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ABSTRACT Wedeveloped amethod for the precise estimation of the 3D trajectory of a baseball bymodeling
the movement of the baseball and estimating the capture delay, using multiple unsynchronized cameras.
To develop the proposed algorithm, wemimicked the real-world process of capturing a baseball in simulation
space, and analyzed the capture process using a multiple unsynchronized camera system. We represented
the movement of the baseball using a piece-wise spline model, and predicted the position of the baseball
in the subframes in a manner which is robust to position error and change in direction of movement of the
baseball. This method accurately predicts the baseball position over time by modeling the movement of the
baseball in a real baseball game environment, and improves the accuracy of the reconstructed 3D baseball
trajectories. We defined an objective function to estimate the capture delay, and estimate the optimal capture
delay parameter using non-linear optimization method. In addition, we evaluated the performance of the
proposed method in simulation space and in a real-world situation. The experimental results show that the
proposed method can estimate a 3D baseball trajectory precisely using a multiple unsynchronized camera
system and is robust to variations in capture delay, both in the simulation space and in real-world situations.

INDEX TERMS Stereo vision, 3D pitching trajectory, multiple unsynchronized cameras, camera calibration.

I. INTRODUCTION
In recent years a number of different baseball pitching anal-
ysis systems have been used to help viewers and players
better understand the game. Many broadcasters and baseball
clubs have adopted the use of trajectory analysis systems, and
trajectory information output from these systems can be used
as content for baseball broadcasts, VR baseball game data,
and pitching training information. Major League Baseball
(MLB) has used trajectory information for training profes-
sional baseball players and baseball referees [1]. A trajectory
analysis system uses different types of image capture devices
to detect a baseball. Initial systems simply highlighted the
baseball’s location and showed its position on the broadcast
screen [2]. This type of system only shows discrete ball loca-
tions from a specific viewing angle, and cannot obtain other
data such as spin, velocity or 3D location. Several studies
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into the acquisition of 3D information about a ball have been
conducted to obtain information that can be used for training.

A 3D baseball pitching analysis system can be categorized
as either radar-based or camera-based, depending upon the
sensor type. One example of a radar-based system is Track-
Man Baseball. TrackMan Baseball uses a military-grade
Doppler radar and measures every object in the baseball
stadium [3], including the 3D baseball position, speed, spin
rate, angle, and baseball player. MLB has been using Track-
Man Baseball because it can acquire data about players’
movements and is compatible with the Statcast system [1].
Statcast is a tool for analyzing data about the performance
of baseball players. However, the radar-based system is dif-
ficult to operate in real time because the radar sensor can
be overwhelmed with information. For an amateur or senior
baseball league the sensor is very expensive compared to
camera-based systems [4].

Camera-based systems capture the baseball pitching area
using single or multiple cameras installed in the baseball
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stadium. Camera-based systems only detect the trajectory of
the ball, and so can be operated in real time. This system
only detects 2D baseball locations and the data can be used to
reconstruct 3D information, so it is feasible for the system to
operate in real time. Rapsodo is an example of a monocular
camera-based system [5]. This system analyzes the pitch-
ing trajectory in front of a catcher using a camera installed
behind the catcher. The system measures the spin rate and
axis of a thrown baseball and estimates the entire pitching
trajectory from partial data. Since Rapsodo only uses data
collected near the catcher, it is difficult for it to estimate all
of the pitching trajectory data and the location of the baseball
in 3D [4]. This system cannot be used in professional baseball
leagues because no devices can be installed on the field.
To address these limitations and acquire information from
cameras installed outside the baseball field, we developed a
multiple-camera based system. We installed cameras near the
stand or dugout, and captured images of the area between the
catcher and the pitcher. Pitchf/x is a well-regarded multiple
camera-based pitch analysis system that uses two cameras
installed on the high first and high home plate positions [6].
To obtain 3D pitching trajectory information, this system
detects ball positions in 2D and estimates the coefficients of
the 3D trajectory using a physical pitching model calibrated
for each camera. However, this system only shows the 3D
trajectory shape, and cannot calculate the location of the ball
in 3D in the field. This system also requires a long calibration
process and it is not possible to change the cameras’ positions
after calibration.

A stereo-based pitch analysis system has been developed
for the calculation of baseball locations in 3D [7], [8]. This
stereo-based system calculates baseball locations in 3D using
triangulation. The system has fewer restrictions related to the
camera installation and the extrinsic parameter calibration
process, because it can use the 2D baseball positions as
input to the calibration process. In this paper, we describe
our research into the implementation of a low-cost trajec-
tory analysis system with easy installation and minimum
space requirements. Our objective is to produce a system
which is applicable to as many baseball leagues as possi-
ble, from amateur to professional. To achieve this objective,
we investigated the acquisition of 3D baseball trajectories
via triangulation with a multiple-camera system. However,
triangulation with multiple cameras typically requires the
synchronization of the timings of image captures between
cameras.

Since unsynchronized cameras do not capture images at
exactly the same time, we cannot be certain that the objects
captured by each camera have the same position; therefore,
a basic assumption underlying the process of triangulation is
notmet. An unsynchronized camera system cannot accurately
calculate 3D baseball trajectories, even if the calibration of
the cameras has been performed perfectly. Table 1 shows that
the average error of the baseball location in 3D of an unsyn-
chronized system increases depending upon the difference in
image capture timing.

TABLE 1. 3D reconstruction error by capture timing difference.

As shown in Table 1, if the timing of multiple cameras
is out by more than one frame, the 3D reconstruction error
becomes greater than 6cm. Given that the diameter of a
baseball is around 7cm, such an error is not acceptable.

To synchronize multiple cameras using a hardware-based
method, an additional signal generator that sends syn-
chronization triggers to the cameras is used. However,
hardware-based methods cannot handle the capture delay that
occurs after each camera module receives the captured sig-
nal. Algorithm-based synchronization methods estimate the
temporal offsets between multiple unsynchronized cameras,
correct for the temporal offsets, and calculate extrinsic param-
eters. To estimate the temporal offsets, these methods capture
images of the moving object and calculate the temporal offset
of the trajectory of the moving object [8]–[16]. The temporal
offset is the capture delay between the unsynchronized cam-
eras, and several methods for estimating temporal offset in
frame units have previously been proposed [10], [11]. If the
computed temporal offset is in units of subframes, the loca-
tions of the moving object that are not actually captured
by the camera are needed. To calculate the location of a
moving object at a subframe level, themovement of the object
over time is modeled, and the object location is predicted
using an object trajectory model. To model the trajectory of
the moving object linear, cubic and quadratic models have
been proposed [8], [12], [14]. In particular, optimization
algorithms have been used to estimate the optimal temporal
offset parameters [8], [12]. Amethod for calculating temporal
offsets using information about fewer objects has also been
proposed [15]. The periodic motion of moving objects in
tennis or ping pong [13] and in free fall motion [16] has also
been used to estimate temporal offsets. However, as shown
in Figure 1, since a baseball is a small object having a high
velocity, its shape has severe motion blurs in the image.
Therefore, it is difficult to detect its center accurately, so the
ball movement model that is robust to the position error and
motion change of a baseball is needed.

Since previous linear and cubic modeling methods only
consider the positions of objects in two consecutive frames,
modeling accuracy is reduced if the direction of motion of the
baseball changes, or if the estimated position of the baseball
is incorrect. In addition, since baseball pitching is neither
periodic nor a free falling motion, it is hard to apply the
previous method for estimating 3D baseball trajectories. The
work most closely related to our method involved modelling
the movement of the baseball with a quadratic model using
the positions of the baseball and estimating the temporal
offset using line search optimization [8]. However, this study
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FIGURE 1. Baseball image captured during an actual game. The image
resolution is 2048× 512 and the baseball radius is about 3 pixels.

did not take into account the problem that uniform acceler-
ation movement in a 3D space is not fully represented by a
quadratic model in the image plane, due to the transformation
of perspective. In addition, since linear optimization was
used, the accuracy of the estimation of the temporal offset
was limited.

Here we describe a 3D baseball trajectory estimation
method using multiple unsynchronized cameras. The pro-
posed method makes the following contributions:
(1) It analyzes a multiple unsynchronized camera system

in a simulated space that mimics a real-world situa-
tion, describes the proposed algorithm, and verifies the
method’s feasibility in a simulation space.

(2) It models a baseball’s trajectory using piece-wise spline
function, an approach that is robust to error in the
estimation of the center and changes in the direction
of movement of the baseball. An objective function
for optimizing capture delay and extrinsic parameters,
using a non-linear optimization algorithm is defined
and analyzed.

(3) The proposed method’s performance is evaluated using
both simulation and a real-world implementation, and
the experimental results show that the proposedmethod
can estimate the 3D baseball trajectory robustly with
various capture delay parameters.

The remainder of the paper is organized as follows.
Section II describes the simulation configuration of the pro-
posed method. Section III describes the proposed calibra-
tion method based on an unsynchronized camera system.
Section IV presents the experimental results and Section V
presents our conclusions.

II. ANALYSIS OF THE MULTIPLE UNSYNCHRONIZED
CAMERA SYSTEM IN SIMULATION
This section describes the implementation of the multiple
unsynchronized-camera system in simulation and the capture
process of the unsynchronized system.

A. CONFIGURATION OF THE SIMULATION ENVIRONMENT
To construct a simulation environment that resembles the real
world, we first define the home plate as the origin in the

FIGURE 2. Results of the algorithm applied in a simulated baseball
stadium with a multiple-camera configuration. The home plate is the
origin in the simulation coordinates.

3D simulation space. The remaining elements of the stadium
such as the first, second, and third bases are then defined
according to the standard baseball field diagram in the official
baseball rules [17]. Since no capture device is allowed to be
installed on the baseball field, the cameras are placed near
either the dugout or stands. Figure 1 shows an example of
the simulation space for the multiple-camera system set-up
results. As shown in Figure 2, the 3D location of the ith

camera in the simulation space is defined as Ci(i = 1, 2, . . .)
and we assume that every camera is a simple pinhole camera
model [18].

B. IMPLEMENTATION OF THE CAPTURE PROCESS OF A
MULTIPLE UNSYNCHRONIZED-CAMERA SYSTEM IN A
SIMULATION SPACE
Here we define the unsynchronized system and describe the
implementation of the unsynchronized system in a simulation
space. We then obtain the 2D baseball points captured by
cameras using the projection matrix of each unsynchronized
camera. In this work, we deem a system to be unsynchronized
when there are non-zero capture delays between cameras.
Since a capture delay is defined as the difference in capture
timing between two cameras, we select C1 as a reference
camera to define capture delays for all other cameras. In other
words, in the unsynchronized system, the ith (i = 2, 3, . . .)
camera has a non-zero capture delay relative to C1 and these
capture delay parameters are denoted by τi (ms). The capture
moment for the baseball in an unsynchronized system is
illustrated in Figure 3.

As shown in Figure 3(a), we assume that C2 and C3 have
a negative capture delay τ2 (τ2 < 0) and a positive capture
delay τ3 (τ3 > 0) relative to the capture timing of the refer-
ence camera, and these three unsynchronized cameras cap-
ture the location of the baseball at time t5. Compared to
the location captured by C1 in Figure 3(b), C2 captures a
baseball located at t5+τ2 on the same trajectory. Similarly,C3
captures a baseball located at t5 + τ3 on the same trajectory.
Even though unsynchronized cameras attempt to capture the
baseball at the same time, captured baseballs have different
3D locations, although they all lie on the same trajectory
of the baseball captured by a reference camera. Therefore,
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FIGURE 3. Illustration of the moment of capture in a multiple
unsynchronized-camera system.

if we know the 3D trajectory of the baseball captured by the
reference camera, we can calculate the 3D baseball location
captured by other unsynchronized cameras by considering
capture delays in the trajectory.

We can mimic real-world baseball movements in a simu-
lation space; we assume that a thrown baseball has uniform
acceleration, hence the 3D baseball movement can be mod-
eled as quadratic equations with respect to time t [19]. Let
T k1 (t) denote the k

th 3D baseball trajectory function of C1 at
time t and define T k1 (t) as

T k1 (t) =
(
xk (t) , yk (t) , zk (t)

)

=


xk0 + v

k
x t +

1
2
akx t

2,

yk0 + v
k
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k
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where
(
xk0 , y

k
0, z

k
0

)
is an initial release point of the reference

baseball trajectory and vkx , a
k
x , v

k
y , a

k
y , v

k
z , and a

k
z are coeffi-

cients of the reference baseball trajectory. Equation (1) have
six degrees of freedom, so the coefficients can be calculated
by fitting more than two known 3D points. In this paper,

FIGURE 4. The four different 3D baseball trajectories of the reference
camera (C1) in the simulation space.

we selected three points (release, highest, and end points)
for T k1 (t) in the simulation space and generated 3D points,
Xk
1 with time interval 1/fps s from t = 0 to t = tend . The

tend represents the flight time for the ball until it reaches
the strike zone and we set the value by considering the
average fastball speed in the MLB. In this paper, fps is
179frame/s, tend is 0.6s, and Xk

1 from four different trajec-
tories T k1 (t) (k = 1, 2, 3, 4) are used in the simulation space
as shown in Figure 4.

The k th 3D baseball trajectories captured by the
ith (i = 2, 3, . . .)unsynchronized camera that has τi can be
represented as

T ki (t) = T k1 (t − τi) , i = 2, 3, .. (2)

The 3D baseball points generated from T ki (t) are denoted by
Xk
i (i = 2, 3, . . .), andXk

i is calculated in the same manner as
Xk
1. After generating the 3D baseball points, we calculate the

2D baseball points projected onto the image plane of each
camera. Each camera captures different 3D baseball points
Xk
i , so the projected 2D baseball points of the ith camera are

calculated using the corresponding 3D baseball pointsXk
i that

the camera captures. Let xki denote the projected 2D baseball
points on the image plane of the ith camera from Xk

i . The
homogenous coordinate x̃ki of the projected 2D points xki can
be calculated as

x̃ki = Ki [Ri|ti] X̃k
i (3)

where Ki,Ri and ti are the intrinsic parameter, rotation
matrix, and translation matrix of the ith camera, respectively.
In this paper, the parameters in (3) are set empirically to
capture the entire pitching area and we assume that each
camera has an image resolution of 1280× 720 without lens
distortion. Figure 5(a) shows an example of the 2D projected
points from the three unsynchronized cameras with non-zero
capture delays (τ2 < 0 and τ3 > 0) and with the same
extrinsic parameters (R1 = R2 = R3, t1 = t2 = t3).
As shown in Figure 5(b), the 2D points projected on

the image plane of the camera that have negative capture
delay are located behind the reference position. In contrast,
as shown in Figure 5(c), the 2D points projected on the
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FIGURE 5. Differences in the projected 2D baseball points from the
camera with different capture times for the same [R|t]. (a) 3D baseball
projection environment in simulation space, (b)-(c) 2D projected point
from reference camera (red points), negative capture.

image plane of a camera that has a positive capture delay are
located ahead of the reference position. Through this process,
we canmimic the real-world process of capturing the location
of a baseball using multiple unsynchronized cameras in a
simulation space and get 2D baseball points projected onto
each camera image plane.

C. ESTIMATING MULTIPLE SOURCES OF NOISE AND
THEIR PARAMETERS
In a real-world environment, let us assume that there are three
noise sources that may produce errors while estimating 3D
baseball positions: capture delay noise, quantization noise,
and detection noise. Figure 6 shows an example that considers
three noise sources.

The capture delay noise Nc represents a random capture
timing inconsistency added to τi. Capture delay noise occurs
after a camera receives a capture request. When a camera
receives a capture request operation, it starts to store image
data in the image-streaming buffer. When the buffer is full,
the camera acquires image data from the image-streaming
buffer. In this process, due to CPU load or camera hardware
problems, the image data acquisition time may not be con-
stant; this non-uniform acquisition time is represented as Nc.
In this paper, we assume that Nc follows a Gaussian distri-
bution @mathcalN (0, σc). The quantization noise NQ occurs
while the image sensor digitizes the scene. Since we cannot
avoid this type of noise while using digital devices, the lower
boundaries of the 3D reconstruction errors are determined
by NQ.
To consider NQ, we rounded off the projected baseball

positions in a process denoted as Q
[
xki
]
. The detection noise

ND occurred when the algorithm detected the 2D center

FIGURE 6. The process of adding three noise sources that can occur when
cameras capture and detect a baseball in the real world.

FIGURE 7. The reprojected 2D baseball points under different sources of
noise. (a) Entire baseball trajectory points locations and highlighted
region (back box), (b) Comparison with the ideal baseball locations (red
circle) and locations with added noise (black circle).

position of the baseball in the image. In the real world, it is
difficult to accurately find the center position of a baseball
because of shadows, image blurring, and the occlusion of the
baseball, as shown in Figure 1. Since the size of a baseball
is very small compared to the captured image, it can be
expected that differences in the center error in the noisemodel
will not be large. Therefore, in this paper, we assume that
ND can be approximated by a Gaussian normal distribution
@mathcalN (0, σD). The ND added result is represented by(
xki + ND

)
. Figure 7 shows the 2D baseball positions with

various noise sources.
These 2D baseball points with noise provide the

information that can be obtained using a multiple
unsynchronized-camera system in a real-world situation.
Therefore, in the simulation space, we compute the extrinsic
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FIGURE 8. Flowchart of the proposed method.

parameters of unsynchronized cameras and reconstruct the
3D trajectory information using only xki as correspondences
between cameras.

III. MULTIPLE UNSYNCHRONIZED CAMERA
CALIBRATION OPTIMIZATION
In this section we describe the calibration of a multiple
unsynchronized-camera system using 2D baseball points.
Figure 8 shows the process of the proposed method for
accurately estimate the trajectory in multiple unsynchronized
camera system. The algorithm is divided into three parts: a
trajectory modeling process; extrinsic parameter calibration;
and capture delay parameter estimation. In the trajectory
modeling process, the trajectory model Pki (t) is calculated
as a piece-wise spline function using xki from the multiple
unsynchronized cameras. The Pki (t) is are used to correct the
baseball position, taking into account the estimated capture
delay, τ in the following process. In the extrinsic parameter
calibration process, using the estimated τ n and Pki (t), we cal-
culate the corrected baseball position, xik∗. The extrinsic
parameters are calculated using xik∗ and the 3D informa-
tion, Xk∗ about the trajectory is calculated. In the capture
delay parameter estimation process, the accuracy of Xk∗ is
calculated. If the reconstruction error of the 3D trajectory is
not minimum, the estimated τ is updated, and the extrinsic

FIGURE 9. Results of trajectory modeling (a) Example of 3D baseball
trajectory and camera location in the simulation environment, (b)-(c)
Trajectory modeling results based on the modeling method. The quadratic
form cannot model the perspective transformed trajectory in the pinhole
camera model compared with the proposed piece-wise spline fitting.

parameter calibration process is repeated. The optimization
algorithm is used to update τ . Unfortunately, these two prob-
lems lack closed-form solutions, so we need to carry out two
algorithms iteratively to solve the problems.

A. CALIBRATION OF THE EXTRINSIC PARAMETERS USING
2D BASEBALL POINTS CONSIDERING CAPTURE
DELAY PARAMETERS
We calibrated the extrinsic parameters using corrected base-
ball correspondences considering the estimated capture delay
parameters. To correct the 2D baseball points, we needed to
obtain two pieces of information: the 2D pitching trajectory
model and the capture delay parameters. The trajectorymodel
is necessary to estimate the baseball’s position corrected by
the capture delay time from the given positions. Since the tra-
jectory model is fitted by a given xki , the modeling algorithm
is robust to noise sources and trajectory shape. For example,
Miyata et al. modeled the 2D baseball points using quadratic
equations [8]. However, the perspective transform of the pin-
hole camera model makes it difficult to model all 2D trajec-
tories as quadratic equations. The proposed method solves
this problem by modeling the trajectories using a piece-wise
spline function [26], [27], because the entire form of a 2D
trajectory is difficult to model using a single quadratic form.
Figure 9 shows the trajectory modeling results. As shown
in Figure 9, the quadratic form cannot represent the projected
2D baseball trajectory but the piece-wise spline function can
model the way in which the 2D baseball trajectory follows
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FIGURE 10. The baseball points with noise-source correction results
applied using the proposed trajectory-modeling method.

the original trajectory. Since the proposed system captures the
baseball trajectory at over 150 fps and there aremany baseball
points detected on the trajectory, the fitting results are almost
the same as the original 2D trajectory. The average distance
error between the baseball position and the fitted data is
6.0179 pixels in the quadratic model and 0.0304 pixels in the
piece-wise spline model. The average distance error between
the baseball position and the fitted data is 6.0179 pixels in the
quadratic model and 0.0304 pixels in the piece-wise spline
model.

In addition, the trajectory model has to be robust to noise
sources; Figure 10 shows the trajectory modeling results of
the 2D baseball points with noise sources. In Figure 10,
the proposed method can model the 2D baseball points in a
manner which is robust to noise sources and trajectory fitting
results and produces results which are almost the same as the
original trajectory. After modeling the 2D projected baseball
trajectory, the 2D projected baseball points are converted
to 2D points that incorporate the capture delay parameters.
In this process, if the trajectory is divided into too many
pieces, the local fitting error in the trajectory is reduced, but
global motion of trajectory may not be considered. Therefore,
in this work, we used empirically determined spline pieces =
8 and equation order = 3 as the parameters of the piece-wise
spline function.

If the 2D baseball points captured by the camera have τ ,
it is possible that the 2D baseball captured by synchronized
cameras is calculated by inverse delay at time τ . Let the
converted 2D baseball points and trajectory model be denoted
by xk∗i and Pki (t). In the nth iteration step, xk∗i that considers
τ n can be calculated as

xk∗i = Pki (t − (−τ n)) (4)

To use xk∗i as the correspondence between cameras, we must
calibrate the extrinsic parameters. The fundamental matrix
Fij between C i and C j is calculated using a five-point algo-
rithm [20] and the MLESAC algorithm is used to reject
outliers [21]. Afterwards, the essential matrixEij is computed
from K i, K j, and Fij, and the rotation and translation matrixes
are calculated by the decomposition of Eij. These new rota-
tion and translation matrixes are denoted by [R∗i |t

∗
i ] And the

3D baseball trajectory Xk∗ is calculated from these extrinsic
parameters by using the DLT algorithm [18]. Through this
process, if the capture delay parameters are provided in the
nth iteration step, we can convert the 2D baseball points by

FIGURE 11. Objective function space of the proposed cost function.

considering the capture delay parameters, calibrating extrin-
sic parameters, and calculating the 3D baseball trajectory.

B. ESTIMATION OF THE OPTIMAL CAPTURE DELAY
PARAMETERS
To obtain accurate capture delay parameters, we need to
define a measurement that can determine whether the esti-
mated capture delay parameters are correct. As mentioned
before, the extrinsic calibration accuracy is high when the 2D
baseball points are synchronized. Therefore, if the capture
delay parameter can be estimated precisely, the calibration
accuracy increases because the synchronized 2D baseball
points can be calculated when the capture delay parameters
are correct. The calibration accuracy can be computed using
the error of the Euclidean distance between Xk and Xk∗.
Using this constraint, when the nth capture delay parameters
are given, we define the cost function E (−τ n) considering
τn as

E (−τ n) =
1
K

K∑
k=1

Dist
(
Xk ,Xk∗

)
(5)

where Dist (X,Y) is the Euclidean distance between two 3D
points. As shown in equation (5), the higher the calibration
accuracy, the closer E (−τ n) is to 0 and this process can be
represented by minimizing problems denoted as

τ∗
= argmin

τ n
E(−τ n) (6)

where the τ∗ is the optimal capture delay parameters. In the
nth iteration step, if E(−τ n) is not the minimum value,
the iteration step is increased and τ n is updated. However,
if the E(−τ n) has its minimum value then the algorithm
stops and the optimal τ∗

= τ n value and extrinsic cal-
ibration results are obtained. The proposed method adapts
the optimization algorithm to update τ n properly. To select
the optimization algorithm, we verify the objective function
space of E (τ n). Figure 10 is the objective function space of
E (−τ n), τn = {τ 2, τ 3}.

As shown in Figure 11, the proposed objective function
is a nonlinear convex function. Since the proposed object
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TABLE 2. The list of test parameters in the simulation space.

function is not differentiable, this paper adopts nonlinear
convex optimization algorithms that does not require dif-
ferential algorithm such as the Quasi-Newton method [22]
and Nelder–Mead simplex algorithm [23] to estimate τ ∗.
In this work, we used the optimization algorithm from the
MATLAB R©optimization toolbox.

IV. EXPERIMENTAL RESULTS
The proposed method’s performance for calibrating a multi-
ple unsynchronized-camera system is conducted in a simula-
tion space and the real world. The experiments were evaluated
with two measures: a capture delay parameter estimation
error and a 3D reconstruction error. Since the main idea of
the proposed method is to estimate the capture delay and
restore the baseball trajectory before the capture delay can
occur, we measure the capture delay estimation accuracy.
In addition, the 3D trajectory reconstruction accuracy of an
unsynchronized system can be measured by the extrinsic
calibration accuracy. The proposed method was run on a PC
with AMD Ryzen 7 2700X 3.70 GHz CPU and 64 GB of
RAM.

A. CALIBRATION PERFORMANCE EVALUATION IN A
SIMULATION SPACE
In a simulation space, we set three cameras and manually
changed the τ2 and τ3 from−2 frames to+2 frameswith a 0.5
frame interval. After setting the capture system, we measured
the capture delay estimation error and extrinsic calibration
error in various noise sources, trajectory fitting models, and
optimization methods. The capture delay estimation error can
be calculated by the difference between τ and τ∗ and the
3D reconstruction error can be calculated by averaging the
3D distance between Xk and Xk∗. Table 2 shows the various
parameters used in this experiment.

As shown in Table 2, we had seven presets for the noise
source combinations and four extrinsic calibration algo-
rithms, depending on the combination of trajectory fitting
model and optimization method. For example, algorithm
[F2O2] means that 2D baseball points are modeled as a
piece-wise spline and extrinsic parameters are optimized by
the Nelder–Mead simplex method. The proposed method is
represented by F2O1 and F2O2. For each selected noise
preset and calibration algorithm, the error matrix is calculated
as shown in Figure 12.

FIGURE 12. Example of an error matrix for performance evaluation.

FIGURE 13. Performance evaluation results of estimated τ2.

FIGURE 14. Performance evaluation results of estimated τ3.

As shown in Figure 12, the error matrix has dimen-
sions 9 × 9, and the rows and columns of the matrix
represent different τ2 and τ3 values, which are selected
manually before the synthetic 3D baseball trajecto-
ries are generated in the simulation space (τ2, τ3 ∈

{−2,−1.5,−1,−0.5, 0,+0.5,+1,+1.5,+2}). Themth ele-
ment of the nth row represents the estimation error of τ2, τ3
or the 3D reconstruction error when the capture delay was
set to mthτ2 and nth τ3, respectively. The capture delay
estimation error of τi was calculated using the absolute
difference between τi and τ ∗i . The 3D reconstruction error
was calculated using E(−τ ∗). The closer the color of the
matrix element is to red, the larger the error. Figures 13–15
show the error matrices of the τ2 and τ3 values and the 3D
reconstruction error, respectively. The horizontal and vertical
axes of each figure represent the noise presets and calibration
algorithms used for the test.
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FIGURE 15. Performance evaluation results of the 3D reconstruction.

FIGURE 16. Average performance evaluation results of estimated τ2.

As shown in Figures 13 and 14, the capture delay estima-
tion error is close to zero for all noise presets when the 2D
baseball trajectory is modeled by F2. The optimized delay
parameter error increases when the 2D baseball trajectory
is modeled using F1 because the 2D baseball location has
not been precisely corrected to its original location. This is
because F1 cannot model the 2D baseball trajectory accu-
rately. Figure 15 shows the 2D baseball location restoration
results compared to F1 and F2 when all noise sources are
added to the projected 2D baseball locations. Figures 16–
18 shows the average error of the estimated capture delay
parameter and the 3D reconstruction at each test. The test
results are represented using the mean and standard deviation
of all estimated error values.

As shown in Figures 16 and 17, the τ2 and τ3 optimization
results of the proposed method have the best performance
with a low standard deviation. This indicates that the pro-
posed method has reliably robust estimations for various
capture delay changes and noise sources. When NDoccurs,
the error is high because the 2D baseball location changes the
most. However, the proposed method can robustly and accu-
rately estimate the capture delay parameters even with the
addition of various noise sources, because the proposed base-
ball trajectory fitting model reliably restores the 2D baseball
location that contains noise sources to its original location

FIGURE 17. Average performance evaluation results of estimated τ3.

FIGURE 18. Average performance evaluation results of the 3D
reconstruction.

better than the previous model. As can be seen in Figure 18,
the proposed method also has the best performance in 3D
reconstruction. It is noteworthy that when using the previous
trajectory fitting method, even if the optimal capture delay
time is estimated, the standard 3D reconstruction accuracy is
low compared to the proposed method. When 2D trajectories
are modeled by a simple quadratic equation, it is difficult to
accurately reconstruct the 3D baseball trajectory information
even if the capture delays are estimated using the optimization
process. Figure 18 shows that the proposed 2D trajectory
modeling method provides good performance regardless of
the optimization method.

B. REAL-WORLD CALIBRATION PERFORMANCE
EVALUATION
We verified the performance of the proposed method by
testing the algorithm at a real baseball field with two
trajectory-fitting models, as shown in Table 2. We captured
real baseball pitches using two high-speed cameras at a
baseball stadium in Seoul. We installed the cameras below
the first dugout roof and set the camera lens to capture the
entire pitching area. We used a Toshiba Telicam BU405M
camera with an AZURE-1040Z3M zoom lens, and captured
the pitching area at 175 fps with 2048×1024 px resolution.
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FIGURE 19. Real-world test system environment (a) Baseball field and
camera positions, (b) High-speed camera installation behind the dug-out,
(c) Captured image examples.

This camera supports automatic synchronization using a bus
synchronization technique, and the user can specify the cap-
ture delay between cameras. We implemented the capture
program using Toshiba TeliCamAPI. This experiment also
was run on a PC with AMD Ryzen 7 2700X 3.70 GHz CPU
and 64 GB of RAM. The intrinsic parameters of the cam-
eras were calculated using the method of Zhang et al. [24].
Figure 19 shows the camera installation environment and the
corresponding captured images.

To evaluate the performance of the proposed method
at various capture delay times, we set four capture delay
presets

(
1
3 frame,

1
2 frame,

2
3 frame, 1 frame

)
. In addition,

we obtained six different pitch trajectories in the pitching
area for use in extrinsic calibration and trajectory recon-
struction. Figure 20 shows the pitching trajectories that were
used for calibration. The center of the baseball was detected
usingKim’s algorithm [25]. This baseball detection algorithm
detects the peak positions as the center of the baseball from
the difference image without using the shape of the baseball.
In a continuous image captured by a high-speed camera,
it can be assumed that the background does not change, so a
moving object region can be obtained from the difference
image between two continuous images. In order to detect a
baseball in a manner which is robust to detection error and
occlusion, we used Hong’s baseball tracking algorithm [28].
Figure 21 represents the baseball center detection results. The
same trajectories between two cameras are represented by the

FIGURE 20. Pitching trajectories for calibration. (Left column: Camera 1,
Right column: Camera 2).

FIGURE 21. Detected 2D baseball points for extrinsic calibration.

same color and the baseball points between the two cameras
correspond in the order of left to right within the individual
same trajectory.

In Figure 21, we can see that the noise sources considered
in the simulation situation are included in the 2D center of the
baseball detection results. In particular, some baseball-center
detection results deviated from the trajectory because shad-
ows occurred on the baseball or the baseball disappeared
into a background of a similar color. These center detection
errors are represented by ND in the previous process and
this error can be corrected in the trajectory modeling pro-
cess as tested in the simulation experiment. We apply the
optimization method by modifying the cost function of the
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TABLE 3. Calibration results in a real-world experiment (τ2 =
1
3 frame).

TABLE 4. Calibration results in a real-world experiment (τ2 =
1
2 frame).

TABLE 5. Calibration results in a real-world experiment (τ2 =
2
3 frame).

proposed objective function using a reprojection error instead
of the 3D distance error since we cannot measure the real 3D
location of the pitching trajectories in the real world. The
test was conducted with four different capture time delay
settings (τ2 = 1

3 frame,
1
2 frame,

2
3 frame, 1 frame) and each

optimization process was performed four times to evaluate
the average performance. The real-world calibration perfor-
mance was evaluated with the capture delay estimation error
and an extrinsic calibration error that was similar to testing
in the simulation space. The real-space extrinsic calibration
error was calculated using the average reprojection error of
all trajectory points. Tables 3–6 show the performance eval-
uation results of each capture delay parameter.

As shown in Tables 3–6, the proposed method achieves
the highest accuracy in capture delay estimation and extrinsic
calibration results for all capture delay settings. In particular,
the real-world test results are very similar to the experimental
results in the simulation environment, which indicates that
the calibration method of the unsynchronized system that is
verified in the simulation environment can be used effectively

TABLE 6. Calibration results in a real-world experiment (τ2 = 1frame).

FIGURE 22. Errors in average capture delay parameter estimation.

FIGURE 23. Errors in average 3D reconstruction. The 3D reconstruction
error of the synchronized system is denoted by a red triangle.

in real-world situations. Figure 22 and 23 summarizes the
results. It shows that the average capture delay estimation
error of the proposed method is 0.0077 frames and that of the
previous method is 0.0881 frames; the proposed method can
estimate the capture delay parameters about 10 times more
accurately than the previous method. In addition, the average
calibration error of the proposed method is 0.1003 pixels and
that of the previous method is 0.1726 pixels. Considering
that the calibration accuracy of the synchronized system is
0.083 pixels, the proposed method is able to reconstruct the
3D pitching trajectories to error of 0.02 pixels only whereas
the previous method shows an error of about 0.09 pixels.
The performance comparison between previous method and
proposed method as summarized in Table 7.
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TABLE 7. Comparison of the experimental results between the proposed
method and [8] in real-world experiments.

V. CONCLUSION
We have developed a 3D trajectory reconstruction method
involving modeling the motion of a baseball using piece-wise
spline function and optimizing the optimal capture delay
parameters in a multiple unsynchronized camera system.
We derived a method to analyze the capture process of
multiple unsynchronized cameras in a simulation space that
mimics the real-world environment. To predict the position
of a baseball at a subframe level, and estimate the optimal
capture delay parameters precisely, we defined an objec-
tive function for capture delay and estimated the capture
delay using a non-linear optimization algorithm. The perfor-
mance of the proposed method has been evaluated in both
simulation and real-world situations, and the experimental
results show that the proposed method reliably reconstructs
a 3D baseball trajectory even in the presence of capture
delay.

Compared with other methods, the proposed method pro-
vides an effective trajectory reconstruction algorithm which
analyzes the multiple unsynchronized camera capture system
in the simulation space. The proposed system has shown
high accuracy in 3D trajectory reconstruction, due to the use
of a piece-wise spline model that can accurately model the
trajectory of a baseball in a real baseball game situation.
In future work we will consider approaches to perspective
transformations of the camera, in order to further improve the
modelling of 2D baseball trajectories.
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