IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 18, 2019, accepted November 6, 2019, date of publication November 11, 2019,
date of current version November 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2952619

Data Plane Framework for Software-Defined
Radio Access Network Based on ETSI-Standard
Mobile Device Architecture

HEUNGSEOP AHN"'!, SEUNGWON CHOI ', (Member, IEEE),
MARKUS MUECK"“2, (Member, IEEE), AND VLADIMIR IVANOV 3, (Member, IEEE)

I Department of Electronics and Computer Engineering, Hanyang University, Seoul 04763, South Korea
2Intel Germany GmbH, 85622 Munich, Germany
3Saint Petersburg State University of Aerospace Instrumentation (SUAI), 190000 Saint Petersburg, Russia

Corresponding author: Seungwon Choi (choi@dsplab.hanyang.ac.kr)
This work was supported in part by the Institute for Information and Communications Technology Promotion (IITP) through Korean

Government (Ministry of Science and Information & Communication Technology) under Grant 2017-0-00723, and in part by the
Development of Software-defined Service-oriented Integrated base station platform using Reconfigurable Radio System Technology.

ABSTRACT This paper addresses how to achieve efficient programmability and software portability in the
data plane of a software-defined radio access network (SDRAN). We assume a cloud RAN environment that
builds on multi-vendor hardware components. Recent literature on SDRAN data plane indicates that software
portability remains an issue in terms of efficient execution of software, even if the software is abstracted
from the underlying hardware. In addition, software interfaces typically vary across different hardware
components in the SDRAN data plane, leading to platform-dependent software management. Generalizing
the European Telecommunications Standards Institute approach for a mobile device architecture, this paper
presents a novel SDRAN data plane framework, providing efficient hardware platform-independent pro-
grammability and software portability. First, to resolve the software portability issue, the proposed data plane
framework employs a specific (radio) virtual machine as well as a radio library; the heterogeneous hardware
platforms are abstracted, enabling the joint optimization of the radio application code and hardware platform.
Second, to achieve platform-independent software management, the proposed data plane framework adopts
a double-layered structure enabling users to exploit high-level software management for the SDRAN data
plane. Third, the feasibility of the proposed data plane framework is verified through a proof-of-concept
(PoC) system with the proposed double-layered structure. Based on this PoC system, we show that users can
efficiently perform software management. According to the numerical results obtained from the PoC system,
the proposed double-layered structure introduces negligible additional footprint in terms of computational
resources, memory requirements, and latency.

INDEX TERMS Software-defined RAN, C-RAN, ETSI-standard, data plane programmability, software

portability.

I. INTRODUCTION

In fifth-generation (5G) mobile networks, there is an urgent
need to operate in accordance with the requirements set
forth by various services, which include e-health, self-driving
vehicles, and internet of things [1]. To cope with these new
requirements, studies on softwarized network solutions have
been actively performed and seek to control the network
configuration with software [2]. Recent research on soft-
warized networks has been performed on both the radio

The associate editor coordinating the review of this manuscript and

approving it for publication was Kashif Sharif

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

access network (RAN) side and the core network (CN) side.
The software-defined radio access network (SDRAN) and
cloud-RAN (C-RAN) belong to the former, while software-
defined core networks and network function virtualization
(NFV) belong to the latter. Using a softwarized network, net-
work operators can optimize the network according to various
5G requirements while also significantly reducing network
capital expenditures and operating expenditures through effi-
cient use of the network infrastructure [3].

This paper addresses the problems of data plane pro-
grammability and software portability in SDRAN, which is
a typical solution for softwarising the RAN [4]. Recently,

163421

https://orcid.org/0000-0002-8985-0014
https://orcid.org/0000-0001-6915-6693
https://orcid.org/0000-0002-0944-5378
https://orcid.org/0000-0002-2272-3504
https://orcid.org/0000-0001-7214-6568

IEEE Access

H. Ahn et al.: Data Plane Framework for SDRAN

OpenRadio [5] and PRAN [6] have been suggested to provide
programmability to the SDRAN data plane. However, pre-
vious works, including OpenRadio and PRAN, suffer from
the software portability problem because they are platform-
specific. The software portability issue is serious, espe-
cially in the data plane processing of layer 1 (L1) and
layer 2 (L2) because L1/L2 data plane processing is gen-
erally performed on hardware platforms consisting of not
only a general-purpose processor (GPP) but also various
types of special-purpose processors, such as digital signal
processors (DSPs), field programmable gate arrays (FPGAs),
graphic processing units (GPUs), and application-specific
integrated circuits (ASICs), due to the heavy computa-
tional loads and real-time processing constraints required for
modem functionalities [5], [7]-[9]. In an SDRAN, as each
of the hardware platforms for the data plane processing of
L1/L2 may be provided by different vendors, the software
portability issue becomes even more complicated. Conse-
quently, with previous works involving this issue, software
reconfiguration would be limited only to specific hardware
platforms.

A C-RAN, a typical application of NFV in a RAN,
is often employed in an SDRAN for the efficient utiliza-
tion of computational resources and collaborative processing
among baseband units (BBUs) in the infrastructure layer [8].
It is noteworthy, however, that unless the software porta-
bility issue is resolved, the software reconfiguration of a
C-RAN would also be limited only to the specific plat-
form because the heterogeneous BBUs in a given C-RAN
may possess differing hardware platforms with various lev-
els of programmability and computing power. It is interest-
ing to observe that the above-described situation regarding
the software portability issue in a C-RAN is antithetic to
the case of an NFV-based CN, which does not incur the
software portability problem. Without the requirement of a
real-time processing constraint or heavy computational load,
an NFV-based CN generally operates on an industry standard
server, which makes it possible for the NFV-based CN to
be reconfigured through open-source virtual network func-
tion (VNF) applications [9]-[11].

This paper presents a novel data plane framework for
an SDRAN. The basis of the proposed framework is taken
from the reconfigurable mobile device architecture, which
has been standardized by the European Telecommunications
Standards Institute Technical Committee Reconfigurable
Radio Systems (ETSI TC-RRS) [12]-[14]. The ETSI-
standard mobile device architecture is only applicable for
a mobile device consisting of a single hardware platform.
Thus, to develop the novel SDRAN data plane framework,
we first generalize the ETSI-standard mobile device archi-
tecture in such a way that it can be applicable for generic
radio equipment consisting of multiple hardware platforms.
It is also essential to prove that this generic framework can be
instantiated for the specific needs of the SDRAN data plane.
The novelty of the proposed approach can be summarized as
follows:

163422

o Generalization of the ETSI-standard mobile device
architecture for any radio equipment consisting of mul-
tiple hardware platforms in Section III

« Instantiation of the generalized framework, specifically
for the SDRAN data plane in Section IV

o Demonstrating the suitability of the proposed frame-
work for the SDRAN data plane through proof-of-
concept (PoC) system implementation in Section V

The key contribution of the proposed framework is to
resolve the problem of software portability in the SDRAN
data plane such that the proposed framework provides
platform-independent programmability. Ultimately, the pro-
posed data plane framework makes it possible for the SDRAN
data plane, which employs a C-RAN consisting of vari-
ous heterogeneous BBUs for real-time processing of the
L1/L2 data plane, to be reconfigured through open sources
provided by third-party software developers. In this paper,
it is assumed that the SDRAN employs the C-RAN, which
provides efficient use of computational resources and collab-
orative processing among BBUs in the infrastructure layer.
It is noteworthy that platform-independent software manage-
ment enables users to exploit a high-level reconfiguration
of the SDRAN data plane. In Section V, the feasibility of
platform-independent software management provided by the
proposed data plane framework is verified through a PoC
system with numerical results obtained from various exper-
imental tests.

The proposed data plane framework exploits two key
advantages of the ETSI-standard mobile device architecture.
First, a radio virtual machine (RVM) has been adopted for
the execution of a given platform-independent software with
a platform-specific RVM setup for each target hardware plat-
form in the SDRAN infrastructure layer [14], [15]. Second,
the double-layered structure for software management has
been adopted for high-level abstraction of configuration-
related operations in the SDRAN data plane [12], [13].
In addition, the proposed data plane framework is advanta-
geous for accomplishing real-time processing requirements
of the softwarized RAN because the proposed framework
is based on a mobile device architecture that operates in a
real-time domain.

Il. OVERVIEW OF SOFTWARIZED RAN SOLUTIONS

This section briefly summarizes the SDRAN and C-RAN as
typical softwarized RAN solutions. This section also intro-
duces some previous works related to SDRAN and/or C-RAN
to observe inherent problems with conventional approaches.

A. SDRAN

The 5G signal environment is associated with densely
deployed small cells and heterogeneous wireless networks.
As a result, a need arises for efficient wireless access man-
agement in a RAN, including multi-radio access technol-
ogy (multi-RAT) management, mobility management, and
inter-cell interference handling. Under these circumstances,

VOLUME 7, 2019

H. Ahn et al.: Data Plane Framework for SDRAN

IEEE Access

active research on SDRAN has been performed to apply the
concept of SDN in wired networks, i.e., the decoupling of the
data plane and control plane [3], [4], to wireless networks.

Figure 1(a) shows a conceptual diagram of a conventional
SDRAN consisting of application, control, and infrastructure
layers. The infrastructure layer, which generally includes
multiple base stations, performs the entire L1/L2 data plane
processing in the SDRAN according to the control decisions
in the control layer. Other than the data plane processing
itself, the infrastructure layer further provides two core func-
tionalities required for data plane reconfiguration as follows.
First, it reports context information (e.g., mobility, inter-cell
interference level, traffic load) and resource utilization status
to the control layer; second, it executes the control command
related to the data plane reconfiguration transferred from the
control layer.

Application Layer
BBU Pool

00U

Appy Appz | ee | APy

_ BBU#1 BBU#2 BBY #N/
Northbound 1 i i N
Interface 3 F A P
e Y ot T N
Control Layer / \
Fronthaul | = 5 2 &
i Fiber/Wireless Link _)
. \/,_/
Southbound Y N A
Interface {4 } b
Infrastructure Layer (9, C3) (s))\
RRH(s) _.‘ene oS S
> 70/ W
(@) {b)

FIGURE 1. Conceptual diagram of SDRAN and C-RAN as typical solutions
for enabling the softwarized RAN: (a) SDRAN architecture; (b) C-RAN
architecture.

The control layer, located between the application and
infrastructure layers, uses northbound and southbound inter-
faces to interact with the application and infrastructure layers,
respectively. Through the southbound interface, the controller
in the control layer can access each base station in the
infrastructure layer. Through the northbound interface, users
are provided with application programming interfaces (APIs)
required to control the infrastructure layer. Using the APIs,
users can receive context information and resource utilization
status for use in a corresponding application.

The application layer supports various applications for
optimizing the infrastructure of a given RAN, such as
multi-RAT management, mobility management, and inter-
cell interference handling.

B. C-RAN

A C-RAN centralizes BBUs to provide cloud comput-
ing with efficient use of computational resources. Using
programmable hardware platforms in a given BBU pool,
a C-RAN ensures remarkable flexibility in terms of network
upgrades and network maintenance [8]. Figure 1(b) is a con-
ceptual diagram of a conventional C-RAN, which consists

VOLUME 7, 2019

of a BBU pool, fronthaul networks, and remote radio heads
(RRHs). The BBU pool consisting of multiple BBUs per-
forms the baseband processing required mainly for modem
functionalities. Each BBU is generally composed of various
processors, such as GPPs, DSPs, FPGAs, and ASICs, which
differ depending on the vendor. The fronthaul determines
the interconnection between the BBU pool and the RRHs.
The common public radio interface (CPRI) is a typical radio
interface protocol used for data transmission between the
BBU pool and the RRHs.

C. RELATED WORKS

SoftRAN [16] provides a software-defined centralized con-
trol plane of an SDRAN by applying the SDN concept,
i.e., decoupling the control and data planes from each other,
to the RAN domain for the first time. SoftRAN abstracts mul-
tiple base stations located at different geographical regions
into a single virtual big-base station to control each from a
central locale. However, as data plane programmability has
not been considered in SoftRAN, software reconfiguration is
only confined to the control plane.

FlexRAN [17], the first developed open-source SDRAN
platform, is another concept for SDRAN design. With the
programmability provided by FlexRAN, in addition to RAN
control applications, control functions in a given controller
can be updated as well. Unfortunately, the programmability
provided by FlexRAN is focused only on the control plane.
Although FlexRAN does not provide data plane programma-
bility, it has been claimed [17] that FlexRAN can be com-
plementarily used with another work that provides data plane
programmability, such as the data plane framework proposed
in this paper.

Recently, starting from [16], [17], there has been remark-
able progress in terms of control plane programmability as
presented in [18], [19]. Nevertheless, recent state-of-the-art
literature mainly focuses on control plane programmability,
rather than data plane programmability, in an SDRAN.

OpenRadio [5] and PRAN [6] are typical works that pro-
vide programmability for the SDRAN data plane. OpenRadio
provides a modular and declarative programming interface
that allows the modularization of L1/L2 functional blocks
of a given communication protocol stack to support commu-
nication standard evolution. Consequently, OpenRadio can
support data plane programmability. However, its program-
ming interface is platform-specific only for a particular DSP,
which implies that the software for data plane processing of
OpenRadio cannot be ported on other hardware platforms.
Meanwhile, PRAN also provides data plane programmability
that allows software reconfiguration of a given SDRAN by
switching the data paths of L1/L2 processing at the cen-
tral controller. However, without the multi-target back-end
compiler [6], which is applicable to various heterogeneous
platforms, data plane programmability of PRAN as well as
OpenRadio is limited to specific platforms.

From the above discussions, the software portability issue
should be resolved to provide complete programmability that

163423

IEEE Access

H. Ahn et al.: Data Plane Framework for SDRAN

allows software reconfiguration of the SDRAN data plane
with no limit on platforms. Consequently, the need arises
for efficient compilation and execution of a given radio
application (RA) code [12] for each of the various hardware
platforms in the BBU pool of a given SDRAN [6]. Of course,
when the RA code is given as a platform-specific executable
code, there is no software portability issue. The main concern
of this paper, however, is to consider more generic cases when
the RA codes are distributed as platform-independent codes
that can be provided by third-party software developers. More
specifically, as will be discussed later in this paper, each RA
code can be distributed as an open source once the software
portability issue is resolved.

In previous works, such as OpenRadio [5] and PRAN [6]
providing programmability for the data plane, the RA
is coupled with the BBU hardware platform such that
RA management becomes platform-specific as well.
RA management includes installation/uninstallation and/or
activation/deactivation of RAs, multi-RAT management, and
data flow management for each RA. Consequently, when the
BBU pool in the infrastructure layer of a given SDRAN con-
sists of heterogeneous hardware platforms, RA management
becomes extremely complicated in conventional OpenRadio
and PRAN because the network operator should provide
platform-specific RA management using their software inter-
faces, i.e., APIs from the central controller.

As will be described later, this paper proposes a novel data
plane framework that resolves the software portability prob-
lem and provides a uniform way of managing the RA through
the high-level abstraction of data plane configuration-related
operations for each hardware platform in a given BBU
pool. No other work has ever provided any specific
method of resolving the SDRAN data plane programma-
bility and software portability on multi-vendor hardware
components.

IIl. GENERALIZATION OF ETSI-STANDARD MOBILE
DEVICE ARCHITECTURE FOR A GENERIC RADIO
EQUIPMENT CONSISTING OF MULTIPLE

HARDWARE PLATFORMS

ETSI TC-RRS developed a standard architecture and related
interfaces for a reconfigurable mobile device whose config-
uration is determined by a downloaded RA code [12]-[14].
The key objective of the ETSI-standard mobile device archi-
tecture is to provide efficient mobile device software recon-
figuration with guaranteed software portability between the
RA code and various hardware platforms.

Figure 2 illustrates ETSI-standard mobile device archi-
tecture components consisting of a communication services
layer (CSL), radio control framework (RCF), unified radio
application (URA), and radio platform. These four compo-
nents are interconnected through interfaces as follows:

o Multiradio interface (MURI) for interconnecting CSL

and RCF;

« Unified radio application interface (URAI) for intercon-

necting URA and RCF;

163424

Communication Services Layer (CSL)

Mobility
Administrator Policy
Manager

Networking

Stack Monitor

Multiradio
Interface (MURI)

Radio Control Framework
(RCF, Flow Controller
Radio
Connection r
Manager

Unified Radio
Application
Interface (URAI)

Multi-radio
Controller

Configuration
Manager

Unified Radio
Application
(URA)
Resource
Manager

Reconfigurable
Radio Frequency
Interface (RRFI)

Baseband(s)
and others

RF Transceiver(s)

Radio Computer

FIGURE 2. ETSI-standard mobile device architecture [12].

« Reconfigurable radio frequency interface (RRFI) for
interconnecting URA and RF transceiver in radio
platform.

In addition to the aforementioned three interfaces, the radio
programming interface (RPI) [14] has been defined for the
(third-party) RA provider to implement the RA code with.
Using the ETSI-standard mobile device architecture shown
in Figure 2, various RA codes can be downloaded onto a
reconfigurable platform from a radio app store. As the frame-
work shown in Figure 2 can be viewed as a computer that
executes a given RA code using its own hardware platform
on its own OS, it is denoted as a radio computer.

In the following three subsections, we explain how the
ETSI-standard mobile device architecture shown in Figure 2
can be generalized in such a way that the framework is
applicable to any radio equipment consisting of multiple
hardware platforms. The generalized framework will then be
instantiated specifically for the SDRAN data plane in the next
section.

A. EXTENSION OF SINGLE RADIO COMPUTER INTO
MULTIPLE RADIO COMPUTERS

Figure 3 shows a generic radio equipment consisting of mul-
tiple radio computers, each of which interacts with the CSL
through the MURI via the routing entity. The key difference
between the mobile device architecture and the generic radio
equipment framework shown in Figure 3 is that only a single
hardware platform is involved in the former, whereas mul-
tiple hardware platforms that may be provided by different
vendors with different OSs, are encountered in the latter.
Consequently, the generic radio equipment framework gener-
ally includes multiple radio computers, each of which might
employ its own OS corresponding to its hardware platform.

VOLUME 7, 2019

H. Ahn et al.: Data Plane Framework for SDRAN

IEEE Access

Command/Information
to/from
Radio Computers

Routing Entity

Command/Information Command/Information Command/Information
to/from to/from to/from
Radio Computer #1 Radio Computer #2 Radio Computer #N
MURL= == -%- - — - - MURL === Y- — - - - MURL= == Y- - ——-

Radio Radio Radio
Computer #1 Computer #2 Computer #N

FIGURE 3. Block diagram of generic radio equipment consisting of
multiple radio computers.

Because of the multiple radio computer architecture,
the CSL should specify the radio computer ID as well as the
command itself to be executed by the corresponding RCF
for each radio computer. Thus, each CSL command shall
be transferred to the corresponding RCF of the target radio
computer via a routing entity.

B. MODIFICATION OF DOUBLE-LAYERED STRUCTURE FOR
HIGH-LEVEL RA MANAGEMENT

This subsection explains how the double-layered structure
consisting of the CSL and each RCF should be modified to
achieve a uniform way of managing RAs executed on hetero-
geneous hardware platforms. We first briefly summarize the
ETSI-standard double-layered structure developed for the RA
management of mobile devices. Then, we suggest how the
double-layered structure should be modified to be employed
in generic radio equipment. Figure 4 illustrates the double-
layered structure consisting of the CSL and RCF, which are
interconnected through the MURI [12], [13].

CSL
Mobility
Administrator Policy Networking Stack Monitor
Manager
I il
/ _ " / Access / -
‘J‘ Adrrsums_tratwe / Control // Data _Flow | Momtgrmg
/ ervices / Services / Services <7 |7 Services
MURI— — — —/— — — — — g e =i e e e e i e e e
| / rd
/ RCF
. Radio . .
Configuration . Flow Resource Multi Radio
Connection
Manager Controller Manager Controller
Manager

FIGURE 4. Modified double-layered structure for high-level RA
management.

The CSL is an abstraction layer providing high-level
management for RAs that are executed on a hardware
platform. More specifically, a CSL abstracts each of the
configuration-related operations performed on a RCF to pro-
vide a uniform approach to RA management. The software
entities defined in the CSL include the administrator, mobility

VOLUME 7, 2019

policy manager, networking stack, and monitor, all of which
support multi-RAs. Functionalities of each software entity in
the CSL are shown in Table 1(a).

The RCF is a software component that provides the func-
tionalities required for RA management. More specifically,
an RCF is a control framework that extends OS capabilities in
terms of RA management. It performs software reconfigura-
tion through the execution of CSL commands. In other words,
any ordinary real-time OS with the functionalities of the RCF
being implemented can be used as an OS of the proposed data
plane framework, which is denoted as the Radio OS in this
paper [12]. The software entities defined in the RCF include
the configuration manager, radio connection manager, flow
controller, resource manager, and multi-radio controller, all
of which provide the execution environment for software
reconfiguration. Functionalities of each software entity in the
RCF are shown in Table 1(b).

The MURI, the interface between the CSL and RCEF, pro-
vides the services summarized in Table 1(c). It is noteworthy
that to apply the double-layered structure to generic radio
equipment consisting of multiple hardware platforms, mon-
itoring services should be included in addition to the three
types of services provided by the original MURI (administra-
tive, access control, and data flow services) as defined for the
ETSI-standard mobile device architecture.

In mobile device applications, the RCF autonomously
manages the computational and spectral resources accord-
ing to the L1/L2 processing of the present RA. In generic
radio equipment, however, each of the multiple RCFs on
the corresponding hardware platform must report the con-
text information and usages of its computational and spec-
tral resources to the CSL monitor such that the CSL can
provide central management of the RA for generic radio
equipment.

The new monitoring services of the MURI enable effi-
cient management of the context information and computa-
tional/spectral resource usages among the various hardware
platforms in the generic radio equipment. As monitoring
services are added in a MURI, the functionality for the
resource manager and multi-radio controller to report the
status of the computational and spectral resources to monitor
in the CSL should be added correspondingly. Additionally,
the monitor should present the status of the computational
and spectral resources to the user. Functionalities to be
added for multiple hardware platforms are shown in italics in
Table 1.

C. GENERATION AND EXECUTION OF RA CODE

This subsection introduces the procedure of generating and
executing the RA code using a radio library and an RVM,
respectively, for generic radio equipment consisting of mul-
tiple radio computers. More specifically, an RA code is
composed of functional blocks properly chosen from the
radio library, and heterogeneous hardware platforms of the
radio equipment are abstracted by the RVM. It is claimed
in this subsection that the RVM implementation should be

163425

IEEE Access

H. Ahn et al.: Data Plane Framework for SDRAN

TABLE 1. (a). Functionalities of each software entity in the CSL. (b).
Functionalities of each software entity in the RCF. (). Services of the

MURL
Entities Functionalities
* requests (un)installation of a RA
* requests creation or deletion of a RA
Administrator 1nstapce . .

* provides information about the spectral
and computational requirements for
each RA and status of each RA

Mobility * requests (de)activation of the RA
Communication Policy * monitors the radio environments and

Services Layer Manager

hardware platform capabilities

(CSL) Networking | * sends/receives backhaul/fronthaul
Stack network data to/from flow controller

* presents context information such as

received signal strength, interference
Monitor level, etc.

* presents status of
computational/spectral resource
management
(a)

Entities Functionalities
* (un)installs of the RA
Configuration | * creates/deletes instances of the RA
Manager * manages the access to the radio
parameters of the RA
C Rad10_ « activates/deactivates the RA according to
onnection
Manager user request
Col;lt(r)(‘)xlller * manages data flows
Radio * manages computational resources in
Control o‘rder to share) them among
Framework Resource mmultaneousl)_/ act'lve RA§, and
(RCF) Manager guarantees their real-time execution
* reports computational resource status to
monitor
 schedules the requests for spectral
resources issued by concurrently
executing RAs
Multi Radio * detects and manages the interoperability
Controller problems among the concurrently
executed RAs
* reports spectral resource status to
monitor
()
Services Services
* used for some configuration
.. . applications, i.e., administrator, to
Multiradio Adm1n1§tratlve (Erlf)install a new RA into the
Services .
Interface corresponding hardware platform(s), to
(MURI) create/delete an instance of the RA

Access Control

« used by the mobility policy manager to

Services maintain user policies and preferences
related to the usage of different RATs

«used by the networking stack to

Data Flow send/receive backhaul/fronthaul
Services network data

* used by the monitor to present context

Monitoring informati('m and status of

Services computational/spectral resource

management among hardware platform
s

provided specifically for each radio computer to apply the
RVM concept of the ETSI-standard mobile device to the case

(©

of multiple radio computers.

163426

/

I

|

|

A A

Lﬁ;’— Parallelization

s N
s N
K pseudo radio application code
for FFT and Channel Estimation
FFT_and_Channel_Estimation
(Rx, RS, RS_table, FFT_point,
H

RS 001 1007061100100

-
~

~
=

14001001001001 111

TIETI11 111100111

0001 1011000001001

01000006080000000

% = FFT(Rx, FFT_point); 200000060000 10011

i to {ake FFT of Ry signal 001001 10010011001

according {o FFT point table RS 001001001117 11111

extract_nc = Extrect (DX, FA1E411007 1100011

RS table) @ 00790901001 100100

Ko extract rx, ie, FFT'ed Re 1001007 100100100

signals, corresponding fo the Q007 10010011001

Reference Signal (RS) table xtract QOM00T00TIf1iii171

conj_RS = Vector Conj (RS); 1HE1111001 1100011

it to take conjugate of RS 00110101001100100

H = Vactor Mui (extract_rx, F4001001 100100100
conj_RS); .
o multiply extracted wx sional :

by the conjuugated RS
i <Binary results of front-
end compilation>

<High-Level Pseudo RA Code
for FFT and Channel Estimation>

FIGURE 5. Front-end compilation using reference radio library.

<Data Flow Chart>

1) RADIO LIBRARY

The radio library consists of a set of standard functional
blocks that serve as benchmarks for the implementation of
RA codes. The radio library is classified into two types: i) the
reference radio library for front-end compilation of a given
RA code and ii) the native radio library for execution of
the front-end compilation result on a target platform. The
front-end compilation result of an RA code is denoted as
“configcodes” in this paper [14].

o The reference radio library provides a normative
description of each corresponding standard functional
block. For a third-party software developer to generate
an RA code using the reference radio library, the nor-
mative description shall include not only the contents of
the functional block itself but also additional informa-
tion, such as the requirement for spectral/computational
resources for the functionality of the corresponding stan-
dard functional block. The normative description might
be provided in a high-level language, e.g., C, C++,
or Java. The reference radio library, which is platform-
independent, is used for the front-end compilation of a
given RA code.

o The native radio library provides a platform-specific
description of each corresponding standard functional
block. The native radio library can be generated from
the reference radio library by mapping the specific char-
acteristics of a target hardware platform (e.g., dedicated
hardware accelerators and programmable processors)
onto the reference radio library. The native radio library
is used for the execution of the front-end compilation
result, i.e., configcodes.

2) FRONT-END COMPILATION USING REFERENCE RADIO
LIBRARY

Figure 5 shows the procedure for the front-end compilation of
an RA code using the reference radio library that generates

VOLUME 7, 2019

H. Ahn et al.: Data Plane Framework for SDRAN

IEEE Access

Configcodes RVM
7
~
~~ Native Radio|Library Basic Operations
RVM b
Radio 0 '\ \ Configcodes » Program Memory
\
R
Hardware Platform \:
\
\
\

DO status Data config
[—
vV
data,
N data status External
o |Switch fabric ports
- g- config X X
gl = 4>| Abstract Switch Fabric |¢7
=
2.
= I ata,
data status
@@
S
APE status APE config
[— u

FIGURE 6. Execution of configcodes using radio computer-specific RVM and native radio library.

configcodes. The RA code, developed from the reference
radio library, is converted into binary configcodes through
the parallelization and compilation procedure. As config-
codes are generated through front-end compilations with the
platform-independent reference radio library, configcodes are
also platform independent.

Figure 5 explicitly shows how a high-level pseudo RA code
is front-end-compiled utilizing fast Fourier transform (FFT)
and channel estimation. The functional blocks shown as FFT,
Extract, Vector_Conj, and Vector_Mul in pseudo RA code,
shown at the lower left-hand side of Figure 5, are provided by
the reference radio library. The RA code is described as a data
flow chart through the parallelization procedure, as shown
in the lower middle portion of Figure 5. Finally, through
the compilation procedure, the data flow chart is converted
into a binary representation according to a predefined binary
format [14].

3) EXECUTION OF CONFIGCODES USING NATIVE RADIO
LIBRARY AND RVM

Figure 6 shows the conceptual block diagram describing the
execution of configcodes on a target platform that includes
RVM implementation as an interpreter or just-in-time com-
piler. The Radio OS shown in Figure 6 is a real-time OS,
on which given configcodes are executed using the resources
of a given hardware platform. The RVM is an abstract
machine that abstracts heterogeneous platforms to execute
all algorithms included in the given configcodes on various
types of physical resources. The abstract resources of the
RVM include, as shown in Figure 6, an abstract processing
element (APE), a data object (DO), and an abstract switch
fabric (ASF) for abstracting computational resources, mem-
ory resources, and switch resources, respectively. This means
that APE and DO correspond to an operator and memory,
respectively, while ASF properly interconnects each APE and
DO.

VOLUME 7, 2019

The “‘basic operations” and ‘“program memory” blocks
shown in Figure 6 include operators downloaded from the
native radio library and store the configcodes, respectively,
while the ““control unit™ initializes and sets up all instructions
of the APE, DO, and ASF by decoding the configcodes
stored in the “program memory”’. To execute the platform-
independent configcodes on each target platform, an RVM
is set up in accordance with the target hardware platform,
which is represented by the platform-specific native radio
library. Consequently, RVM implementation should be pro-
vided specifically for each radio computer when the target
radio equipment consists of multiple radio computers.

To efficiently execute the configcodes on a target platform,
the RVM implementation shown in Figure 6 is based on a
data-driven structure. This provides minimum latency in the
execution of the configcodes, of which the binary description
represents the data flow chart shown in Figure 5. This indi-
cates that operation of an APE is automatically executed as
soon as the data status of the corresponding DO changes from
“empty” to “full”. Furthermore, all operations parallelized
during the front-end compilation are executed concurrently.
The DO, ASF, and APE associated with a given operation
share the data status and data. In addition, the status of the
DO and APE is reported to the “control unit.”” A combination
of RVM, i.e., the vertical/horizontal scaling of RVMs, can
provide an RVM extension [14]. In that case, each APE may
be composed of multiple RVMs.

It is important that the RVM implementation is included
at each hardware platform only when the computational
resources at each hardware platform allow for it. Otherwise,
the back-end compilation should be provided separately, e.g.,
as a cloud service provided by the hardware platform manu-
facturers. In this case, the back-end compiler generates the
executable code for each target platform in a cloud using
the configcodes and the native radio library corresponding
to the target platform. Users can choose between these two
methods of obtaining executable codes in such a way that

163427

IEEE Access

H. Ahn et al.: Data Plane Framework for SDRAN

their expenditures can be fully optimized, thus providing
flexibility.

IV. PROPOSED DATA PLANE FRAMEWORK FOR SDRAN
Using the generalized framework shown in the preced-
ing section, this section presents how the generic frame-
work can be instantiated for the specific needs of SDRAN
data plane, i.e., software portability and programmability.
Figure 7 illustrates the scope of the data plane frame-
work proposed in this section within the RAN architecture.
To support software-based centralized network management,
the RAN architecture adopting the SDRAN consists of the
application, control, and infrastructure layers [3]. Further-
more, to support efficient use of computational resources
together with collaborative processing and efficient network
upgrade/maintenance, the infrastructure layer of the RAN
architecture includes the C-RAN architecture, which con-
sists of the BBU pool [8]. The controller in the SDRAN
control layer might include various software components,
such as those for RA management, radio resource man-
agement, and quality of service (QoS) management [16].
In contrast, the proposed data plane framework concerns only
the software component for RA management that provides
software reconfiguration management of the SDRAN data
plane, as shown in Figure 7. In particular, this means that
the proposed data plane framework concerns only data plane
processing in the BBU pool and functionalities of RA man-
agement in the controller. It is important that the applications
contained in the application layer shown in Figure 7 are
differentiated from the RA executed on the corresponding
BBU in the infrastructure layer.

Multi-RAT Mobility Interference
Application Management Management | .., Handling
Layer Application Application Application
A P L
ﬁ ﬁ ﬁ Northbound
Interface

Controller

QoS Management

Control |
Layer

Radio Resource Management.

RA Management

17 I

Scope of the

Proposed g L
Data Plane

Framework

[N Southbound
Interface

A\

BBU Pool

BBU #1 BBU #2 BBU #N

Infrastructure |
Layer Fiber/Wireless Link

(N () ()

BN —

Fronthaul
Network

RRH(s)

FIGURE 7. Scope of the proposed data plane framework within RAN
architecture.

163428

Now, we present the proposed data plane framework that
includes the radio library, RVM, and double-layered struc-
ture for multiple radio computers explained in the preceding
section. Discussions are focused on its capability to resolve
the software portability issue and provide high-level abstrac-
tion for RA management. Then, we present typical use cases
of the proposed data plane framework.

A. PROPOSED DATA PLANE FRAMEWORK

Figure 8 illustrates the proposed data plane framework con-
sisting of two main parts: i) multiple radio computers, each
of which performs L1/L.2 data plane processing, and ii) CSL,
which provides high-level abstraction for RA management.

As shown in Figure 8, each radio computer employs its
own Radio OS and RCF to execute a given RA on its
hardware platform. Using the RVM and native radio library
described in the preceding section, each radio computer can
execute a given RA with the target platform-specific RVM
setup. Although the RVM is specific to each radio computer,
as shown in Figure 8, platform-specific implementation of
each RVM does not lead to any additional burden on RVM
providers. This is because the difference in RVM implemen-
tation at each radio computer simply comes from different
machine instructions used in the RVM implementation pro-
cedure for each Radio OS. It is envisioned that the RVM is
provided by the hardware platform vendor together with the
Radio OS.

The CSL, which composes the double-layered structure
together with the RCF as described in the preceding section,
provides users with a uniform way of managing the RA.
As the CSL abstracts the operation of the RCF for each
radio computer, it is possible for users to exploit high-level
RA management. The CSL is interconnected to each of
the RCFs of the corresponding radio computer through the
MURI, which is a part of the southbound interface, as shown
in Figure 7. Table 1(c) summarizes the services provided by
the MURI with the specifications of corresponding software
entities of the CSL and RCF involved in each of the MURI
services.

As mentioned in the preceding section, the CSL interacts
with each of the RCFs via a routing entity, the detailed oper-
ations of which are not included in Figure 8. Furthermore,
the inter-communication among multiple radio computers is
outside the scope of this paper. We believe that the inter-BBU
connection approach used in the case of C-RAN can be
adopted in multiple radio computers as well [8], [20].

Using the proposed data plane framework shown in
Figure 8, we explain below how the problem of software
portability can be resolved and how the proposed data
plane framework can provide high-level abstraction for
RA management.

1) RESOLUTION OF SOFTWARE PORTABILITY PROBLEM

Depending on the desired levels of programmability, flexibil-
ity, power consumption, and processing speed, the hardware
platform of each BBU generally consists of different types of

VOLUME 7, 2019

H. Ahn et al.: Data Plane Framework for SDRAN

IEEE Access

Radio OS #1

Radio OS #2

Radio OS #N

ASIC ASIC
(Wi-Fi) (LTE) /

Hardware Platform of BBU #1

Hardware Platform of BBU #2

Hardware Platform of BBU #N

Radio Computer #1

Radio Computer #2

Radio Computer #N

FIGURE 8. Proposed data plane framework.

processors. In Figure 8, for instance, the hardware platform of
BBU #1 consists of only GPPs, while that of BBU #N consists
mainly of ASICs. Consequently, without a separate back-end
compiler for each of the various heterogeneous hardware
platforms, the problem of software portability is inevitable.

To resolve software portability problems arising due to
heterogeneous hardware platforms, an RVM is introduced
between each RA and the corresponding Radio OS running
on its BBU hardware platform, as shown in Figure 8. As men-
tioned in the previous section, each RA shown in Figure 8 is
given in the form of configcodes after front-end compilation.
As an RVM abstracts physical resources in each hardware
platform into virtual resources, the RVM guarantees that
the RA code, i.e., platform-independent configcodes, can be
ported onto any type of hardware platform. During RVM
execution, the native radio library is used to interpret the
configcodes in a platform-specific way. Consequently, execu-
tion of an RVM provides joint optimization of both software
(i.e., a given RA code) and hardware (i.e., the target hard-
ware platform of the designated BBU). The software com-
munication architecture (SCA) [21], a conventional approach
suggested for resolving the software portability problem,
separates the software and hardware using middleware. As a
result, joint optimization of software and hardware cannot be
achieved [22]. In addition, borrowing the data-driven struc-
ture of RVM implementation, system latency and hardware
platform resource usage can be reduced by eliminating the
resource allocation and control overhead, respectively. The
data-driven structure is a key enabler for the proposed RVM
approach to outperform other ETSI-standard virtualization
methods based on a virtual machine (VM) or container [23],
as well as the conventional SCA-based method.

2) HIGH-LEVEL ABSTRACTION FOR RA MANAGEMENT

Using the northbound interface, third-party software devel-
opers can provide various applications related to wireless
access, such as multi-RAT management, mobility manage-
ment, and interference handling. For the implementation

VOLUME 7, 2019

of SDRAN applications, it is often necessary for software
developers to consider special requirements related to RA
management. For example, for implementation of a multi-
RAT management application, when a new (group of) RA(s)
is activated, another (group of) RA(s) might have to be deac-
tivated. Similarly, for an interference handling application,
the transmit power of a certain (group of) RA(s) processed
in a particular (group of) BBU(s) might have to be properly
reduced or enhanced. In addition to these two simple exam-
ples, various situations arise where SDRAN applications
should control the RAs processed in various BBUs in a given
BBU pool. The problem here is how to execute the command
regarding RA management from the application layer on each
of the heterogeneous BBU platforms, which may employ
different OSs, as shown in Figure 8. Using the proposed data
plane framework, the application layer can simply transfer
the desired command to the CSL without having to know
the hardware characteristics of each BBU because the CSL
would send the command to the target RCF(s) prepared as a
part of the Radio OS for each BBU. In other words, using the
double-layered structure of a CSL and RCFs, the application
layer does not have to consider various heterogeneous BBU
hardware platforms.

As the RA management required in a given application
is executed on the SDRAN server, corresponding com-
mands are transferred from the application layer to the CSL
through the northbound interface. Thereafter, the correspond-
ing entity(ies) in the CSL transfer(s) the command(s) to
the target RCF(s) through MURI. Finally, the correspond-
ing entity(ies) in the designated RCF(s) execute(s) the com-
mand(s) for the corresponding BBU hardware platform to be
reconfigured in accordance with the command(s). In partic-
ular, this means that the CSL can be viewed as an abstrac-
tion layer for operation(s) of the multiple RCFs according
to the command(s) transferred from the application layer.
Consequently, the proposed data plane framework provides
users with a uniform way of managing the RAs through
the double-layered structure consisting of a CSL and RCF.

163429

IEEE Access

H. Ahn et al.: Data Plane Framework for SDRAN

It is noteworthy that each RCF in the proposed framework
shown in Figure 8 is prepared as a part of the Radio OS of
the corresponding specific BBU hardware platform, while
the command regarding the RA management is issued from
the application layer without considering each BBU hardware
platform.

B. USE CASES

In this subsection, we present two typical use cases for
the application of the proposed data plane framework. Each
use case is focused on the capabilities of the proposed
data plane framework with respect to the resolution of the
software portability problem and high-level abstraction for
RA management.

1) RECONFIGURATION OF SDRAN DATA PLANE THROUGH
OPEN-SOURCE RA DOWNLOAD

As the open-source community such as OPNFV [24] has
become very invigorated recently, CN reconfiguration can
now be achieved by downloading the open-source VNF appli-
cation from the OPNFV server and executing it on a target
server. The key reason why the NFV open-source community
can be so successful is that no software portability issues exist
with the VNF applications as they are executed, in general,
on industry standard servers [9]-[11], [25].

As the software portability issue in the SDRAN data plane
is resolved using the proposed data plane framework that
employs the radio library and an RVM, network operators
can now reconfigure the SDRAN data plane by downloading
the desired RAs distributed as open source. In short, using
the proposed SDRAN data plane framework, the SDRAN
data plane can be reconfigured with open-source RAs as in
the CN reconfiguration achieved with the open-source VNF
application.

More specifically, third-party software developers can
upload their RA codes, e.g., 5G new radio (NR), on an open-
source community server in the form of platform-independent
configcodes obtained as a result of front-end compilation.
Then, network operators download the platform-independent
configcodes of the RA code of the 5G NR onto their BBU
hardware platform and execute it on a desired hardware
platform. While the BBU hardware platforms can be hetero-
geneous, the RVM at each BBU provides platform-specific
execution of the RA code using the platform-specific native
radio library. Although the RVM is equipped within each of
the BBU platforms in Figure 8, back-end compilation could
be provided outside the RAN in a cloud, as mentioned in the
preceding section. The key part of the proposed data plane
framework is that network operators can achieve SDRAN
data plane reconfiguration with open-source RAs using the
RVM and native radio library optimized to each of the BBU
hardware platforms.

Borrowing the complete resolution of the software porta-
bility problem in the SDRAN data plane, we can exploit the
merits of open-source RAs as in the case of NFV-based CN,

163430

@ computational/spectral
resource status and context
information being reported

@ user data flow
Application

-
;"% _ control
Layer C_/ = . -~

® deactivation of 5G NR RA

_ 7T Mult-RAT
4 Management

Application
it

Northbound _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ __ ______.
Interface

@ @ . ® Mobility
Administrator Monitor NEELE Policy

Stack
Manager
Monitorii
Proposed MURI @ Dn.’ g
Services
Data Plane <]
4

|
T
@ Data ® Access Control|
low Servic Services
Framework £

Radio Radio
Computer #1 Compufer#l
|

BBU
Pool

Fronthaul
Network

RRH(s)

FIGURE 9. Conceptual diagram of short-term multi-RAT management
procedure using the proposed data plane framework.

which will ultimately prevent data plane reconfiguration from
being limited to a specific (group of) hardware platform(s).

2) HIGH-LEVEL ABSTRACTION FOR MULTI-RAT
MANAGEMENT IN HETEROGENEOUS NETWORKS

Current wireless networks can be represented as a hetero-
geneous group of various RATs, such as GSM, WCDMA,
LTE, 5G NR, and Wi-Fi [26]. Thus, network operators need
to optimize their networks using multi-RAT management
that can be classified into two categories: short-term and
long-term management. A typical example of the former is
one that switches off a 5G NR small cell overlaid on an LTE
macro cell to save the energy of the 5G NR small cell in
non-standalone 5G networks [27], [28]. A typical example of
the latter is GSM spectrum refarming, with which operators
can assign the GSM spectrum to LTE and/or 5G NR for
more efficient spectrum utilization. GSM spectrum refarming
has been developed to address the recent decline in GSM
spectrum usage [29].

As the procedure of long-term multi-RAT management is
quite well known [29], this subsection is focused on short-
term management. Figure 9 illustrates a conceptual diagram
showing the procedure of short-term multi-RAT manage-
ment using the proposed data plane framework. As shown
in Figure 9, assume that Radio Computer #1 executes the
LTE RA, providing LTE macro cell coverage to user equip-
ment (UE) as a master node, while Radio Computer #2 exe-
cutes the 5G NR RA, providing the 5G NR cell coverage to
the same UE as a secondary node. It is also assumed that the
UE considered in this discussion supports dual connectivity,
including both LTE and 5G NR RATSs [27]. In short-term

VOLUME 7, 2019

H. Ahn et al.: Data Plane Framework for SDRAN

IEEE Access

multi-RAT management, where the 5G NR small cell is to
be switched off according to the reduction of the traffic load,
the proposed data plane framework equipped with the double-
layered structure provides high-level abstraction for data
plane configuration-related operations as follows. It is note-
worthy that the short-term multi-RAT management explained
in this subsection only concerns data plane reconfigura-
tion and not control plane reconfiguration involving radio
resource control (RRC) connections and/or RRC signaling.

A network operator first makes a decision to switch off the
5G NR RA after checking the report on the context infor-
mation related to the traffic load and computational/spectral
resources status received at the CSL monitor from each BBU
platform of both Radio Computers #1 and #2. This report
is transferred from the corresponding RCF entities of Radio
Computers #1 and #2 via the monitoring services in MURIL.
Then, the UE, which is mainly provided with data traffic by
the 5SG NR small cell, should be served only with the data
traffic from the LTE macro cell. Consequently, the network
operator transfers a command for removing data flow of the
5G NR small cell and adding data flow of the LTE macro cell
to the flow controller in the RCF of Radio Computer #2 and
Radio Computer #1, respectively, from the networking stack
in the CSL via flow control services in the MURI. Finally,
the network operator can switch off the 5G NR small cell
by deactivating the 5G NR RA executed on Radio Computer
#2 using the mobility policy manager in the CSL via access
control services in the MURI.

As explained above, the multi-RAT application, although it
is processed in the application layer, requires reconfiguration
of the corresponding BBU hardware platforms in the infras-
tructure layer as well as reconfiguration of the controller in
the control layer. The key aspect provided by the proposed
data plane framework is that whenever the application layer
needs to control the data plane, the application layer commu-
nicates with the corresponding entities within the CSL rather
than the individual BBU hardware platforms. Consequently,
users can manage data plane processing of RAs at each BBU
hardware platform through the CSL, of which the details
can be summarized in three steps, as follows. First, using
the monitor in the CSL, the computational/spectral resource
status and context information can be reported. Second, using
the networking stack in the CSL, the data flow of the 5G NR
cell can be moved to the LTE macro cell. Third, using the
mobility policy manager in the CSL, the 5G small cell can
be switched off. In short, with the double-layered structure
of the proposed data plane framework, reconfiguration of
the SDRAN data plane can be achieved without considering
all the different characteristics of each of the heterogeneous
hardware platforms.

V. IMPLEMENTATION OF PROOF-OF-CONCEPT SYSTEM

This section implements a PoC system with the proposed
data plane framework introduced in Figure 8. Figure 10(a)
presents a block diagram of the experimental environment,
which includes the implemented PoC system consisting of RF

VOLUME 7, 2019

TABLE 2. System parameters for each RA.

LTE FDD LTE TDD Wi-Fi
Waveform 3GPP 3GPP
IEEE 802.11 ac
standard Release 12 Release 12
Center
2.12 GHz 2.65 GHz 5.18 GHz

frequency

Bandwidth 20 MHz 20 MHz 20 MHz
Modulation 64 QAM 64 QAM 256 QAM

Turbo code | Turbo code | Convolutional

Channel coding | (code rate: | (code rate: | code (code rate:

0.75) 0.75) 5/6)

55.4976 27.8768 554
Peak data rate

Mbps Mbps Mbps

transceivers and antennas as well as the proposed data plane
framework. Figure 10(b) presents a photograph of the exper-
imental environment corresponding to the block diagram
shown in Figure 10(a). The PoC system includes two radio
computers, Radio Computer #1 and Radio Computer #2,
which are controlled using the double-layered structure con-
sisting of a CSL and each of the two RCFs, as introduced
in Section III. B and Section IV. A. Each of the two radio
computers emulates a base station system communicating
with Terminal #1 and Terminal #2, respectively, as shown in
Figure 10. For the PoC system, we implemented RA codes for
three RATs: (1) LTE Frequency Division Duplexing (FDD),
(2) LTE Time Division Duplexing (TDD), and (3) Wi-Fi. The
RA codes for (1) and (2) support all the physical channels
of the 3rd-generation partnership project (3GPP) Release 12,
while that for (3) complies with the IEEE 802.11 ac standards.
Table 2 shows the detailed specifications of each RA.

In the experimental environment shown in Figure 10,
Radio Computer #1 sends a dedicated video data stream to
Terminal #1 using LTE FDD or LTE TDD, whereas Radio
Computer #2 uses LTE FDD or Wi-Fi to transmit another
dedicated video data stream to Terminal #2. Both Terminals
#1 and #2 employ a CPU/GPU-based hardware platform that
supports all of the abovementioned RAs, i.e., LTE FDD, LTE
TDD, and Wi-Fi [30].

The key to the implementation in Figure 10 is that the PoC
system employs a double-layered structure consisting of a
CSL and RCF to perform RA management, as introduced
in Figure 4. In this section, we demonstrate the merit of the
double-layered structure, which provides high-level RA man-
agement. Based on the numerical results of the implemented
system, we verify that RA management can be achieved in
a uniform way using the double-layered structure with a
negligible overhead. The performance of the proposed system
is compared to that of an ordinary single-layered structure.
In more detail, RA management in the single-layered struc-
ture is controlled by a controller, and the corresponding con-
trol command is directly sent to each radio computer without
using the RCF. As explained later in this section, the hardware
platform for Radio Computer #1 consists solely of a DSP,

163431

IEEE Access

H. Ahn et al.: Data Plane Framework for SDRAN

gr—
CSL
Proposed
: t data plane
framework
ol ted Radio Radio (Section 1V)
mplemente c t: #2
PoC System™= Computer #1 omputer
RF RF
Transceiver Transceiver

A

—

LTE FDD
or
LTETDD

Terminal #1

Radio D%\E
Computer #1-4,
o

RE Transceiver

A
£

(b)

A

LTE FDD
or
Wi-Fi

Terminal #2

A o«
=
——, -

Data Stream #1'(RX) pata Stream-#2 (Rx)

Radio
Computerﬁzr

RF Transceiver
8&-Antenna

FIGURE 10. (a) Block diagram of the experimental environment. (b) Photograph of the

experimental environment.

while that of Radio Computer #2 consists of a CPU and
GPU, whose compilers are provided by the corresponding
vendors. For simplicity but without loss of generality, we used
an executable code for each RA code to determine the con-
figurations of Radio Computer #1 and Radio Computer #2,
implying that RVM was not implemented in our PoC. Note
that the RVM for back-end compilation and the Radio OS
shown in Figure 8 are supplied by the hardware platform
vendors, as mentioned in the previous section.

A. IMPLEMENTATION

Figure 11 presents the block-diagram of the implemented
PoC system that can employ either a single-layered or
double-layered control structure, depending on whether the
RA management command from the controller is sent
directly or indirectly (by way of the corresponding RCF)

163432

to the designated radio computer, respectively. As shown
in Figure 11, the implemented PoC system consists of the
following three parts: (1) a controller for RA management,
(2) a radio computer for L1/L.2 data plane processing, and
(3) an RF component for sending/receiving the RF signals.
As the RF component is outside the scope of this paper, our
discussion in this subsection focuses on the controller and
radio computer, which are included in the proposed data plane
framework shown in Figure 8.

Table 3 shows detailed specifications of the controller
and two radio computers included in the implemented PoC
system. The controller employs an Intel i5-5820K @ 3.3 GHz
with 16 GB random access memory (RAM) and Ubuntu
16.04 LTS as its hardware platform and OS, respectively.
A 1-gigabit ethernet (GbE) interface was used so that the
controller could transfer the RA management command to

VOLUME 7, 2019

H. Ahn et al.: Data Plane Framework for SDRAN

IEEE Access

<Pseudo code for activating a target
RA on Radio Computer #1>

<Pseudo code for activating a target
RA on Radio Computer #2>

transaction to initialize the network

netMemecpy (nDevice.mac_address,
ibl.bootMades[eldx] u.ethBoot.ethinfo.hwAdd
ress, sizeof{nDevice.mac_address));

{ open the network device
if {{*net_boot_module.open) ({void
*}&nDevice, ibl_rec_params) != 0} return;

es and act F 1€

entry = iblBoot (&net_boot_madule, format,
&ibl.bootModes[eld:
/{ close up the n

/f parameter setting for activ
STARTUPINFO Startupinfo = {0 };

Startupinfo.ch = sizeof(STARTUPINFO);
PROCESS_INFORMATION Processinfo;

path allocation of RA codes
char radio_application_path[200]
A ANLTE_FDD.exe”;

di nd activate RA codes
:CreateProcess(radio_application_path, NULL,
NULL, NULL, FALSE, O, NULL, NULL,
&Startruplnfo, &Processinfo);

WaitForSingleObject(Processinfo.hProcess,

(*net_boot_module.close)();
INFINITE);
= 4 ENTE —
" - e -
- - - -
~ - ~ e
-~ - Controller s -

-

~

RA Management for
Radio Computer #1

<
~ _ . - TPU (i5-5820K) & OS (Ubuntu 16.04 LTS) >~ _ .~
~

RA Management for
Radio Computer #2

Platform Platform
-Specific API U -spe:il'pc' API U
Radio 0S #1 Radio OS5 #2
(SYS/BIOS) (Windows 7)
Radio CPU Radi
Computer #1 Dsp {IZ:A700) Com pu::r #2
(TMDEVMS670L)
RF Transceiver
(USRP X300)
£y Antenna
(a) Block diagram of implemented PoC
system using single-layered structure
FIGURE 11. Block diagram of implemented PoC system.
TABLE 3. Specifications of the PoC system.
Radio Radio
Controller
Computer #1 Computer #2
@ cprU
CPU DSP Evaluation | (i7-4790
Hardware .
(15-5820K Board @ 3.6 GHz),
Platform
@33 GHz) | (TMDEVM6670L) | @ GPU (Geforce
GTX Titan)
Ubuntu SYS/BIOS version .
oS Windows 7
16.04 LTS 6.46.5.55
Operating LTE FDD LTE FDD
RAs j & LTE TDD & Wi-Fi
Hardware
Interface with - 1GbE 1GbE
Controller

the designated target radio computer and receive the cor-
responding response from the radio computer. Radio Com-
puter #1 uses a DSP evaluation board (TMDEVM6670L) and
SYS/BIOS version 6.46.5.55 as its hardware platform and
Radio OS, respectively. It supports LTE TDD and LTE FDD
RAs, as mentioned earlier. Radio Computer #2 uses both an
Intel i7-4790 @ 3.6 GHz with 24 GB RAM and an NVIDIA
Geforce GTX Titan as its hardware platform. Exploiting the
large number of cores provided in the GPU, all the paral-
lelizable L1/L2 data processing is performed using the GTX

VOLUME 7, 2019

<Standard API for activating
atarget RA
on Radio Computer #1>

<Standard API for activating
atarget RA

on Radio Computer #2>

AccessControlServices

.activateRAs

(RC2,RA1)

AccessControlServices
.activateRAs
(RC1,RAL)
Ay T > Ay #
% - Controller B ’

-

<

~ L7 CPU (i5-5820K) & OS5 (Ubuntu 16.04 LTS i #*

standard API
{MuRI)

standard AP|
(MURI)

Platform-
Specific API

Radio 05 #1
(s¥5/BI0S)

Radio 05 #2
(Windows 7)
= = Radio

Computer #2

Radio _J
Computer #1

Py
(i7-4790)
P ¢

GPU
(Geforce GTX 780 Ti)

RF Transceiver
(USRP X300)
£ Antenna

(b) Block diagram of implemented PoC system
using (the proposed) double-layered structure

DSP
(TMDEVME670L)

Titan GPU, while the sequential data processing and GPU
control are performed using the 17-4790 CPU. Windows 7
was employed as the Radio OS of Radio Computer #2 to
support LTE FDD and Wi-Fi, as mentioned earlier.

When the RA management command from the controller
is transferred directly to the target radio computer as shown
in Figure 11(a) (the single-layered structure), the RA manage-
ment command should be provided with the platform-specific
APIs corresponding to the target platform because the com-
mand should be executed directly on the target platform.
In contrast, in the case of the double-layered structure shown
in Figure 11(b), the RCF is prepared on top of the corre-
sponding Radio OS. In this case, as the RCF executes the
platform-specific APIs corresponding to the RA management
command sent from the CSL, users do not have to consider
platform-specific APIs for RA management.

Let us consider the pseudo codes given at the upper
side of Figure 11. For simplicity but without loss of gen-
erality, we considered an RA management command for
activating an RA. For the single-layered structure shown
in Figure 11(a), as the DSP is used as the hardware platform
in Radio Computer #1, the desired RA should be activated by
booting the DSP using the “iblBoot” API from the DSP chip
support library. Similarly, for Radio Computer #2, RA activa-
tion should be performed using “CreateProcess,” a window
API, as shown on the right-hand side of the upper part of

163433

IEEE Access

H. Ahn et al.: Data Plane Framework for SDRAN

i f
Data Stream #1 (Tx) Data Stream #2 (Tx) i
|

Controller

FIGURE 12. Photograph of implemented PoC system.

Figure 11(a). In contrast, for the case of the double-layered
structure in Figure 11(b), the platform-specific API does
not have to be considered at all. Activation of this RA
can be achieved simply by calling a standard API (i.e.,
MURI introduced in Section III. B.), “AccessControlSer-
vices.activateRAs(),” from the CSL. Not just the RA activa-
tion, but any RA management can be achieved by calling the
corresponding MURI from the CSL, as shown in the upper
part of Figure 11(b).

In short, by using the double-layered structure, users can
achieve RA management in a uniform way with the standard
API, i.e., MURI, without having to consider platform-specific
APIs.

Figure 12 presents a photograph of the implemented
PoC system consisting of RF parts and the proposed data
plane framework. Figure 12 exactly corresponds to the
block diagram shown in Figure 11(b), which employs the
double-layered structure for controlling RA management.
As mentioned earlier, the controller implemented with the
CPU transfers the RA management command to the RCF of
the designated radio computer via the 1GbE interface. For
example, upon the arrival of the activation command, the RCF
executes the command, allowing the target RA to become
active on the platform of the designated radio computer. Then,
the data stream is sent from the designated radio computer
to the corresponding terminal using the RA activated by this
command.

B. NUMERICAL RESULTS

In the previous subsection, it was observed that the proposed
double-layered structure provides a high-level abstraction
for RA management without having to consider platform-
specific commands. To achieve this, however, the RCF should
be implemented on the Radio OS of each radio computer,
which may cause some additional overhead. Table 4 shows
the computational resource utilization and memory footprint

163434

TABLE 4. Comparisons of resource utilization status in single-layered
and double-layered structures.

Radio Computer #1 Radio Computer #2
wo RCF w RCF wo RCF w RCF
Computational
resource 7.2 9.7 3.8 5.1
utilization (%)
Memory
footprint (MB) 8.8 10.7 4.6 64

overhead according to the employment of the RCF at each
radio computer involved in our PoC system. As the RCF for
activating the desired RA is overlaid on top of the Radio
OS (SYS/BIOS version 6.46.5.55), the required computa-
tional resources are increased by approximately 2.5%, and
the memory footprint increased by approximately 1.9 MB
for Radio Computer #1. Similarly, as the same RCF (i.e.,
the activation of the desired RA) is added to the Radio OS
(Windows 7), the required computational resources and mem-
ory footprint increased by approximately 1.3% and 1.8 MB,
respectively, for Radio Computer #2. From this analysis,
it can be concluded that implementation of the RCF on
the corresponding Radio OS does not cause considerable
overhead. In fact, the increase in computational resource
utilization by 1.3%-2.5% is almost equivalent to adding a
low-complexity functional block into the RA. For instance,
the scrambler functional block required in both LTE FDD
and LTE TDD requires about a 3.2% and 1.7% increase in
computational resources for Radio Computer #1 and Radio
Computer #2, respectively. Furthermore, as the total memory
sizes for Radio Computer #1 and Radio Computer #2 are
nearly 512 MB and 24 GB, respectively, the increase in
memory footprint due to the addition of the RCF is negligible.

Table 5 shows the time required for the PoC system to
generate the RA management command and receive exe-
cution acknowledgement from each radio computer in our
implemented PoC system. In Table 5, we present the times
for (1) activation/deactivation of the RA, (2) creation/deletion
of data flows, and (3) report of the computational/spectral
resource status and context information. These measure-
ments are required for reconfiguring the hardware platform
as shown in the use case, ‘“‘high-level abstraction for multi-
RAT management in heterogeneous networks,” introduced in
the previous section. When the RCF is overlaid on the Radio
OS in both Radio Computer #1 and Radio Computer #2,
the round-trip time is increased by 0.019 ms and 0.0144 ms
on average, respectively, which is less than a 4.95% increase,
as shown in Table 5. Consequently, the latency increase of

VOLUME 7, 2019

H. Ahn et al.: Data Plane Framework for SDRAN

IEEE Access

TABLE 5. Round-trip time for RA management command to start from
CSL and come back to CSL from the RCF of each radio computer.

Radio Computer #1 | Radio Computer #2
wo w | Increase| wo w | Increase
RCF |RCF| (%) |RCF|RCF (%)

18.93 | 18.95 7.487 | 7.5

RA activation 0.11 : 0.17
ms ms ms ms

RA deactivation 21241 2.14 0.75 11341 115 1.41
ms ms ms ms

Data flow creation 0.5111 0.529 3.52 0.468 1 0.481 2.78
ms ms ms ms

Data flow deletion 0467 | 0.485 3.85 04511 0.463 2.66
ms ms ms ms

Computational/spectral 0.444 | 0.466 0.438 | 0.456
resource status, context | i 4.95 . . 4.11

information report

the RA management command to travel the double-layered
structure is negligible.

VI. CONCLUSION

In this paper, we have demonstrated that the proposed frame-
work is suitable for instantiating the specific needs of the
SDRAN data plane. The proposed approach provides an
explicit solution for programmability and software portability
for the SDRAN data plane. Using an RVM as an abstract
machine, RA codes can be ported to various kinds of het-
erogeneous hardware platforms in a BBU pool. To provide
joint optimization of both software and hardware when exe-
cuting the RA code, the RVM uses a platform-specific native
radio library. For RA management, the proposed data plane
framework employs a double-layered structure consisting of
a CSL and RCFs, thus providing a uniform way of managing
RAs executed on heterogeneous hardware platforms. Further-
more, the feasibility of the proposed data plane framework
is verified through a PoC system with the proposed double-
layered structure. Based on the implemented PoC system,
users can easily perform RA management with a negligible
increase in hardware costs. The PoC system consists of a main
controller (CSL) and two radio computers, DSP-based Radio
Computer #1 and CPU/GPU-based Radio Computer #2. The
additional amounts of computational resources and memory
footprint due to the proposed double-layered structure are
1.9% and 1.8 MB, respectively, and the additional latency of
RA management commands is only 0.017 ms.

REFERENCES

[11 A. Gupta and E. R. K. Jha, “A survey of 5G network: Architecture and
emerging technologies,” IEEE Access, vol. 3, pp. 1206-1232, Jul. 2015.

[2] P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris,
V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5G on the horizon: Key
challenges for the radio-access network,” IEEE Veh. Technol. Mag., vol. 8,
no. 3, pp. 47-53, Sep. 2013.

[3] T.Chen, M. Matinmikko, X. Chen, X. Zhou, and P. Ahokangas, ‘“Software
defined mobile networks: Concept, survey, and research directions,” IEEE
Commun. Mag., vol. 53, no. 11, pp. 126-133, Nov. 2015.

VOLUME 7, 2019

[4]

[5]

[6]

[71

[8]

9

—

[10]

[11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

I. T. Haque and N. Abu-Ghazaleh, ‘“Wireless software defined networking:
A survey and taxonomy,” IEEE Commun. Surveys Tuts., vol. 18, no. 4,
pp. 2713-2737, 4th Quart., 2016.

M. Bansal, J. Mehlman, S. Katti, and P. Levis, “OpenRadio: A pro-
grammable wireless dataplane,” in Proc. Workshop Hot Topics (SDN),
Helsinki, Finland, Aug. 2012, pp. 109-114.

W. Wu, L. E. Li, A. Panda, and S. Shenker, “PRAN: Programmable
radio access networks,” in Proc. 13th ACM Workshop Hot Topics Netw.
(HotNets), New York, NY, USA, Oct. 2014, pp. 1-6.

X. Ge, J. Yang, H. Gharavi, and Y. Sun, “Energy efficiency challenges of
5G small cell networks,” IEEE Commun. Mag., vol. 55,no. 5, pp. 184-191,
May 2017.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras,
M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—
A technology overview,” IEEE Commun. Surveys Tuts., vol. 17, no. 1,
pp. 405426, 1st Quart., 2014.

Y. Yang, J. Xu, G. Shi, and C.-X. Wang, 5G Wireless Systems: Simulation
and Evaluation Techniques. New York, NY, USA: Springer, 2017.

B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtu-
alization: Challenges and opportunities for innovations,” IEEE Commun.
Mag., vol. 53, no. 2, pp. 90-97, Feb. 2015.

V. G. Nguyen, A. Brunstrom, K.-J. Grinnemo, and J. Taheri, “SDN/NFV-
based mobile packet core network architectures: A survey,” IEEE Com-
mun. Surveys Tuts., vol. 19, no. 3, pp. 1567-1602, 3rd Quart., 2017.
Reconfigurable Radio Systems (RRS); Radio Reconfiguration Related
Architecture for Mobile Devices, Standard ETSI EN 303 095, Jun. 2015.
Reconfigurable Radio Systems (RRS); Mobile Device Information Models
and Protocols; Part 1: Multiradio Interface (MURI), Standard ETSI EN
303 146-1, Nov. 2015.

Reconfigurable Radio Systems (RRS); Mobile Device Information Models
and Protocols; Part4: Radio Programming Interface (RPI), Standard ETSI
EN 303 146-4, Apr. 2017.

V. Ivanov, M. Mueck, S. Choi, H. Ahn, K. Kim, and E. C. Strinati, ‘“‘Radio
virtual machine,” in Proc. IEEE Globecom Workshops (GC Wkshps),
Singapore, Dec. 2017, pp. 1-6.

A. Gudipati, D. Perry, L. Li, and S. Katti, “SoftRAN: Software defined
radio access network,” in Proc. SIGCOMM Workshop Hot Topics (SDN),
Hong Kong, Aug. 2013, pp. 25-30.

X. Foukas, N. Nikaein, M. M. Kassem, and K. Kontovasilis, ‘“FlexRAN:
A flexible and programmable platform for software-defined radio access
networks,” in Proc. ACM CoNEXT, Irvine, CA, USA, Dec. 2016,
pp. 427-441.

E. Coronado, S. N. Khan, and R. Riggio, “5G-EmPOWER: A software-
defined networking platform for 5G radio access networks,” IEEE Trans.
Netw. Service Manag., vol. 16, no. 2, pp. 715728, Jun. 2019.

K. Koutlia, R. Ferris, E. Coronado, R. Riggio, F. Casadevall,
A. Umbert, and J. Pérez-Romero, “Design and experimental validation
of a software-defined radio access network testbed with slicing
support,” Wireless Commun. Mobile Comput., vol. 2019, Jun. 2019,
Art. no. 2361352. Accessed: Sep. 3, 2019. [Online]. Available:
https://www.hindawi.com/journals/wecmc/2019/2361352/abs/

J.Zhang, Y. Ji,J. Zhang, R. Gu, Y. Zhao, S. Liu, K. Xu, M. Song, H. Li, and
X. Wang, “Baseband unit cloud interconnection enabled by flexible grid
optical networks with software defined elasticity,” IEEE Commun. Mag.,
vol. 53, no. 9, pp. 90-98, Sep. 2015.

JINC. (Aug. 2015). Software Communications Architecture
Specification V4.1. [Online]. Available: http://www.public.navy.mil/
jtnc/SCA/SCAv4_1_Final/SCA_4.1_ScaSpecification.pdf

F. Ambrosini, P. Bender, S. Cadzow, S. Choi, V. Ivanov, M. Pagnozzi, and
1. Siaud, ““Software radio reconfiguration: A highly efficient and modular
software reconfiguration approach for mobile devices,” Eur. Telecommun.
Standards Inst., Tech. Committee, Reconfigurable Radio Syst., Sophia
Antipolis, France, White Paper ETSI 21, Oct. 2017. [Online]. Available:
http://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp21_RRS_
FINAL.pdf

Network Functions Virtualisation (NFV); Virtualisation Technologies;
Report on the Application of Different Virtualisation Technologies in the
NFV Framework, Standard ETSI GS NFV-EVE 004, Mar. 2016.

OPNFV. (2017). Open platform for NFV. Accessed: Oct. 8,2019. [Online].
Available: https://www.opnfv.org/

D. Rapone, R. Quasso, S. B. Chundrigar, S. T. Talat, L. Cominardi,
A. De la Oliva, P-H. Kuo, A. Mourad, A. Colazzo, G. Parmeggiani,
A.Z. Orive, C. Lu, and C.-Y. Li, “An integrated, virtualized joint edge and
fog computing system with multi-RAT convergence,” in Proc. IEEE Int.
Symp. Broadband Multimedia Syst. Broadcast. (BMSB), Valencia, Spain,
Jun. 2018, pp. 1-5.

163435

IEEE Access

H. Ahn et al.: Data Plane Framework for SDRAN

[26]

[27]

[28]

[29]

[30]

R. Wang, H. Hu, and X. Yang, “Potentials and challenges of C-RAN
supporting multi-RATSs toward 5G mobile networks,” IEEE Access, vol. 2,
pp. 1187-1195, 2014.

3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; E-UTRA and NR; Multi-connectivity; Stage 2 (Release
15), document TS 36.300, 3GPP, Mar. 2019.

M. Feng, S. Mao, and T. Jiang, “Base station ON-OFF switching in 5G
wireless networks: Approaches and challenges,” IEEE Wireless Commun.,
vol. 24, no. 4, pp. 46-54, Aug. 2017.

X. Lin and H. Viswanathan, “Dynamic spectrum refarming with overlay
for legacy devices,” IEEE Trans. Wireless Commun., vol. 12, no. 10,
pp. 5282-5293, Oct. 2013.

Y. Jin, C. Ahn, S. Choi, M. Mueck, V. Ivanov, and T. K. Sarkar, “Design
and implementation of ETSI-standard reconfigurable mobile device for
heterogeneous network,” IEICE Trans. Commun., vol. E99-B, no. 8,
pp. 1874-1883, Aug. 2016.

HEUNGSEOP AHN received the B.S. degree
from Hanyang University, Seoul, South Korea,
in 2013, where he is currently pursuing the Ph.D.

- degree with the Department of Electronics and

- -~ . . .
Computer Engineering. His current researches
e focus on reconfigurable systems, RAN architec-

ture, virtualization, LTE-A, mmWave communi-

o cations, cellular network planning, and various
MIMO.

SEUNGWON CHOI received the M.S. degree
in computer engineering and the Ph.D. degree in
electrical engineering from Syracuse University,
Syracuse, NY, USA, in 1985 and 1988, respec-
tively. From 1988 to 1989, he was with the
Department of Electrical and Computer Engineer-
ing, Syracuse University, as an Assistant Profes-
sor. He joined Hanyang University, Seoul, South
Korea, in 1992, as an Assistant Professor, where
he is currently a Professor with the School of

Electrical and Computer Engineering. His research interests include software
reconfiguration, digital communications with a recent focus on the imple-
mentation of various kinds of MIMO systems for mobile communication
systems.

163436

MARKUS MUECK received the Diploma degree
in electrical engineering from the University of
Stuttgart, Germany, and Ecole Nationale Supériere
des Télécommunications (ENST), Paris, France,
in 1999, and the Ph.D. degree from ENST, in 2006.
He is currently the Senior Standardization Man-
ager with Intel Germany GmbH, and also an
Adjunct Professor with the University of Tech-
nology, Sydney, Australia. He is a member of the
Board with ETSI, the Chairman of ETSI Reconfig-
urable Radio Systems Technical Body, and the IEEE Special Interest Group
on Cognitive Radio in 5G.

VLADIMIR IVANOV received the Diploma degree
in mathematics from Novosibirsk State Univer-
sity, Russia, in 1979, and the Ph.D. degree
in computer science from Military Communica-
tion Academy, Saint Petersburg, Russia, in 1989.
In 2003, he joined Intel Corporation. He con-
tributed to the IEEE P1900.4 WG (protocols for
cognitive radio), where he acted as the Chair of
the System Architecture Subgroup. From 2014 to
2016, he was with LG Electronics, as a Principal
Research Engineer. In 2016, he joined Saint Petersburg State University of
Aerospace Instrumentation, Russia, as a Professor. His research interests
include automated electronic design (ESL and HLS), the mathematical foun-
dations of electronic design, concurrent computations, and reconfigurable
radio.

VOLUME 7, 2019

