizontal scales of motion is not 

sufficiently small and for above such cases, a 

hydrodynamic pressure distribution should be considered 

(Koçyigit et al., 2002). 

Hydrostatic pressure models based on the Navier–

Stokes equations are widely applied too many hydraulic 

and coastal problems. If a hydrostatic approximation is 

assumed, the vertical momentum equation is omitted and 

thus, the vertical velocity is calculated from the 

continuity equation. However, it is well known that the 

hydrostatic pressure assumption is no longer valid in 

many physical problems such as flows over rapidly 

varying topographies and short surface waves where the 

ratio of the vertical to horizontal scales of motion is not 

very small, the effect of vertical acceleration become 

important. Therefore, a hydrodynamic pressure becomes 

significant and critical for modeling free surface flows 

when the vertical motion of flows is no longer negligible. 

As a numerical application of wetting and drying 

algorithm, the present model applied to simulate solitary 

wave run–up on a circular island. This test has been 

widely used to verify wetting and drying algorithm for 

wave run–up heights. Numerical results of the present 

model obtained for maximum wave run–up heights 

around a circular island by incident solitary waves and 

compared with both laboratory measurements and 
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existing numerical results. Laboratory experiments were 

performed at the Coastal Engineering Research Center of 

the US Army corps of Engineers. 

 

GOVERNNING EQUATIONS 

For incompressible flows, the governing equations 

describing the free surface flows are the three–

dimensional Navier–Stokes equations (NSE), which are 

the conservation of mass and momentum. The governing 

equations can be written in primitive variables in a 

Cartesian coordinates as the following form: 
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To modeling of the free surface flow, integrating the 

continuity equation over the water depth, leading to 
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With the boundary conditions for the horizontal 

velocities at the bottom and the surface, wind stresses 

can be incorporated as 
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where, 
2 2 2 2, ,sx a f w w w sy a f w w wc u u v c v u v      

 
a  is the air density, fc  is the drag coefficient, and 

,w wu v  are wind velocities in the x and y axis 

directions. 

The boundary conditions at the bottom are given by 

expressing the bottom stress in terms of the velocity 

components taken from values of the layer adjacent to 

the sediment–water interface. The bottom stress can be 

related to the turbulent law of the wall, a drag coefficient 

associated with quadratic velocity, or using the Manning 

or Chezy formula such as 
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where, 2 2 2/b g u v Cz     and Cz  is the Chezy 

friction coefficient.  

 

NUMERICAL SIMULATION 

For a certain class of problems where the governing 

equations can be solved sequentially, it is better to use a 

staggered grid system in finite difference formulations. 

In Cartesian coordinate system, a staggered arrangement, 

suggested by Harlow and Welch (1965), offers several 

benefits over a collocated grid. The grid system is shown 

in Fig. 1.  

 

Hydrostatic Pressure Step 

The first step of calculations is performed by 

neglecting the implicit contribution of the hydrodynamic 

pressure. The resulting velocity field and water surface 

elevation at a new time level are not yet finalized and 

denoted by , , ,u v w  and .  A general semi–implicit 

discretization of the momentum equations (10 to 12) 

takes the following form 
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Fig. 1 A definitive sketch of a staggered grid system 

 

where, the vertical space increment z  is usually 

defined as the distance between two consecutive level 

surfaces except near the bottom and near the free surface 

where, z  is the distance between a level surface and 

bottom or free surface, respectively. F is a finite 

difference operator that includes the explicit 

discretization of the convective and horizontal viscosity 

terms. 

 

Hydrodynamic Pressure Step 

In the hydrodynamic pressure correction step of 

calculations, the new velocity fields and the new water 

surface elevation are computed by correcting the 

provisional values, after including the provisional 

hydrodynamic pressure terms. Specifically, the discrete 

momentum equations are taken to be 
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where, q
 
denotes the hydrodynamic pressure correction 

which combines the provisional free surface elevation.  

The new free surface elevation is obtained by 

hydrostatic relation as follows: 
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and thus, the final hydrodynamic pressure component 
1

, ,
n
i j kq 

 is obtained by the following equation: 
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APPLICATION OF NUMERICAL MODEL 

During the last decades, huge tsunami run–up heights 

were occurred at many countries and islands. Therefore, 

losses of human beings and property damage were 

occurred. Several studies of maximum run–up heights 

have been performed (Liu et al., 1991; Liu et al., 1995; 

Cho, 1995). 

A series of laboratory experiments were performed in 

a large–scale basin at the Coastal Engineering Research 

Center (CERC) of the US Army Corps of Engineers 

(Briggs et al., 1994). The center of a circular island was 

located at x 15 m and y 13 m. The surface of the 

island and the floor of the basin were smoothly finished 

with concrete mortar. A directional spectral wave 

generator was installed along the x axis direction and 

used to generate incident solitary waves. The total length 

of the wave generator is 27.432 m and it consists of 60 

individual paddles moving parallel to the water surface; 

each of them can be driven independently and 

electronically. A schematic sketch of the island geometry 

is shown in Fig. 2, and the location of the gage points of 

wave run–up heights is shown in Fig. 3. 

In general, the maximum run–up height decreases as 

the gage number increases, except in the lee side (gage 

of solitary waves 8) of the island. Such results are due to 

the trapped solitary waves approaching from the 

opposite directions, which collide and generate a higher 
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run–up heights in the lee side of the island (Cho, 1995; 

Liu et al., 1995). 

In laboratory experiments and numerical simulations, 

three different initial solitary wave heights are used with  

h 0.016 m, 0.032 m, and 0.064 m. The nonlinearity of 

the incident solitary wave is defined as 0/h H   with   

0H
 
being a still water depth. The wave run–up heights, 

R
 
are normalized by incident wave heights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) Top view of the wave basin with the island; 

(b) the vertical view of the circular island on the cross–

section A–A (Cho, 1995) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Location of gage points for the maximum run–up 

heights measurements 

The wave run–up heights are measured around the 

island from the incident wave direction with an interval   

/8  (Fig. 3). 

In laboratory experiments and numerical simulations, 

the constant water depth was fixed at 0H  0.32 m. In 

the present study, the numerical simulations are focused 

on the cases of    0.05( h 0.016 m) and    0.1 

( h 0.032 m). The computational domain is consisted 

by using a horizontal grid spacing of x y   0.1 m 

and a vertical grid spacing of  kz  0.0032 m. 

Fig. 4 and Fig. 5 present a comparison of the 

maximum run–up heights between the present model and 

laboratory measurements. When   0.05, the present 

numerical model and the two–dimensional numerical 

model based on the shallow water theory (Cho, 1995; 

Liu et al., 1995) well represent laboratory measurements. 

However, when the incident solitary wave height 

increases, two–dimensional numerical model shows a 

large discrepancy while the present numerical model 

provides reasonable results with the laboratory 

measurements. The present model slightly 

underestimates the laboratory measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Comparison of the maximum run–up heights with 

  0.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Comparison of the maximum run–up heights with 

  0.1 
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CONCLUSIONS 

Through the present study, a numerical model was 

developed, which can be used to examine the three–

dimensional free surface flows with considering a 

hydrodynamic pressure. The numerical model solves the 

Navier–Stokes equations for three velocities and 

pressure, as well as the depth–averaged continuity 

equation for the free surface movement. The governing 

equations have been integrated by using a semi–implicit, 

fractional step method, where the hydrostatic pressure 

component is determined first and the hydrodynamic 

component of the pressure is then computed in a 

subsequent step. This method is relatively simple and 

numerically stable even at large Courant numbers; it is 

suitable for simulations of complex three–dimensional 

flows where a small deviation from a hydrostatic 

pressure is allowed. In the present study, the above 

scheme is further improved by including a correction for 

the free surface in such a fashion that a new free surface 

elevation is implicitly coupled with the hydrodynamic 

pressure along with the new velocity field. During the 

last decades, huge tsunami run–up heights were occurred 

at many countries and islands. Therefore, losses of 

human beings and property damage were occurred. 

Several studies of maximum run–up heights have been 

performed (Liu et al., 1991; Liu et al., 1995; Cho, 1995). 

The present model is applied to simulate the run–up 

heights of solitary waves on   a circular island. This test 

has been widely used to verify wetting and drying 

algorithm for wave run–up heights. Numerical results of 

the present model are obtained for the maximum wave 

run–up heights of incident solitary waves around a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

circular island and compared with both laboratory 

measurements and existing numerical results obtained 

from the shallow water equations model. The present 

numerical model shows reasonable results with the 

laboratory measurements. 
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