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a b s t r a c t 

Convex hull is one of the most fundamental constructs in geometry and its construction 

has been extensively studied. There are many prior works on the convex hull of points. 

However, its counterpart for weighted points has not been sufficiently addressed despite 

important applications. Here, we present a simple and fast algorithm, QuickhullDisk , 
for the convex hull of a set of disks in R 

2 by generalizing the quickhull algorithm for 

points. QuickhullDisk takes O ( n log n ) time on average and O ( mn ) time in the worst 

case where m represents the number of extreme disks which contribute to the boundary of 

the convex hull of n disks. These time complexities are identical to those of the quickhull 

algorithm for points in R 

2 . Experimental result shows that the proposed QuickhullDisk 
algorithm runs significantly faster than the O ( n log n ) time incremental algorithm, proposed 

by Devillers and Golin in 1995, particularly for big data. QuickhullDisk is approxi- 

mately 2.6 times faster than the incremental algorithm for random disks and is 1.2 times 

faster even for the disk sets where all disks are extreme. This speed-up is because the 

basic geometric operation of the QuickhullDisk algorithm is a predicate for the loca- 

tion of a point w.r.t. a line and is much faster than that of the incremental algorithm. The 

source code of QuickhullDisk is freely available from Mendeley Data and a GUI-version 

from Voronoi Diagram Research Center, Hanyang University ( http://voronoi.hanyang.ac.kr/ ). 

© 2019 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license. 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

1. Introduction 

Convex hull is one of the most fundamental geometric objects and its importance has long been well-addressed

[1–3] . The convex hull of geometric objects is the smallest convex set containing the objects. Its properties and construction
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algorithms have been extensively studied because of its theoretical and practical importance. Convex hull problems arise as

one of the most important subproblems in many problems of computational geometry, optimization, etc. Algorithms have

been reported for points in two-, three-, and even higher-dimensional Euclidean space. 

History of convex hull algorithms. In 1972, the O ( n log n ) Graham’s scan algorithm was introduced for constructing the convex

hull of n points in the plane [4] and replaced the popular O ( n 3 ) algorithm which performed O ( n 2 ) half-plane containment

tests for n − 2 points. In 1973, the O ( mn ) Jarvis march algorithm, a two-dimensional version of the output-sensitive Chand–

Kapur gift-wrapping algorithm [5] , was reported where m represents the number of vertices on the hull boundary [6] . In

1975, Preparata and Hong presented an O ( n log n ) divide-and-conquer algorithms for both 2D and 3D points [7,8] . In 1977

and 1978, Eddy [9] and Bykat [10] independently reported the quickhull algorithm for 2D points which were based on the

idea of the well-known quicksort algorithm, respectively. The efficiency of the quickhull algorithm is O ( n log n ) time on av-

erage and O ( mn ) in the worst case for m vertices of the convex hull of n 2D points [11–13] . In 1981, Seidel presented an

incremental algorithm taking O (n log n + n � d+1 � / 2 ) time for the convex hull of d -dimensional points where d is an even num-

ber [14,15] . The convex hull construction problem has remained an attractive research problem to develop other algorithms

such as the marriage-before-conquest algorithm by Kirkpatrick and Seidel in 1986 [16] , Chan’s algorithm in 1996 [17] , a

fast approximation algorithm for multidimensional points by Xu et al in 1998 [18] , a new divide-and-conquer algorithm by

Zhang et al. in 2010 [19] and An’s recent improvements of the Graham’s algorithm in 2010 [20] and the gift-wrapping algo-

rithm in 2013 [21] . It is interesting and important to observe that the first theoretically solid algorithm for the convex hull

construction was discussed in a general dimensional space by Chand and Kapur in 1970 which has been since then called

the gift-wrapping algorithm [5] . They implemented the algorithm using FORTRAN to construct the convex hull of 1,0 0 0

six-dimensional points. Parallel algorithms were also reported for both 2D and 3D points [22] . In 1985, Atallah made a the-

oretical observation about the convex hull of moving points [23] . In 2012, Aurenhammer and Jüttler reported an O ( m log n )

algorithm for n circular arcs where m represents the size of the convex hull [24] . Recent effort s include the convex hull of

probabilistic points whose locations are determined by a normal distribution [25,26] . It is interesting to observe Kalantari’s

recent work of Triangle Algorithm for convex hull membership problem for finite points which connects the convex hull

problem to linear program [27,28] and to separating hyperplane theorem [29] . 

If points are generalized to disks or spheres with non-zero radii, the convex hull construction becomes more difficult and

complicated. The radii of disks correspond to the weights associated with the center points of the disks. Let Con v (D ) be the

convex hull of a set D of n disks in the plane which is the smallest convex region containing all of the disks. Its boundary

∂Con v (D ) is an ordered curve segments which consists of alternating sequence of arcs and tangent lines connecting con-

secutive arcs. We call each curve segment on ∂Con v (D ) a hull edge and, in particular, the line segment a linear hull edge .

In 1992, Rappaport proposed an O( n log n ) divide-and-conquer algorithm for constructing the convex hull of disks and dis-

cussed its applications [30] . In 1995, Devillers and Golin [31] reported the O( n log n ) monotone chain algorithm which was a

modification of the incremental algorithm. The algorithm used an AVL-tree to store disks touching the convex hull boundary

in the leaf nodes and their clusters in internal nodes so that an incrementing disk could be efficiently determined if it was

contained within the current convex hull or not. In 1996, Boissonnat et al. reported an algorithm taking O (n log n + n � d/ 2 � )
for d -dimensional spheres which was optimal in 3- and even dimensional space [32] . In 1998, Chen et al. introduced a

parallel method using a divide-and-conquer approach and showed that the convex hull of n disks in the plane could be

constructed in O ( log 
1+ ε

n ) time using O ( n / log εn ) processors or in O (log n log log n ) time using O (n log 
1+ ε

n ) processors for

any positive constant ε [33] . In 1999, Yue et al. applied the idea of the Jarvis march to a set of straight and circular line

segments [34] . In 2004, Habert and Pocchiola showed that the convex hull of a collection of n pairwise disjoint disks in the

plane is computable in O ( n log n ) time using the chirotope of the collection of disks [35] . 

Contribution of this study. However, interestingly enough, we were not able to find any prior work on the quickhull-like

algorithm for constructing the convex hull of 2D circular disks or 3D spherical balls. Considering the simplicity and efficiency

of both the quicksort algorithm for numbers and the quickhull algorithm for points, we are certain that such a quicksort-like

algorithm for disks and spheres are important for both theoretical and practical points of views. In this paper, we report

an algorithm, QuickhullDisk , which constructs the convex hull of disks in the plane by generalizing the “more than

40-years-old” yet powerful quickhull algorithm for points in the plane. The contributions of this paper are as follows: 

• A simple and fast QuickhullDisk algorithm for constructing the convex hull of disks in the plane. 

• A robust implementation of the QuickhullDisk algorithm (Programs are freely available). 

The well-known quickhull algorithm for points is a divide-and-conquer algorithm (For the correctness and efficiency, see

[36] ): Divide the input point set into subsets and merge the solutions of the subsets to get the solution of the entire set as

quickly as possible; For each subset, apply the same rule recursively until a simple rule can immediately return the result.

There are two critical observations from efficiency point of view: (i) Two subsets in each recursion are likely to be of similar

sizes, and (ii) the merge takes time linear to the total number of elements in the two subsets in the worst case. Its idea

is based on the quicksort algorithm and as the quicksort is frequently the fastest among sorting algorithms, the quickhull

algorithm tends to be the fastest among the convex hull algorithms for points. The idea of the quickhull algorithm follows

that of the quicksort algorithm reported by Hoare in 1961 [37–39] to improve the prior merge sort algorithm [40] (The

initial idea of the quicksort algorithm was proposed by Shell in 1959 [41] ). 
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Fig. 1. Convex hulls of disks in R 2 constructed by the QuickhullDisk algorithm. We allow intersection and containment among disks. Blue line seg- 

ments and arcs are hull edges, i.e., the edges on the boundary of convex hull. (a) Random disks. (b) Each of the four small disks defines two linear hull 

edges to the big one in the middle independent of the other small ones: There are total 8 (= (5 − 1) ∗ 2) linear hull edges on the convex hull boundary. 

(c) Ten disks with a common intersection: Every disk is extreme and each disk defines a linear hull edge with its counterclockwise neighbor disk. (d) Disks 

have common tangent lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this paper, we exploit the virtue of both the quicksort and quickhull algorithms for the construction of the convex

hull of a finite set of disks in the plane, thus named the QuickhullDisk algorithm. QuickhullDisk takes an O ( n log n )

time on average and O ( mn ) time in the worst case where m represents the number of extreme disks which contribute

to the boundary of the convex hull of n input disks. These time complexities are identical to those of the quickhull algo-

rithm for points in R 

2 . Experimental result shows that the proposed QuickhullDisk algorithm runs significantly faster

than the O ( n log n ) time incremental algorithm, proposed by Devillers and Golin in 1995, for most data sets we tested, par-

ticularly for big data. QuickhullDisk is approximately 2.6 times faster than the incremental algorithm for all types of

random disks. QuickhullDisk is 1.2 times faster even for the disk sets where all disks are extreme, in which case the

incremental algorithm is best-suited from efficiency point of view. Recall that the quicksort algorithm is much slower than

other sorting algorithms when an input data set of numbers is sorted or near sorted. In this sense, this result is somewhat

striking. This speed-up is because the basic geometric operation of the QuickhullDisk algorithm is a predicate for the

location of a point w.r.t. a line and is much faster than that of the incremental algorithm. In addition, QuickhullDisk is
easier than the incremental algorithm to handle degenerate cases: E.g. if an incrementing disk simultaneously touches two

edges on a convex hull boundary, the incremental algorithm requires a special treatise whereas it is an ordinary case for

QuickhullDisk . 
Fig. 1 shows examples of the convex hulls of 2D disks constructed by the proposed QuickhullDisk algorithm: (a)

random disks; (b) each of the four small disks defines two linear hull edges to the big one in the middle: the convex hull

boundary contribution of the small disks are independent of each other and thus there are 8 (= (5 − 1) ∗ 2) linear hull

edges in total on the convex hull boundary; (c) ten disks with a common intersection and every disk is extreme: each disk

defines a linear hull edge with its counterclockwise neighbor disk; (d) disks have common tangent lines. Note that disks

may intersect and may include other disks. 
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Application of convex hull algorithms. In addition to theoretical significance, the convex hull of a set D of disks is useful as

a computational building block for solving other important geometric problems as well summarized in [30] . The diameter

of a set of points is the greatest distance between points and that of a convex set is the greatest distance between parallel

support lines [42] . Thus, the diameter of D can be found by rotating a pair of parallel support lines about Con v (D ) to find

the antipodal pair of points on ∂Con v (D ) which yields the maximum distance [30] . The intersection of n disks can be found

using the convex hull algorithm [30] . The convex hull of disks can be used to construct the furthest Voronoi diagram for

the disks in O ( n log n ) time [30] . The minimum spanning circle of a set is a smallest circle that intersects the set [1,43] .

The minimum spanning circle of a set of disks can be computed using the furthest Voronoi diagram of the disks which

again uses the convex hull of the disks [30] . A stabbing line (or also called a common transversal line) of a set of objects

is a straight line that intersects all members of the set [44,45] and each edge on ∂Con v (D ) is a partial support line of

D and immediately produces a stabbing region [30] . The convex hull of disks can be used as a filter to reduce solution

space for finding the shortest paths avoiding circular obstacles [46] . In the study of stochastic convex hull, the convex

hull of disks is becoming more useful, in connection with kinetic data structure [47] , as the location uncertainties due to

measurements are reflected in computational model [25,26,48] . Kallrath and Frey recently introduced a new computational

geometry optimization problem to arrange a set of circles such that the length of the boundary of the convex hull of the

non-overlapping circles is minimized [49] . They solved the problem as a mixed-integer nonlinear programming problem. For

solving this type of optimization problem for larger number of circles, an efficient convex hull algorithm is necessary. 

The well-known connection between the convex hull and the Voronoi diagram is of interest: connecting the generators

of adjacent unbounded Voronoi cells in the Voronoi diagram produces the convex hull of the generators [1,2,50] . Hence, if

the Voronoi diagram is available by a preprocessing (either by the optimal O ( n log n ) divide-and-conquer algorithm, by the

robust O ( n 2 ) topology-oriented incremental algorithm [51] , or by the edge-flipping algorithm [52,53] ), the convex hull can

be constructed in O ( n ) time. However, this approach is computationally more expensive than directly constructing convex

hulls using the above-mentioned algorithms [24] . This is because convex hull construction is only one of many applications

of Voronoi diagram which is a neutral data structure. 

Let us see the opposite side. We view an important function of Voronoi diagram materialized by the convex hull algo-

rithm. Voronoi diagrams require to represent infinity, using a rectangular or circular container containing all input generators

[54,55] , or using a few fictitious generators representing infinity [50,56,57] . Given a Voronoi diagram with an appropriately

represented infinity, we may need to evaluate the Voronoi diagram structure to obtain the convex hull boundary when it is

requested. We note that the decisions in this procedure are based on numerical computation, i.e., floating-point arithmetic,

and thus may cause inconsistency with the symbolic information stored in the topology of the Voronoi diagram. This is

particularly critical for disk generators in that their Voronoi edges are non-linear. Hence, we instead use QuickhullDisk
independently to help to construct the convex hull boundary only when an application needs. 

Notes. In this paper, all discussions are in R 

2 and all time complexities are for the worst cases unless otherwise stated.

If more than two disks are tangent to a common line, we consider all such disks contribute to the convex hull boundary.

A point in the plane is represented as a = a (a x , a y ) . The source code of QuickhullDisk is freely available from Mendeley

Data [58] and a GUI-version from Voronoi Diagram Research Center, Hanyang University ( http://voronoi.hanyang.ac.kr/ ). 

Section 2 defines terminologies necessary for describing the theory and algorithm. Section 3 describes the main part of

the QuickhullDisk algorithm for determining the convex hull of a finite set of disks. Section 4 describes the return con-

dition of recursions in QuickhullDisk . Section 5 describes the strategy to handle degenerate or near degenerate cases.

Section 6 summarizes the algorithm and Section 7 presents the proofs of important properties of QuickhullDisk includ-

ing its termination and computational complexity. Section 8 presents experimental results using diverse data sets. 

2. Preliminaries 

Let D = { d 1 , d 2 , . . . , d n } , n ≥ 2, be a set of disks d i ( c i , r i ) with center c i (x i , y i ) ∈ R 

2 and the radius r i ≥ 0. Each disk is unique

and is represented by three float point numbers. Two disks may intersect each other and one may contain another. The

convex hull of X , denoted by Con v (X ) , is the smallest convex set in R 

2 containing all elements of a set X . We are interested

in the construction of Con v (D ) when the disks are polysized: i.e., the disk radii are arbitrary. If D contains only congruent

disks, the construction of the convex hull of the disk centers is sufficient. This is because the disks whose centers are the

extreme points in the convex hull of the center points are also the extreme disks in the convex hull of the disks. 

Let �( a , b ) be an oriented line passing through two points a and b with the orientation from a to b in R 

2 . Consider

three points in the plane: a = (a x , a y ) , b = (b x , b y ) , and c = (c x , c y ) . Let ˆ a = [1 , a x , a y ] , ˆ b = [1 , b x , b y ] , and ˆ c = [1 , c x , c y ] . Then,

Orient(a, b, c) = det([ ̂  a , ̂  b , ̂  c ] T ) is a determinant that gives twice the signed area of the triangle formed by a , b and c . 

It is well-known that an ordered triplet of points ( a , b , c ) are a counterclockwise turn if Orient( a , b , c ) > 0, a clockwise

turn if Orient( a , b , c ) < 0, and collinear if Orient (a, b, c) = 0 . 

It immediately follows that if Orient( a , b , c ) > 0, c is placed in the left half-plane divided by �( a , b ). If Orient( a , b , c ) < 0,

c is placed in the right half-plane divided by �( a , b ). If Orient (a, b, c) = 0 , c is on �( a , b ). 

Definition 1 see [12] . Let ( a , b , c ) be an ordered triple of points in R 

2 . 

(i) ( a , b , c ) is said to have a positive orientation if Orient( a , b , c ) > 0, a negative orientation if Orient( a , b , c ) < 0, and a

zero orientation if Orient (a, b, c) = 0 . 

http://voronoi.hanyang.ac.kr/


L.K. Nguyen, C. Song and J. Ryu et al. / Applied Mathematics and Computation 363 (2019) 124626 5 

Fig. 2. Disk positions w.r.t. an oriented line �( p , q ): d 1 : positive; d 2 : on-positive; d 3 : crossing; d 4 : on-negative; d 5 : negative. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ii) Given two half-planes divided by � = �(a, b) , the left half-plane is said positive and the right half-plane is said

negative. 

(iii) If Orient( a , b , c ) > 0, c is said positive w.r.t. � and if Orient( a , b , c ) < 0, c is said negative w.r.t. �. 

(iv) If Orient( a , b , c ) ≥ 0, c is said non-negative w.r.t. � and if Orient( a , b , c ) ≤ 0, c is said non-positive w.r.t. �. 

Definition 2. A disk d is said positive (or negative) w.r.t. an oriented line � if all points of d are positive (or negative) w.r.t.

�. A disk d is said on-positive (or on-negative) w.r.t. � if d is tangent to � from the positive (or negative) half-plane. A disk

d is said crossing if d has both positive and negative points (i.e., d intersects �). 

In Fig. 2 , d 1 , d 2 , d 3 , d 4 , and d 5 are positive, on-positive, crossing, on-negative, and negative, respectively. If a disk d

is positive (or negative) w.r.t. �, d is placed in the left (or right) half-plane of � and d ∩ � = ∅ . In the presentation of

QuickhullDisk algorithm, negative, on-negative, or crossing disks are of primary interest. 

Definition 3. A set D of disks is said positive, on-positive, crossing, on-negative, or negative w.r.t. an oriented line � if every

disk d ∈ D is positive, on-positive, crossing, on-negative, or negative, respectively. D is said non-negative if every disks d ∈ D is

either positive or on-positive. D is said non-positive if every disks d ∈ D is either negative or on-negative. D is said expanded

non-negative if every disks d ∈ D is either positive, on-positive, or crossing. D is said expanded non-positive if every disks d ∈ D

is either negative, on-negative, or crossing. 

Some disk sets from Fig. 2 : { d 1 } positive; { d 2 } on-positive; { d 3 } crossing; { d 4 } on-negative; { d 5 } negative; { d 1 , d 2 } non-

negative; { d 5 , d 4 } non-positive; { d 1 , d 2 , d 3 } expanded non-negative; { d 5 , d 4 , d 3 } expanded non-positive. In the presentation

of QuickhullDisk algorithm, expanded non-positive disk sets are of primary interest. 

Definition 4. D 

′ ⊆D is maximal if D 

′ contains all possible disks in D satisfying a desired property. 

For example, if D 

′ contains all positive disks of D w.r.t. �, D 

′ is the maximal positive subset of D w.r.t. �; If D 

′ contains

all possible negative or on-negative disks of D w.r.t. �, D 

′ is the maximal non-positive subset of D w.r.t. �. 

Consider an ordered triple of points a , b , and c . The signed distance of c from � = �(a, b) is given by 

dist (c, �) = 

Orient (a, b, c) √ 

(b x − a x ) 2 + (b y − a y ) 2 
. (1)

The point c is in the positive side of �( a , b ) if and only if dist( c , �) > 0, in the negative side if and only if dist( c , �) < 0, and

on � if and only if dist (c, �) = 0 . Therefore, we can easily verify that a disk d ( c , r ) is positive if and only if 

dist (c, �) > r. (2)

Observe that the denominator is independent of c . If dist (c, �) < −r, d is entirely placed in the negative side of �. If dist( c ,

�) ≥ r , d is non-negative and if dist (c, �) ≤ −r, d is non-positive. 

Definition 5. An oriented line � is a non-negative support of a point set S if all points of S are non-negative w.r.t. � and

�∩ S � = ∅ . � is a non-negative support of a set D of disks if D is non-negative w.r.t. � and there exists d ∈ D such that

d ∩ � � = ∅ . A non-negative support of D is a convex hull support . 

Definition 6. A point p ∈ S is an extreme point of Con v (S) if and only if p / ∈ Con v (S\{ p} ) . 
In Fig. 3 (a), �( p 1 , p 2 ) is a non-negative support and a convex hull support of the point set. p 1 , p 2 , . . . , p 8 are extreme

points. A point on the convex hull boundary is called a hull point . Hence, an extreme point is also a hull point. In the figure,

p 9 in addition to p 1 through p 8 is a hull point. The other unfilled circles do not affect to the convex hull even if they are

removed from S . 

Definition 7. A disk d ∈ D is an extreme disk (or a hull disk ) if, and only if, ∂d passes through an extreme point (or a hull

point) of Con v (D ) and d is not contained by another disk. 
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Fig. 3. Extreme points, hull points, extreme disks, and hull disks. (a) Point set. �( p 1 , p 2 ) is a non-negative support and the convex hull support of the 

point set. p 1 , p 2 , . . . , p 8 are extreme points. p 1 , p 2 , . . . , p 9 are hull points. (b) Disk set. d 1 , d 2 , . . . , d 8 are extreme disks. d 9 is not an extreme disk ( d 9 ⊂ d 8 ). 

d 10 is a hull disk. 

Fig. 4. Convex hull supports and the representation of hull disks. (a) The non-negative convex hull supports of two disks. (b) Representation of the convex 

hull as a counterclockwise-ordered hull disks in HullDisks (D ) = (d 1 , d 2 , d 3 , d 2 , d 4 , d 2 , d 6 , d 1 ) . Seven blue arrows represent the oriented linear hull edges. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 3 (b), d 1 , d 2 , . . . , d 8 are extreme disks; d 10 is a hull disk. Let d and d ′ be two consecutive extreme disks in D in

counterclockwise orientation. Let � = �(d , d ′ ) be an oriented common tangent line of d and d ′ where (i) both d and d ′ are

on-positive w.r.t. � and (ii) its orientation is given from the tangential point at d to the tangential point at d ′ . Then, �( d ,

d ′ ) is said the non-negative support of the disk pair (i.e., d and d ′ ) and D . 

Caution. In Fig. 3 (b), d 9 is not an extreme disk because it is contained by d 8 . In such a very special case, it is possible

that more than one disk can contact at an extreme point and we choose the disk having the largest radius. Note. We remove

the contained smaller disk on-the-fly during convex hull computation. We do not preprocess to detect and remove such a

tangential contacts because this preprocessing may take a significant amount of time. Three possible approaches for this

preprocessing if wanted: O ( n 2 ) time brute-force pairwise test; O ( n log n ) time plane-sweeping method [59] ; Expected O ( n )

time bucket-based hashing method. 

Lemma 1. Suppose that d and d ′ are consecutive extreme disks of Con v (D ) in counterclockwise orientation. Then, �( d , d ′ ) is the

convex hull support of D. 

Let � = �(d , d ′ ) ⊂ �(d , d ′ ) be the oriented subsegment with the start point on d and the end point on d ′ . Then, �( d ,

d ′ ) is a convex hull edge (which is a linear hull edge) on ∂Con v (D ) . Fig. 4 (a) shows two disks d and d ′ together with two

oriented tangent lines �( d , d ′ ) and �( d ′ , d ). Both lines are non-negative support of { d , d ′ }: Both d and d ′ are placed in the

left half-plane divided by the oriented tangent lines. A convex hull can be represented by either (i) an ordered set of edges

connecting extreme points, or (ii) an ordered set of edges connecting hull points. If we adopt the second approach of using

hull points, we have more information about the arrangement of input disks than using extreme points only but with using

an increased computational resources. Thus, if the marginal increase of computational resource is not significant, the latter

approach is usually preferred: We take the second approach in this study. 

We represent the constructed Con v (D ) by adopting Rappaport’s method to store hull disks of D in a counterclockwise-

ordered sequence in HullDisks( D ) = (d 1 , d 2 , ..., d h , d h +1 ) , d 1 = d h +1 [30] . An edge of ∂Con v (D ) is an appropriate subsegment

� of the non-negative support tangent line �(d t , d t+1 ) for t = 1 , ..., h . A disk may appear more than once in HullDisks( D )

because it may contribute more than one arc on ∂Con v (D ) . In Fig. 4 (b), D has eight disks, d 1 through d 8 , and HullDisks (D ) =
(d , d , d , d , d , d , d , d ) : d appears three times in HullDisks( D ). 
1 2 3 2 4 2 6 1 2 
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Fig. 5. Oriented line �( p , q ), D X �, D L �, and D R � . (For interpretation of the references to color in this figure, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rappaport showed a tight bound | HullDisks (D ) | ≤ 2 n − 1 which means 2(n − 1) tangent line segments on ∂Con v (D ) of

n disks in the worst case [30] . We observe that this worst case can be realized only when the disks are arranged in a

configuration satisfying the following rule. 

Rule 1. (Disk placement rule for maximal linear hull edges) Each disk creates two linear hull edges without removing any

linear hull edge created by other disks. 

This situation can happen in two types of arrangements. The first is a round arrangement as shown in [30] : n − 1 small

disks are adjacent to one large disk in the middle. Fig. 1 (b) shows such an example where n = 5. In this case, each disk

satisfies the disk placement rule except the large one. The second is a linear arrangement : Disks are arranged in a linear

fashion (known as a sausage configuration [60] ) such as Fig. 16 (d) where n congruent disks are placed on horizontal grids:

Each disk satisfies the disk arrangement rule except the very first one in the left. In this case, the leftmost and the rightmost

disks are extreme disks and the others are all hull disks. It is also possible in a linear arrangement that the disks are

polysized in that each disk in the right is smaller than the one in the left. In both round and linear arrangements, the

distributions of disk sizes and locations are rather constrained. 

3. The QuickhullDisk algorithm 

The proposed QuickhullDisk algorithm is a divide-and-conquer algorithm. It constructs the convex hull of a disk set

D by dividing it into two subsets and quickly conquering the results of the subsets to get the solution of the entire set

D . The algorithm recurs until one or two disks are left in the set so that a stopping-condition for a further recursion is

encountered. 

3.1. Finding two extreme points and their corresponding extreme disks 

The algorithm starts with two disks in the disk set D which are guaranteed to be extreme disks. Let p and q be the high-

est leftmost point and the lowest rightmost point of D , respectively. Then, p and q are extreme points: i.e., p, q ∈ ∂Con v (D ) .

Let p ∈ ∂d p and q ∈ ∂d q . Then, d p and d q are extreme disks contributing to the convex hull boundary. Both d p and d q can be

found in O ( n ) time by scanning D . 

Given a pair of extreme points p and q , the algorithm recurs with subsets of D to find an additional extreme disk(s) if

it exists. Given an oriented line, called a base line , �( p , q ), it suffices to find the maximal expanded non-positive disk set

(where every disk is in the right half-plane of �( p , q ) or intersects �( p , q )). 

3.2. Determining the initial subsets D 

Init 
R 

and D 

Init 
L 

Let D 

R 
�

⊆ D be maximal non-positive (i.e., the set of all negative and on-negative disks in D ) w.r.t. an oriented line �.

In other words, d ∈ D 

R 
�

is placed in the right half-plane of or tangent to �. Let D 

L 
�

⊆ D be maximal non-negative w.r.t. the

oriented line �. Let D 

X 
�

⊆ D be maximal crossing. Let �−1 be the line with the reversed orientation of �. Hence, D 

R 
�

and

D 

L 
�

are maximal non-positive w.r.t. � and �−1 , respectively. Let D 

R + 
�

= D 

R 
�

∪ D 

X 
�

and D 

L + 
�

= D 

L 
�

∪ D 

X 
�

. Hence, D 

R + 
�

and D 

L +
�

are maximal expanded non-positive disk sets w.r.t. � and �−1 , respectively. See Fig. 5 : D and �( p , q ) of the extreme points p

and q . The blue (dash-dotted) disks define D 

R 
�

, the green (dashed) ones D 

L 
�

, and the red (solid) ones D 

X 
�

. The blue and red

disks together define D 

R + 
�

and the green and red disks together D 

L + 
�

w.r.t. �( p , q ). 
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Fig. 6. The triangle apex x w.r.t. �( p , q ), a triangle filter Tri ( p , x , q ) defined by three ordered vertices p , x , and q , and the filtered disk set D Filtered by Tri ( p , 

x , q ) (shown by the dotted circles). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that D 

L 
�

= D 

R 
�−1 and D 

L + 
�

= D 

R + 
�−1 . 

In the initial phase, QuickhullDisk splits D into two sets of disks, say D 

Init 
R 

⊆ D and D 

Init 
L 

⊆ D, and conquers the re-

turning results from the two recursions using each of D 

Init 
R 

and D 

Init 
L 

to obtain the result of D . Let D 

Init 
R 

= D 

R + 
�

and D 

Init 
L 

= D 

L + 
�

w.r.t. �( p , q ) of two extreme points p and q . The QuickhullDisk algorithm begins the recursion with each of D 

Init 
R 

and

D 

Init 
L 

. 

Another interpretation. In the initial phase, the two extreme points p and q need to be used twice with opposite contexts:

�( p , q ) and �( q , p ). With each oriented line, we need to process D to find its expanded non-positive disk set D 

R + 
�

. As this

requires scanning D twice, we instead collect D 

Init 
R 

and D 

Init 
L 

in one scan and interprete D 

Init 
L 

as the expanded non-positive

disk set D 

R + 
�

for �( q , p ). The following lemma holds. 

Lemma 2. D 

Init 
R 

and D 

Init 
L 

can be constructed in O ( n ) time for a set D of n disks. 

3.3. Pivoting disks using the apex disk 

The most critical idea of QuickhullDisk is pivoting the disks in D . Pivoting is a process to divide the disks in D into

three different types of subsets w.r.t. a disk called a pivot disk . Pivoting is critical in that the choice of a pivot disk has a

direct influence on both correctness and efficiency of the algorithm. Hereafter D may represent the set of disks in a recursion

process and in such a case, it is a subset of the input disk set. If it is necessary, we use D 

∗ to explicitly denote the entire

input disk set. 

Definition 8. ( Fig. 6 ) Assume D and �( p , q ) for extreme points p and q . The point x ∈ d ∈ D 

R + 
�

with the maximal distance

from � is called the (highest) triangle apex . The disk which gives the highest triangle apex is called the (triangle) apex disk . 

Lemma 3. A triangle apex is an extreme point if it is unique. Otherwise, a triangle apex is a hull point. The corresponding apex

disk is an extreme or hull disk. 

We use a triangle apex disk as a pivot disk. The apex disk can be found by scanning the disks in D , taking O (| D |) time.

( Multiple apexes case: If there are multiple triangle apexes with the same height in D , we choose one at random. Be aware

that this choice of pivot disk is critical to keep the expected O ( n log n ) time complexity for highly degenerate data sets.) 

Definition 9. Let x be the triangle apex w.r.t. �( p , q ) for extreme points p and q . Let Tri ( p , x , q ) be the triangle, called a

triangle filter , defined by three ordered vertices p , x , and q . The oriented edges Edge F ( p , x ), Edge B ( x , q ), and Edge BASE ( p , q ) are

called the front edge , back edge and base edge of Tri ( p , x , q ), respectively. 

Be aware that Edge F ( p , x ) and Edge B ( x , q ) are in the counterclockwise order around Con v (D ) . Let p ∈ ∂d p and q ∈ ∂d q . We

call d p and d q the pre-apex disk and the post-apex disk , respectively. 

Pivoting proceeds as follows. Given a disk set D , we find �( p , q ) and Tri ( p , x , q ). Let D 

R + 
�,F 

= D 

R + 
�

w.r.t. � = �(p, x ) which

corresponds to Edge F ( p , x ). We collect D 

R + 
�,F 

⊂ D and recurs with it. Then, we collect D 

R + 
�,B 

= D 

R + 
�

w.r.t. � = �(x, q ) from

Edge B ( x , q ) and recurs with it. The recursion stops when a stopping condition is encountered and returns an appropriate

output. The following lemma holds. 
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Fig. 7. The triangle apex x occurring in the same disk that p is defined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lemma 4. The pivoting of D can be done in O (| D |) time in each recursion. 

Data structure: The initial disk set D 

∗ is stored in a linked list List D ∗ and each node of List D ∗ has the definition of each

disk. The subset D ⊂ D 

∗ which goes into the recursion process is represented as a linked list of pointers to the appropriate

nodes of List D ∗ . 

Pivot effect: Let D ( Tri ( p , x , q )) be the set of disks which intersect Tri ( p , x , q ). It is guaranteed that the disks in D F iltered =
D (T ri (p, x, q )) \{ D 

R + 
�,F 

∪ D 

R + 
�,B 

} do not contribute to ∂Con v (D ) . Thus, QuickhullDisk ignores D Filtered from the recursion and

in this regard Tri () is called a filter. The dotted disks in Fig. 6 belong to a D Filtered . The size of D Filtered is closely related to the

actual computation time. Recall the expected O ( n log n ) time quicksort algorithm does not ignore any data element in any

level of recursion. On the other hand, QuickhullDisk can ignore D Filtered during recursion and its running time can have

a relatively small coefficient for the expected O ( n log n ) time complexity. 

4. Recursion stop conditions 

One of the most critical tasks of the recursive function is to determine when to stop the recursion and what to return.

There are two types of stop-condition which depends on the size of D : | D | = 1 and | D | = 2 . We model the recursion process

as a binary tree called a recursion tree where a leaf node represents a recursion stop situation. 

4.1. D has one disk : | D | = 1 . 

In this case, the apex disk, the pre-apex disk, and the post-apex disk are identical. The recursion stops and D is entirely

returned. This corresponds to one of the leaf nodes of the recursion tree. 

See Fig. 7 which shows D = { d 1 , d 2 , d 3 , d 4 } and �( p , q ) for the two extreme points p and q . Hence, D 

R + 
�

= { d 1 , d 2 , d 3 } ,
and D 

L + 
�

= { d 1 , d 3 , d 4 } w.r.t. �( p , q ). Note p ∈ d p ≡ d 1 and q ∈ d q ≡ d 3 . For D 

R + 
�

, the triangle apex x is also defined on ∂d p so

that d p ≡ d x : i.e., the triangle apex occurs at the pre-apex disk. Hence, the two recursions in the next iteration are based

on D 

R + 
�,F 

= { d 1 } and D 

R + 
�,B 

= { d 1 , d 2 , d 3 } where � = �(p, q ) . Therefore, the next recursion with D 

R + 
�,F 

stops because | D 

R + 
�,F 

| = 1

but the one with D 

R + 
�,B 

further recurs because | D 

R + 
�,B 

| = 3 > 2 . 

4.2. D has two disks : | D | = 2 . 

There are four cases of the stop-condition when | D | = 2 : See Fig. 8 (a) through (d). 

Case I. Fig. 8 (a) shows an ordinary case of | D | = 2 where d p �≡ d q for the extreme points p and q . In other words, the

two extreme points occur at different disks. In this case, the recursion stops and returns D to the parent in the recursion

tree. This corresponds to one of the leaf nodes of the recursion tree. The convex hull support of the two disks in D , which

is straightforward to compute, is the convex hull support of the entire set of the input disks. Example. Consider D = D 

R + 
�

=
{ d 1 , d 3 , d 4 } w.r.t. �( q , p ) in Fig. 7 . The triangle apex is shown as y ∈ ∂d 4 . Note Tri ( q , y , p ) with the front edge Edge F ( q , y ) and

the back edge Edge B ( y , p ). We recurse in the next iteration with D 

R + 
�,F 

= { d 3 , d 4 } w.r.t. �( q , y ) and with D 

R + 
�,B 

= { d 4 , d 1 } w.r.t.

�( y , p ). Then, each recursion becomes the case of Fig. 8 (a). 

Case II. Fig. 8 (b) shows the case that d x ≡ d p ≡ d q and d ′ ⊂ d p . Then, this case is identical to the case | D | = 1 . Hence, we

stop the recursion and return d p to the parent in the recursion tree. This corresponds to one of the leaf nodes of recursion

tree. 

Case III. Fig. 8 (c) shows the case that d p ≡ d q and d x �≡ d p . In this case, we recurse once more with D 

R + 
�,F 

= { d , d ′ } for

Edge F ( p , x ) and D 

R + 
�,B 

= { d , d ′ } for Edge B ( x , q ). Note that each of the recursions with D 

R + 
�,F 

and D 

R + 
�,B 

becomes the case in

Fig. 8 (a) in the next recursion. Therefore, this does not yet correspond to a leaf node of recursion tree. 
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Fig. 8. Four cases of two disks in D , two extreme points p and q , and �( p , q ). Recursion may stop or may continue depending on condition. (a) p ∈ d p and 

q ∈ d q where d p �≡ d q . (b) d x ≡ d p ≡ d q and d ′ ⊂ d p . (c) d p ≡ d q and d x �≡ d p . (d) d x ≡ d p ≡ d q and d ′ �⊂ d p . 

 

 

 

 

 

 

 

 

 

Case IV. Fig. 8 (d) shows the case that d x ≡ d p ≡ d q and d ′ �⊂ d p . In this case, we recurse once more with D 

R + 
�,F 

= { d , d ′ } for

Edge F ( p , x ) and D 

R + 
�,B 

= { d} for Edge B ( x , q ). Then, the recursion with D 

R + 
�,F 

is the case of | D | = 2 and it may recurse “a few

more times” depending on the size and the location of d ′ before it eventually become the case in Fig. 8 (c). 2 The recursion

with D 

R + 
�,B 

is the case with | D | = 1 in the next recursion which immediately stops the recursion. Therefore, Case IV does not

yet correspond to a leaf node of the recursion tree but we need not pay any extra attention on this case. 

5. Sliver triangle filter: an intriguing situation 

Fig. 9 (a) shows eight congruent disks placed at grids so that each triplet of disks on the convex hull boundary is tangent

to a common line. To be specific, d 1 , d 2 , and d 3 are hull disks which are tangent to a common tangent line. With �( p , q )

with the two extreme points p ∈ ∂d 1 and q ∈ ∂d 5 , the triangle apex is found at x ∈ ∂d 3 . Fig. 9 (b) shows the details of this

situation. Given the triangle apex x ∈ ∂d 3 , the next apex using �( p , x ) is determined at x ′ ∈ ∂d 3 with the disk set { d 1 , d 2 , d 3 }.

Another iteration also yields x ′′ ∈ ∂d 3 with the same disk set. Even if d 1 , d 2 , and d 3 are all tangent to a common tangent
2 From both theoretical and practical perspectives, “a few more times” indeed means a small constant number of times in that the new apex x of each 

recursion bisects the angle � pcq where d ( c , r ) has center c and radius r . It can be easily shown that, for a unit disk d (i.e., r = 1 . 0 ), 25 recursions guarantee 

that the length of the line segment pq is less than 10 −7 (which is approximately the machine epsilon of single precision floating point number and similar 

observation with 55 recursions guarantees that the length of pq is less than 10 −16 which is approximately the machine epsilon of double precision floating 

point number. For simplicity of presentation, hereafter we only discuss with single precision case). If one wishes, as a variation, it is obviously possible to 

find d ′ directly to avoid a few recursions but at the cost of having an algorithm fragment to handle the special situation. 
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Fig. 9. Captured apex event on d 3 . All apexes x , x ′ , and x ′′ occur on ∂d 3 . (a) Eight congruent disks placed at grids so that each triplet of disks on the 

convex hull boundary is tangent to a common line. (b) Recursion process with �( p , q ), �( p , x ), �( p , x ′ ), �( p , x ′′ ), . . . . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

line, this cotangency information cannot be directly obtained (Note that it is possible to obtain the similar information for

a multiple triangle apexes case). 

In Fig. 9 , we observe Tri ( p , x ′ , x ) and Tri ( p , x ′′ , x ′ ) are sliver triangles like needles and the disk triplets which define the

triangle filters do not change after pivot operations. In such a case, we also observe all three apexes x , x ′ , and x ′′ occur on

the boundary of an identical disk, i.e., ∂d 3 in this example: We call this phenomenon a captured apex property . Regardless

how many times we repeat pivoting operation in this case, we end up with the same disk set { d 1 , d 2 , d 3 } for Edge F , only

with a slightly improved apex on the same disk d 3 . When a triangle filter is a sliver triangle, a persistent disk set tends to

repeat and recursions may possibly not terminate. If we do not have a criteria to detect such a situation and enforce to stop

recursion, we may run into an infinite loop. Note that such a case can occur in engineering designs. 

Definition 10. Consider the disk sets D F ⊂ D and D B ⊂ D respectively corresponding to Edge F and Edge B after a pivoting,

| D | ≥ 3. D has a captured apex property if (i) | D F | = | D | and | D B | = 1, or (ii) | D F | = 1 and | D B | = | D |. If D has a captured apex

property, D is called persistent . 

Definition 10 implies that if a disk set D is persistent, the arrangement of the disks in D is skewed. We can detect the

skewed arrangement simply by counting the number of disks in the expanded non-positive disk sets corresponding to Edge F
and Edge B . Hence, it can be done in an O (| D |) time. 

Regularizing a sliver triangle filter: When a skewed disk arrangement is detected due to a captured apex by a sliver triangle

filter, we want to quickly walk around a possible degeneracy due to many cotangent disks. If such a case as shown in

Fig. 9 is detected, we improve the shape of the sliver triangle filter so that it becomes closer to a regular triangle as much

as possible. Given the extreme points p and q and their corresponding disks d p and d q , respectively, we first compute an

oriented non-negative tangent line � = �(d p , d q ) between d p and d q which places the two disks in its positive space. Let

˜ p = ∂d p ∩ �, i.e., the point where d p and � have a tangential contact. Let ˜ q = ∂d q ∩ �. Then, we test every disk d ∈ D if

d is positive or not w.r.t. �. Let ˜ � = 

˜ �( ̃  p , ̃  q ) be an oriented line. Then, � = 

˜ �. Let D 

Non - Pos ⊂ D be the maximal expanded

non-positive disks of D w.r.t. �. Let D 

On - Pos ⊂ D be the maximal on-positive disks of D w.r.t. �. 

• Case (A) D 

Non - Pos = ∅ and | D 

On - Pos | = 2 . In this case, � is a convex hull support of d p and d q and at the same time it is

the convex hull support of the entire input disk set: i.e., all disks are in the positive half-plane (except the on-positive

d p and d q ). ( Fig. 10 (a)). We choose either ˜ p or ˜ q as an improved triangle apex ˜ x . 

• Case (B) D 

Non - Pos = ∅ and | D 

On - Pos | ≥ 3 i.e., there are (is) on-positive disks to �. ( Fig. 10 (b)). In this case, we choose a disk

d ∈ D 

On - Pos at random or by a bisection method and improve the triangle apex with ˜ x = ∂d ∩ �. 

• Case (C) D 

Non - Pos � = ∅ and there exists at least one disk d ∈ D 

Non - Pos such that d is crossing, on-negative, or negative w.r.t. �.

For each d ∈ D 

Non - Pos , let ˜ x d = ∂d ∩ L − where (i) L − is the line parallel to �, and (ii) the height of ˜ x d from � is maximal. 

• Case (C-I) Suppose that there exists a unique disk d which defines a unique highest apex point ˜ x d ⊂ ∂d ( Fig. 10 (c)).

Then, let ˜ x = ˜ x d . 

• Case (C-II) Suppose that there are two or more disks which correspond to triangle apexes with an identical height. In

this case, we choose a disk d among these disks and define ˜ x = ˜ x d ⊂ ∂d ( Fig. 10 (d)). The choice can be made either

at random or in a bisection method. 

Lemma 5. ˜ x is a hull point. 

Based on Lemma 5 , we regularize the triangle filter to improve from Tri ( p , x , q ) to T ri (p, ̃  x , q ) and repeat the current

recursion once more. 
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Fig. 10. Sliver triangle filters and their regularizatoin. (a) Case (A). All disks in D are in the positive space (except the on-positive d p and d q ) w.r.t. �. The 

convex hull support of d p and d q are the convex hull support of entire input disks D ∗ . Improving Tri ( p , x , q ) to either T ri (p, ̃  p , q ) or T ri (p, ̃  q , q ) helps to 

walk around the case caused by d ∗ . (b) Case (B). Multiple on-positive disks w.r.t. �. A pivot disk is chosen either at random or via a bisection. T ri (p, ̃  x , q ) 

is an improved triangle filter where ˜ x = � ∩ ∂d. (c) Case (C-I). There exists a unique disk d 3 which defines a unique highest apex point ˜ x ⊂ ∂d 3 w.r.t. �. 

We improve Tri ( p , x , q ) to T ri (p, ̃  x , q ) . (d) Case (C-II). There are two or more disks which correspond to triangle apexes with an identical height w.r.t. �. 

We choose a pivot disk d 3 at random or via a bisection to make a unique highest apex point ˜ x ⊂ ∂d 3 w.r.t. �. We improve Tri ( p , x , q ) to T ri (p, ̃  x , q ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Caution. Let Arc ( d ; α, β) be the counterclockwise arc of ∂d from α ∈ ∂d to β ∈ ∂d . There is no guarantee that Arc =
Arc(d p ; p, ˜ p ) is entirely on ∂Con v (D ) . This is because there can be one or more tiny disk which contributes to ∂Con v (D )

in the middle of Arc . The disk d ∗ in Fig. 10 (a) shows such a case on Arc(d q ; ˜ q , q ) . The regularization of a triangle filter

guarantees solution correctness. 

Note. The improved filter T ri (p, ̃  q , q ) is can be actually sliver than the original Tri ( p , x , q ) (E.g. T ri (p, ̃  q , q ) in Fig. 10 (a)).

The “regularization” might be a misnomer in this regard. However, the regularization concept is proper in other cases and

we stick to this notion. 

Notes on cotangent disks: We make a few observations on cotangent disks. First, suppose that we have identified k > 0

cotangent disks and assume that k − 2 disks are placed between d 1 and d k . Depending on how we define the visibility of

collinear points, we may either detect the k − 2 internal disks as hull disks or may treat them as non-hull (but internal)

ones. In this paper, we treat them as extreme ones. One of the obvious reasons is to obtain as much information about

the input data as possible unless the marginal computational cost is too expensive. Note that, as a straightforward minor

variation, one can ignore the k − 2 disks between d 1 and d k to accelerate. Second, why do we avoid a sequential visit to the k

cotangent disks (in the Euclidean sense)? This is simply because we want to have the expected O ( n log n ) time complexity for

n input disks. If we pivot so that two subsets D F and D B have 2 and k − 1 disks, respectively, the pivoting process eventually

exhibits an O ( k 2 ) worst case time complexity. See Fig. 22 . Third, the regularization of sliver triangle is a conceptual aide in

that the improved triangle filter is still sliver for degenerate or near degenerate disk arrangements. Fourth, an oriented line

�( p , q ) of extreme points p and q can be an oriented tangent line �( d p , d q ) of the disks d p and d q which correspond to

Algorithm 1: QuickhullDisk (D 

∗, HullDisks (D 

∗)) . 
Input : D 

∗: Input disks 

Output : HullDisks( D 

∗): ordered sequence of hull disks on convex hull boundary 

1 If | D 

∗| = 1 , then return HullDisks (D 

∗) = D 

∗. 

2 Find p, q , d p , and d q (where p ∈ ∂d p , q ∈ ∂d q ). 

3 Divide D 

∗ into two sets of disks, D 

Init 
R 

(≡ D 

R + 
�

) ⊆ D 

∗ and D 

Init 
L 

(≡ D 

L + 
�

) ⊆ D 

∗ w.r.t. �(p, q ) . 

4 FindHull (D 

Init 
R 

, d p , d q , HullDisks (D 

Init 
R 

)) ; FindHull (D 

Init 
L 

, d q , d p , HullDisks (D 

Init 
L 

)) . 

5 Return HullDisks (D 

∗) ≡ HullDisks (D 

Init 
R 

) ∪ HullDisks (D 

Init 
L 

) . 
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Algorithm 2: FindHull (D, d p , d q , HullDisks (D )) . 

1 If ( | D | = 1 ) or ( | D | = 2 and d p �≡ d q ), then return HullDisks (D ) . 

2 Find apex disk d x . 

3 Find front edge E F and back edge E B of apex triangle. 

4 Make expanded non-positive disks D F ⊆ D and D B ⊆ D w.r.t. E F and E B , respectively. 

5 If triangle filter is sliver, then 

6 RegularizeSliverTriangleNPivotDisks (D, D F , D B , d p , d q , d x ) . 

7 End if 

8 FindHull (D F , d p , d x , HullDisks (D F )) ; FindHull (D B , d x , d q , HullDisks (D B ))) . 

9 Return HullDisks (D ) ≡ HullDisks (D F ) ∪ HullDisks (D B ) . 

Algorithm 3: RegularizeSliverTriangleNPivotDisks (D, D F , D B , d p , d q , d x ). 

1 Make oriented tangent line � = �( ̃  p , ̃  q ) where ˜ p = ∂d p ∩ � and ˜ q = ∂d q ∩ �. 

2 Make expanded non-positive disks D 

Non - Pos ⊆ D and on-positive disks D 

On - Pos ⊆ D w.r.t. �. 

3 Switch (Condition of D 

Non - Pos and D 

On - Pos ) do 

4 Case A: ( D 

Non - Pos = ∅ and | D 

On - Pos | = 2 where D 

On - Pos ≡ { d p , d q } ) 
5 Choose d x ∈ { d p , d q } at random and ˜ p or ˜ q as (triangle) apex ˜ x . 

6 Case B: ( D 

Non - Pos = ∅ and | D 

On - Pos | ≥ 3 ) 

7 Choose d x ∈ D 

On - Pos \{ d p , d q } at random and apex ˜ x = ∂d x ∩ �. 

8 Case C-I: ( | D 

Non - Pos | = 1) 

9 Choose d x ∈ D 

Non - Pos defining unique apex ˜ x ⊂ ∂d x . 

10 Case C-II: ( | D 

Non - Pos | ≥ 2 ) 

11 Choose d x ∈ D 

Non - Pos at random corresponding to apexes ( ̃  x ⊂ ∂d x ) with identical heights. 

12 End switch 

13 Find front edge E F and back edge E B of apex triangle. 

14 Make expanded non-positive disks D F ⊆ D and D B ⊆ D w.r.t. E F and E B , respectively. 

15 Return D F , D B , and d x . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p and q , respectively (refer to Fig. 11 )(b)). In this case, we should collect on-positive disks as well as expanded non-positive

disks because on-positive disks constitute the hull disks. Otherwise, we collect only expanded non-positive disks as shown

in Fig. 11 (a). Fifth, we want to emphasize that the incremental algorithm is prone to crash with multiple cotangent disks,

particularly when an incrementing disk simultaneously touches two edges on a convex hull boundary. 

6. Summary of algorithms 

The discussions above is summarized as three pseudocode algorithms QuickhullDisk , FindHull , and

RegularizeSliverTriangleNPivotDisks below. For simplicity of presentation, we intentionally abuse HullDisks( D )

like a set. We should collect on-positive disks D 

On - Pos 
�

as well as expanded non-positive disks only if an oriented line �( p , q )

is an oriented tangent line of d p and d q . However, we do not include D 

On - Pos 
�

in the pseudocodes for simplicity of notation. 

An example of QuickhullDisk execution. Suppose that the entire input disk set D 

∗ has 15 disks arranged as shown in

Fig. 12 (a). Fig. 12 (b) shows the sequence of QuickhullDisk ’s recursive executions with the corresponding triangle filters

where each produces the related disk set D 

R + 
�

. Observe that the pair p and q has two uses: �( p , q ) and �( q , p ). Fig. 12 (c)

shows the hierarchy of recursions in a binary tree. The root node A corresponds to the initial run using D 

∗ (Not shown

in Fig. 12 (b)) and the rectangular leaf nodes correspond to the convex hull boundary. Hence, the number of leaf nodes

is identical to the number of linear hull edges. Note the binary tree in this example is height-balanced. Table 1 shows

the content of each node in the recursion tree. Observe that the execution sequence of the QuickhullDisk recursions

is represented by the preorder traversal of the recursion tree. The leaf nodes of the tree visited by the preorder traversal

provide the counterclockwise sequence of the extreme disks of D , i.e., the definition of the convex hull boundary. Note that

a leaf node corresponds to a hull edge and different traversal methods produce different orderings of hull edges on the

convex hull boundary. 

Theorem 1. QuickhullDisk constructs the convex hull of n disks in O ( mn ) time in the worst case and in O ( n log n ) time on

average where m represents the number of extreme disks. 

7. Proofs for the performance of QuickhullDisk 

The QuickhullDisk algorithm terminates because the disk set D monotonically shrinks unless a skewed arrangement

is encountered (as shown in Fig. 10 (a)–(d)). In other words, each pivot operation produces two subsets D ⊂ D and D ⊂ D
1 2 
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Fig. 11. Examples for an oriented line �( p , q ) of a disk set D whose extreme points are p and q . (a) Non-cotangent case: disks of D are not cotangent to 

�( p , q ). We collect D R + 
�,F 

= { d p , d 1 , d 2 , d 3 } ⊂ D w.r.t. � = �(p, x ) and D R + 
�,B 

= { d 3 , d q } ⊂ D w.r.t. � = �(x, q ) where D = { d p , d 1 , d 2 , d 3 , d 4 , d q } . Then we could 

recur with D R + 
�,F 

and D R + 
�,B 

, respectively. (b) Cotangent case: disks of D are cotangent to �( p , q ). �( p , q ) becomes an oriented tangent line of d p and d q . 

Suppose that d 3 is chosen as the apex disk of a triangle apex x . D R + 
�,F 

= ∅ w.r.t. � = �(p, x ) and D R + 
�,B 

= ∅ w.r.t. � = �(x, q ) . In this case, we need to collect 

on-positive disks D On - Pos 
�,F 

= { d p , d 1 , d 2 , d 3 } and D On - Pos 
�,B 

= { d 3 , d 4 , d q } w.r.t. both �( p , x ) and �( x , q ), respectively, because D On - Pos 
�,F 

and D On - Pos 
�,B 

constitute the hull 

disks. 

Fig. 12. Example of QuickhullDisk execution. (a) Input disk set D ∗ . (b) The execution sequence (identified by the corresponding highest triangles or 

hull edges). (c) Recursion tree (where the preorder traversal yields the execution sequence). Leaf nodes correspond to the convex hull boundary. 
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Table 1 

The contents of nodes in the recursion tree of QuickhullDisk (Disk set in Fig. 12 ). 

Input Output Elements of 

input disk set 
Node Line1 (1st line CCW) Line2 (2nd line CCW) D R + 

�,F 
D R + 

�,B 

Left child Triangle apex Right child Triangle apex 

A �( p 1 , p 2 ) �( p 2 , p 1 ) B p 3 I p 6 d i , i = 1 , 2 , . . . , 15 

B �( p 1 , p 3 ) �( p 3 , p 2 ) C p 4 F p 5 d 1 , d 2 , d 3 , d 4 , d 5 , d 8 , 

d 9 , d 10 , d 13 , d 14 , d 15 

C �( p 1 , p 4 ) �( p 4 , p 3 ) D E d 1 , d 2 , d 3 , d 8 , d 9 

D ∅ ∅ d 1 , d 2 

E ∅ ∅ d 2 , d 3 

F �( p 3 , p 5 ) �( p 5 , p 2 ) G H d 3 , d 4 , d 5 

G ∅ ∅ d 3 , d 4 

H ∅ ∅ d 4 , d 5 

I �( p 2 , p 6 ) �( p 6 , p 1 ) J p 7 M d 1 , d 5 , d 6 , d 7 , d 11 , 

d 12 , d 13 , d 14 , d 15 

J �( p 2 , p 7 ) �( p 7 , p 6 ) K L d 5 , d 6 , d 7 , d 11 , d 12 

K ∅ ∅ d 5 , d 6 

L ∅ ∅ d 6 , d 7 

M ∅ ∅ d 7 , d 1 

Fig. 13. Type I worst case of QuickhullDisk . The contacts between each disk and the container occur at the angles 0 (with d 1 ), π (with d 2 ), 3 π /2 (with 

d 3 ), 7 π /4 (with d 4 ), . . . . Note that d 3 is the apex disk w.r.t. d 1 and d 2 ; d 4 is the apex disk w.r.t. d 1 and d 3 ; This process continues for d 5 , d 6 , and so on. The 

minimum distance between two contact points quickly approaches to the single precision machine epsilon 10 −7 . When the container has the unit radius, 

the distance between the extreme points on ∂d 27 and ∂d 1 is less than 10 −7 and on those ∂d 24 and ∂d 1 is less than 10 −6 . 

 

 

 

 

 

 

 

 

 

if D is not skewed. If a skewed arrangement is indeed encountered, it was shown that, after a few iterations of special

recursions, the disk set enters to a normal recursion so that the disk set renews another shrinking process. An input disk

set is eventually decomposed into a set of one or two disks which immediately or soon defines a hull edge. Hence, D shrinks

monotonically to terminate. The correctness of QuickhullDisk is proven by the discussion through out the paper. 

Time Complexity. Suppose that an input disk set D consists of n disks and HullDisks( D ) has m elements. Recall that an

extreme disk may appear more than once in HullDisks( D ). Section 2 states that m ≤ 2 n − 1 [30] : The equality holds when

Rule 1 for the disk placement is maintained in an either round or linear arrangement. Each call of FindHull takes O (| D |)

time for the search of apex disk and the pivoting operation in the disk set D . 

A theoretical worst case of the QuickhullDisk algorithm may occur with a highly unbalanced disk set (Type I worst

case). Consider Fig. 13 where the set D of n disks touches the circular container (centered at the origin) from inside. The

contacts between each disk and the container occur at the angles 0 (with d ), π (with d ), 3 π /2 (with d ), 7 π /4 (with d ),
1 2 3 4 
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Fig. 14. Type II worst case of QuickhullDisk . The boundaries of the disks in D which are placed within an annulus, centered at the coordinate origin 

O , with the outer circle OutCircle and inner circle InCircle which define an width ω (In the figure, D has three disks). Assume OutCircle has a unit radius. 

Disk d i is centered at c i . Any choice of p and q produces both D F = D and D B = D if h ≥ω. If ω = 10 −6 , there can be at most 274 distinct single precision 

disks within the annulus. (a) Schematic diagram. (b) Convex hull constructed by QuickhullDisk . OutCircle (c(x = 0 , y = 0) , r = 250) , InCircle ((0, 0), 125), 

d 1 ((−62 . 9 , 0 . 5) , 189 . 5) , d 2 ((38.5, 0.0)), 211.7), and d 3 ((−0 . 4 , 24 . 8) , 198 . 3) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. . . . Note that d 3 is the apex disk w.r.t. d 1 and d 2 ; d 4 is the apex disk w.r.t. d 1 and d 3 ; This process continues for d 5 , d 6 , and

so on. Observe that this is an angle-bisection process. Starting with �( p , q ), d 1 , and d 2 , the apex disk is d 3 . Recall that there

are two recursive calls of FindHull after finding a triangle apex: One for the front edge and the other for the back edge

of each triangle filter. Pivoting D with the pivot disk d 3 produces D F = { d 2 , d 3 } and D B = { d 3 , d 4 , d 5 , . . . , d 1 } where | D F | = 2

and | D B | = n − 1 which requires accesses to n disks. The recursive call with D F immediately stops the recursion but the one

with D B proceeds further recursions. In FindHull with D B , we find the next apex disk d 4 and pivot D B into two subsets, say

D B , F and D B , B where | D B,F | = 2 and | D B,B | = n − 2 , which requires access to n − 1 disks. This process may continue to d 5 , d 6
and so on and takes n − 2 , n − 3 accesses to disks, respectively. Hence, QuickhullDisk can show O ( n 2 ) time complexity

behavior in the worst case. 

A careful observation immediately reveals that, in the worst case, FindHull is called only 2(m − 1) times and

each FindHull takes O ( n ) times for m extreme disks on the convex hull boundary. Hence, the time complexity of

QuickhullDisk can be more carefully stated as O ( mn ) in the worst case. 

We observe that the minimum distance between two contact points quickly approaches to the single precision machine

epsilon, which is approximately 1 . 2 ∗ 10 −7 . When the container has a unit radius, the distance between the extreme points

on ∂ d 27 and ∂ d 1 is less than the machine epsilon and that between those on ∂d 24 and ∂d 1 is less than 10 −6 which is

frequently used as a tight error bound in numerical computation. The sizes of disks do not matter as far as the disks are

contained by the container. The distance between two contact points of d n and d 2 is 
√ 

2(1 − cos (θn )) where θn = π/ 2 n −2 . 

The worst case scenario is, we believe, highly unlikely to encounter in reality. If this type of worst case indeed occurs,

the size of D cannot be large because this strategy of disk placement quickly reaches to machine epsilon. Hence, in this case,

the quadratic time complexity does not have a practical significance. Recall that the theory of time complexity is asymptotic.

Type II worst case is that the disk set never shrinks during recursion. An example disk arrangement is shown in Fig. 14

in that the boundaries of the disks are placed within an annulus, centered at the coordinate origin O , with the outer circle

OutCircle and inner circle InCircle which define an width ω. In this case, all disks have a common intersection, every disk

is extreme, and each disk defines a linear hull edge with its counterclockwise neighbor. Assume OutCircle has a unit radius.

Suppose that the disk d i is centered at c i , i = 1 , 2 , . . . , n . There can be at most 274 distinct disks (represented in single

precision) within the annulus with ω = 10 −6 . 3 Their centers are located at grids within the annulus and radii are constrained

by the boundary circles of the annulus. Fig. 14 shows only three of them centered at c 1 , c 2 , and c 3 . Fig. 1 (c) shows a case

with ten disks. 

QuickhullDisk begins the computation with both p 1 ∈ OutCircle and q 1 ∈ OutCircle on the horizontal axis in the worst

case: i.e., dist(p 1 , q 1 ) = 2 . Let x 1 be the triangle apex w.r.t. �( p 1 , q 1 ). Then, x 1 ∈ OutCircle is on the vertical axis in the worst

case. Note that D F = D B = D for the triangle filter Tri ( p 1 , x 1 , q 1 ). Then, each recursion with both D F and D B behaves similarly

in that each node in the recursion tree is associated with a disk set identical to D . In other words, the disk set never

shrinks. However, the height of the recursion tree is strictly limited. Let h n be the height from �( p n , q n ) to x n ∈ OutCircle .
3 Suppose that the annulus is centered at the origin with the inner circle radius r and the annulus width ω ( = 10 −6 ). Suppose the machine epsilon is 

10 −7 . Let d((x, y ) , r + δ) be a disk where δ ≥ 0. Then, ∂d is placed within the annulus if 
√ 

x 2 + y 2 ≤ δ ≤ ω −
√ 

x 2 + y 2 where −ω ≤ x ≤ ω, −ω ≤ y ≤ ω, and 

0 ≤ δ < ω. There are at most 274 d ’s satisfying the constraints because x , y , and δ can have values in the unit of machine epsilon 0.1 ω. 



L.K. Nguyen, C. Song and J. Ryu et al. / Applied Mathematics and Computation 363 (2019) 124626 17 

Fig. 15. Unit circle with the unit radius with its bounding polygons: a square S and an octagon O . Let �n , n ≥ 2, be a regular 2 n -gon bounding the unit 

circle which is centered at the coordinate center c . Let p i be the vertex of �n with the smallest angle θn ( = ∠ pcp n = π/ 2 n ) in the first quadrant. Let δn 

be the distance from p n to the unit circle boundary, Then, δn = sec (θn ) − 1 . Note that δ13 < 10 −7 . Hence, a regular 2 13 -gon with 8192 vertices is a perfect 

unit circle with an error of the machine epsilon. Fig. 19 shows that the convex hull of this disk set (the 8,192 disks with zero radii and the unit disk in the 

center) can be constructed in less than 0.1 sec by both QuickhullDisk and the incremental algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then, h n = 1 − cos (θn ) where the angle θn = ∠ p n cx n = π/ 2 n : This is again an angle-bisection process. Note that h 12 < 10 −6

(and h 13 < 10 −7 ) leading to only 2 12 leaf nodes at most. Hence, it takes O ((2 13 − 1) n ) time where n ≤ 274 because each node

can be associated with as many as 274 disks. 

Average time complexity. Suppose that each disk is equally likely to be an extreme disk. This implies that each disk is

equally likely to be selected as the pivot disk for D \ { d p , d q } in each call of FindHull which again implies that the recursion

tree is highly likely to be height-balanced. Recall that the leaf nodes of the recursion tree one-to-one correspond to linear

hull edges. As there are at most 2(n − 1) linear hull edges, the recursion tree has at most the same number of leaf nodes.

Being a binary tree, the recursion tree thus has at most 4 n − 5 nodes: 2 n − 3 internal and 2 n − 2 leaf nodes. Therefore, the

recursion tree has an expected O (log n ) height. In Section 2 , we elaborated the two possible disk arrangements with the

maximal linear hull edges: A round and a linear arrangement. Suppose D has a round arrangement of disks as shown in

Fig. 15 . All small disks placed around a single large one. As the small disks are equally likely to be extreme disks, �( p , q )

divides D into two subsets D 1 and D 2 with probably equal sizes. Therefore, the recursion tree is height-balanced to prove an

expected O (log n ) height. Note that a single large disk belongs to both D 1 and D 2 , and in fact it belongs to the disk sets in all

recursions: None behaves similarly. The merge at each depth of the recursion tree has at most an expected O ( n ) time com-

plexity because a simple concatenation of two lists suffices the conquer process of the outputs of two recursion calls with

divided subsets. The merge at the “depth of leaf nodes” takes O ( n ) time whereas that at depth 1 takes O (1) time (We use a

bit abused expression “depth of leaf nodes” to avoid an unnecessarily detailed explanation). Therefore, QuickhullDisk
has an expected O ( n log n ) time complexity. The proof for a linear arrangement is obviously similar. Section 8.4 illus-

trates this observation well. We emphasize that the running behavior of QuickhullDisk for random disk sets is slightly

better than O ( n log n ) because a subset of input disk set is removed from the consideration in the next recursion. This

observation implies that the effort required to conquer the outputs of two recursions is slightly lower than linear for

random disks. 

8. Experiments and discussions 

We implemented the QuickhullDisk algorithm and compared it with the incremental algorithm in [31] using diverse

data sets. In our implementation of the incremental algorithm, we stored extreme disks in an AVL-tree for the O ( n log n )

time worst case complexity. Both were implemented in Visual C++ on Microsoft Visual Studio Community 2017. Boost 1.68.0

(released in Aug. 2018) was used for the AVL-tree. Computational environment: Intel Core i7-7700 3.60 GHz; 16 GB RAM;

Windows 10 Professional (64 bit). Only one core was used in the experiment. For efficiency consideration, recursions of

QuickhullDisk in this paper were implemented as iterations. 
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Fig. 16. Test set examples (50 disks for each). (a) RANDOM. (b) ON-BNDRY. (c) MIXED. (d) ON-A-LINE . 

Fig. 17. Average computation time of QuickhullDisk and Incremental algorithms (Data set: RANDOM). #disks: 10 K, 20 K, . . . , 100 K where each has 

10 different model files ( K = 10 3 ). Random radii in [1.0, 10.0]. ρ ≈ 0.1. (For interpretation of the references to color in this figure, the reader is referred to 

the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.1. Test data set 

We generated a benchmark data set which consists of four different categories of disk sets and publicized in Data in Brief

[61] . The first is RANDOM = { D i j | i, j = 1 , 2 , . . . , 10 } where D ij contains 10, 0 0 0 ∗i random disks. Thus there are ten different

files with the same number of disks. We placed the disks within a circular container centered at the origin O which has

a sufficient radius so that the packing ratio ρ is maintained approximately 0.1 unless otherwise stated. Note that ρ is the

ratio of the union of the area of individual disks to the area of container. In RANDOM (and the other two test sets ON-

BNDRY and MIXED), each disk d ( c , r ) has a random radius r ∈ [1.0, 10.0], two disks may intersect each other, and one may

include another. In RANDOM, d is centered at a random location c inside the container. The second is ON-BNDRY = { D i | i =
1 , 2 , . . . , 10 } where D i contains 10, 0 0 0 ∗i disks touching a circular container from inside. The third is a hybrid of RANDOM

and ON-BNDRY: MIXED = { D i j | i, j = 1 , 2 , . . . , 10 } where D ij contains 10 0 0 ∗i ∗j disks (out of 10, 0 0 0 ∗j disks) touching a circular

container from inside. The remaining 10 0 0 ∗ (10 − i ) ∗ j disks not touching the container are randomly positioned inside the

container. Hence, a (boundary) touching ratio τ is well defined as the ratio of the number of extreme disks to the total

number of the disks. The fourth is a set of congruent disks centered on a line: ON-A-LINE = { D i | i = 1 , 2 , . . . , 20 } where D i

contains 10 0 0 ∗i disks on the linear grid from left to right. Each disk d ∈ D i has a radius 1.0 and the distance between the

boundaries of two neighbor disks is kept 0.5. Fig. 16 shows examples of these four types of disk sets with reduced sizes. 
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Fig. 18. Number of disks touching convex hull boundary in random disks (Data set: RANDOM+ ) and the touching ratio τ . #disks: 10K, 20K, . . . , 200 K 

where each has 10 different model files ( K = 10 3 ). Random radii in [1.0, 10.0]. ρ ≈ 0.1. 

Fig. 19. Computation time of QuickhullDisk and Incremental algorithms (Data set: ON-BNDRY). #disks: 10 K, 20 K, . . . , 100 K ( K = 10 3 ). Random radii 

in [1.0, 10.0]. ρ ≈ 0.1. Ratio of #disks touching convex hull boundary over #disks: 1.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.2. Verification of solution quality 

We verified solution quality as follows. The convex hulls of the data sets in the ON-BNDRY and MIXED data sets are

known: The disks touching the container are the extreme disks contributing to the convex hull boundary and their orders

are determined. The solutions of the data sets in ON-A-LINE are also known. Hence, we checked the convex hulls of these

data sets constructed by both QuickhullDisk and the incremental algorithm with the known solutions: all were good.

For RANDOM data sets, we checked if both QuickhullDisk and the incremental algorithm produced the same results: all

produced same results. 

8.3. Computational efficiency 

Fig. 17 shows the box plot of the computation time of the two algorithms using the RANDOM data set: the horizontal

and the left vertical axes denote test data size and time, respectively. Each of the ten horizontal coordinate corresponds to

ten experimental results. Note the strong linearity of both algorithms. The right vertical axis denotes the acceleration ratio

λ of the red curve ( QuickhullDisk ) to the blue curve (the incremental algorithm). QuickhullDisk takes about 39%

on average (with the standard deviation(s.d.): 6%) of the computation time taken by the incremental algorithm. In other

words, QuickhullDisk is approximately 2.6 times faster than the incremental algorithm for random disks. Note that

QuickhullDisk has more speed-up as the size of disk set increases. 

Fig. 18 shows the number of extreme disks (i.e., the disks touching the convex hull boundary) in RANDOM+ , an extension

of RANDOM, where RANDOM+ = { D i j | i = 1 , 2 , . . . , 20 ; j = 1 , 2 , . . . , 10 } where D ij contains 10, 0 0 0 ∗i random disks following

the disk generation rule of RANDOM. The horizontal axis denotes data sizes and the left vertical axis denotes the number

of extreme disks found on the boundaries of the convex hulls (Shown by the white boxes). We observe that the number
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Fig. 20. Comparison of the computation time between QuickhullDisk and the incremental algorithm (Data set: MIXED). Touching ratio τ (#extreme 

disks/#disks): 0.1, 0.2, . . . , 1 .0. (a) QuickhullDisk . (b) The incremental algorithm. (c) and (d) The acceleration ratio (i.e., The ratio of QuickhullDisk 
to the incremental algorithm). ((c) w.r.t. the number of disks. (d) w.r.t. τ .). (For interpretation of the references to color in this figure, the reader is referred 

to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of extreme disks increases with the number of input disks but increases much slower than linear. The right vertical axis

denotes the touching ratio τ (Shown by the shaded boxes). Observe the curve shape follows an exponential decay function

with a shrinking deviation. The convergences of the τ curve and its deviation are of interest. 

Fig. 19 shows the comparison of computation time using ON-BNDRY. The strong linearity is maintained in both the

QuickhullDisk and incremental algorithms. QuickhullDisk takes about 84% (s.d.: 6%) of the computation time of the

incremental algorithm. Note that incremental algorithm is particularly well-tuned for the cases with a high ratio of ex-

treme disks. We emphasize that QuickhullDisk is still significantly (approximately 1.2 times) faster than the incremental

algorithm. Note that QuickhullDisk has a higher speed-up as the size of disk set increases. 

We wanted to observe the computational requirement behavior of the two algorithms while we strictly maintain the

touching ratio τ of extreme disks. Fig. 20 (a) shows the computation time of QuickhullDisk using the MIXED data set.

The horizontal and the vertical axes denote data size and computation time, respectively. There are eleven curves with

different colors where each corresponds to a boundary touching ratio τ . For example, the rightmost red circle in the red

curve corresponds to the case of 10,0 0 0 extreme disks out of 10 0,0 0 0 disks. 

We make the following two observations from Fig. 20 (a): (i) A strong linear increase for all cases, and (ii) the increased

computation time with the increase of the touching ratio τ . We consider these two observations are critical evidences as-

serting the O ( mn ) worst case time complexity of QuickhullDisk . Fig. 20 (b) is for the incremental algorithm: We observe

similar phenomena as QuickhullDisk . 
Fig. 20 (c) and (d) show the acceleration ratio (i.e., the ratio of QuickhullDisk to the incremental algorithm): (c)

w.r.t. the number of disks, and (d) w.r.t. the touching ratio τ . Fig. 20 (c) shows the acceleration ratio of QuickhullDisk
to the incremental algorithm w.r.t. the size of input disk sets: QuickhullDisk has higher speed-ups as the size of disk

set increases. Fig. 20 (d) shows the (average) acceleration ratio w.r.t. the touching ratio τ : The lower τ is, the better the

speed-up is. When all disks are extreme ones (i.e., τ = 1 . 0 ), QuickhullDisk takes 82% of the time that the incremental

algorithm takes. For random data (which has τ ≈ 0.0 031( s . d .0.0 018), QuickhullDisk takes only 39%. 

We summarize the experimental result as follows. 
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Fig. 21. Examples of congruent disks placed on grids and their convex hulls constructed using QuickhullDisk . The black dots are the hull vertices on 

the convex hulls. (a) 10 = 1 ∗10 disks. (b) 20 = 1 ∗10 ∗2 disks. (c) 15 = 5 ∗3 disks. (d) 25 = 5 ∗5 disks. (a), (b), and (c): Disks placed on axis-parallel grids. (d): 

Disks are 45 degrees rotated from the axis-parallel grids. Some hull disks are not correctly recognized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observation 1. QuickhullDisk is faster than the incremental algorithm for most cases we tested. 

• QuickhullDisk is faster when the size of input disk set gets larger. 

• QuickhullDisk is significantly faster when the boundary touching ratio τ gets lower. 

8.4. Degeneracy 

Engineering designs frequently contain patterns consisting of disks in degenerate arrangements. Fig. 21 shows examples

of the arrangements of congruent disks placed on grids and their convex hulls constructed by QuickhullDisk . The black

dots on the convex hull boundaries denote hull vertices. 

Fig. 21 (a) shows n = 10 disks with two common tangent lines: the upper one and the lower one. Suppose that the disks

are indexed as d 1 , d 2 , ..., d n from left to right. Then, p and q are defined on d 1 and d n , respectively. Note that each of the n

disks has a triangle apex of the same height from �( p , q ). Suppose that we choose d 2 , the one closest to d 1 , as the pivot

disk to divide D into D 1 and D 2 with | D 1 | = 2 and | D 2 | = n − 1 . Then, QuickhullDisk recurs with D 2 , i.e., the set with

only one less disk than before, and encounters a similar situation. Hence, if the pivot disk is sequentially selected in this

way, the height of the recursion tree is O ( n ) where the computational cost at each level in the tree requires O ( n ). Therefore,

QuickhullDisk shows an O ( n 2 ) worst case time complxity. 

The data set ON-A-LINE is prepared for testing QuickhullDisk with such a degeneracy. In Fig. 22 , the black curve

shows an O ( n 2 ) time behavior due to the sequential choice of pivot disks. The red curve corresponds to the randomization

in the choice of the pivot disks: The curve shows an O ( n log n ) time behavior as Theorem 1 states. If we deterministically

divide the set D of cotangent disks into D 1 and D 2 with the size difference at most one, we could instead get the worst case

time complexity of O ( n log n ). 

A remark on the incremental algorithm with the ON-A-LINE data set. It is necessary for the incremental algorithm to take

care of the special case that an incrementing disk touches two edges on the boundary of the current convex hull, which is

an ordinary case for QuickhullDisk . 
Fig. 21 (b) and (c) show different disk arrangements on grids. The QuickhullDisk program correctly recognizes the

hull vertices of all hull disks as the disks are placed at axis-parallel grids. Fig. 21 (d) shows a 25 disks arranged on 5 by 5
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Fig. 22. Worst case behavior of QuickhullDisk and the effect of randomization (Data set: ON-A-LINE up to 20,0 0 0 disks). Disk radii: 1.0. Distance 

between the boundaries of two neighbor disks: 0.5. (For interpretation of the references to color in this figure, the reader is referred to the web version of 

this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

grids followed by a 45 ◦ rotation. Observe that QuickhullDisk misses some hull disks because of the numerical error due

to the rotation operation. 

9. Conclusion 

In this paper, we propose the simple and fast QuickhullDisk algorithm for constructing the convex hull of a finite

set of disks in the plane. QuickhullDisk takes O ( n log n ) time on average and O ( mn ) time in the worst case where m

represents the number of extreme disks which contribute to the boundary of the convex hull of n disks. These time com-

plexities are identical to those of the quickhull algorithm for points in R 

2 . The proposed QuickhullDisk algorithm was

implemented, tested, and compared to the well-known O ( n log n ) time incremental algorithm. Experimental results show

that the proposed QuickhullDisk algorithm runs significantly faster than the well-known O ( n log n ) time incremental al-

gorithm, proposed by Devillers and Golin in 1995, for most data sets we tested, particularly for big data. QuickhullDisk
is approximately 2.6 times faster than the incremental algorithm for all types of random disks. QuickhullDisk is approx-

imately 1.2 times faster even for the disk sets where all disks are extreme, for which cases the incremental algorithm is

particularly well-tuned. Applying a similar idea for the construction of the convex hull of three-dimensional spheres might

be a challenging research topic in near future from both theoretical and practical point of view. 
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