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ABSTRACT Recently, it has received a great deal of attention to analyze the electromagnetic wave problems
in dispersive media by using the finite-difference time-domain (FDTD) method. Accordingly, it is of great
importance to employ a proper dispersion model which can fit the frequency-dependent permittivity of a
medium considered. The reported dispersion models include Debye, Drude, Lorentz, modified Lorentz,
quadratic complex rational function, complex-conjugate pole-residue (CCPR)models. The CCPR dispersion
model has advantage over other dispersion models in the fact that accurate CCPR dispersion parameters
can be simply extracted by using the powerful and robust vector fitting tool which has been widely used
in the circuit theory. However, the arithmetic operation of CCPR-based FDTD implementation is involved
with complex-valued numbers and thus its numerical computation is not efficient. In this work, we propose
an accurate and efficient FDTD simulation for complex dispersive media. In specific, an accurate CCPR
dispersion model is simply obtained using the vector fitting tool and then the CCPR dispersion model is
converted to the modified Lorentz dispersion model which leads to the arithmetic operation of only real-
valued numbers in its FDTD implementation. Numerical examples are used to illustrate the accuracy and
efficiency of our dispersive FDTD simulation.

INDEX TERMS Dispersionmodel, dispersivemedia, finite-difference time-domain (FDTD)method, human
tissue, plasmonics.

I. INTRODUCTION
The finite-difference time-domain (FDTD) method has been
popularly employed to analyze a variety of electromag-
netic (EM) wave problems because of its simplicity, robust-
ness, and accuracy [1]–[4]. For exmaple, FDTD method was
successfully employed for complex dispersive media [5]–[7].
Until now, a variety of dispersion models to fit the frequency-
dependent permittivity has been introduced such as Debye,
Drude, Lorentz, modified Lorentz, quadratic complex ratio-
nal function (QCRF), and complex-conjugate pole-residue
(CCPR) models [8]–[16]. For biological tissues, the Cole-
Cole model [17] or high-order Debye model [18] has been
widely used. However, for the Cole-Colemodel, the computa-
tional costs of its FDTD implementation are overwhelmingly
huge because the fractional order differentiator is involved
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with FDTD update equations [19]. For the high-order Debye
model, complicated optimization techniques are needed to
extract Debye parameters. Proper initial values should be
employed to yield accurate modeling, otherwise it may lead
to inaccurate modeling [20].

Alternatively, the CCPR dispersion model can be accu-
rately obtained with the help of the powerful and robust
vector fitting technique [21] which is really easy to use
and also freely available [22]. Differently from other dis-
persion models, initial values are not needed in the CCPR
dispersion model. There are various FDTD methods for
dispersive media, including recursive convolution, piece-
wise linear recursive convolution, Z transform, and aux-
iliary differential equation (ADE) methods [23]–[25]. The
ADE-FDTD method can be used to obtain simpler arith-
metic operations than others and it can be also extended
to nonlinear dispersive media problems [12]. The CCPR
dispersion model is widely used with ADE-FDTD method
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TABLE 1. Pros and cons of various FDTD dispersion models.

due to the complex conjugate property of auxiliary variables.
When the ADE-FDTD method is applied to the CCPR dis-
persion model, the resulting FDTD simulation should treat
complex-valued variables. Therefore, the computational costs
of CCPR-based FDTD simulations are not efficient, although
the formulation of CCPR-FDTD seems to be simple.

The dispersion model consisting only of real-valued
parameters is highly necessary to efficiently simulate disper-
sive media using the FDTDmethod. In the aspect of accuracy,
the degree of freedom of the modified Lorentz and QCRF
dispersion models is greater than Debye, Drude, and Lorentz
models. The formulation of QCRF-based FDTD is based on
the constitutive relation between the electric flux density and
the electric field, so that it is not straightforward to extend
to multi-pole cases. On the other hand, modified Lorentz-
based FDTD can be easily extended tomulti-term cases by the
constitutive relation between the current density and the elec-
tric field. In addition, the parameters of the modified Lorentz
dispersion model can be obtained by converting the CCPR
dispersion model with simple mathematical manipulations.
Pros and cons of aforementioned FDTD dispersion models
are summarized in Table 1.

In this work, we propose an accurate and efficient FDTD
simulation for complex dispersive media based on the mod-
ified Lorentz-FDTD formulation converted from the CCPR
dispersion model. It will be shown that the number of arith-
metic operations for modified Lorentz-FDTD is less than the
CCPR-FDTD counterpart by investigating their FDTD for-
mulations. Finally, various numerical examples are employed
to illustrate the accuracy and efficiency of the proposed
FDTD simulation for complex dispersive media.

II. FDTD FORMULATIONS
The main idea of our work is to perform FDTD update based
on the modified Lorentz model which is converted from
CCPR parameters. To sum up, the proposed dispersive-FDTD
procedure is as follows:
i) To extract the CCPR parameters by using the powerful
and robust vector fitting tool.
ii) To convert the parameters of the CCPR model to those
of the modified Lorentz model (by the relation that will be
presented).

iii) To proceed the dispersive-FDTD update based on the
modified Lorentz model.

In followings, we quantitatively compare the computational
efficiency of CCPR-FDTD and the modified Lorentz coun-
terpart in detail.

In what follows, an ejωt time dependence is assumed. For
nonmagnetic materials, the update equation of the magnetic
field H can be derived by applying the conventional central
difference scheme (CDS) to Faraday’s law and the resulting
FDTD update equation is

Hn+1/2
= Hn−1/2

−
1t

µ0
∇ × En, (1)

where µ0 is the magnetic permeability of the free space,
1t denotes the FDTD time step size, and the superscript
indicates the time index. In this work, the update equation
of CCPR-FDTD and the modified Lorentz counterpart will
be obtained by using the relation between the current field, J,
and electric field, E, which is originated from Ampere’s law
in the frequency domain,

∇ ×H(ω) = jωε0εr (ω)E(ω), (2)

where ε0 is the electric permittivity of the free space, εr (ω) =
εr,∞ + χ (ω), and εr,∞ is relative permittivity at infinite
frequency. The constitutive relation between J field and E
field is

J(ω) = jωε0χ (ω)E(ω). (3)

A. CCPR-FDTD
The relative permittivity of the CCPRmodel can be expressed
as

εr (ω) = εr,∞ +
M∑
q=1

(
rq

jω − pq
+

r∗q
jω − p∗q

)
. (4)

By the constitutive relation, we can express as

Jq(ω) = jωε0
rq

jω − pq
E(ω), (5)

Jcq(ω) = jωε0
r∗q

jω − p∗q
E(ω). (6)
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By converting the frequency domain into the time domain,
it is known that Jq(t) and Jcq(t) are conjugate pair. Therefore,
it suffices to store only one component of current field,
Jq. The update equation of Jq can be obtained by applying
inverse Fourier transform (IFT) and CDS to the constitutive
relation (5),

Jn+1q = kqJnq + βq
En+1 − En

1t
, (7)

where

kq =
1+ pq1t/2
1− pq1t/2

and βq =
ε0rq1t

1− pq1t/2
. (8)

The E field can be updated by applying IFT and CDS to
Ampere’s law (2),

∇ ×Hn+1/2
= ε∞

En+1 − En

1t
+ 2Re

( M∑
q=1

Jn+1/2q

)
, (9)

where ε∞ = ε0εr,∞.
The J field at (n+1/2)1t is not defined. Therefore, J

n+1/2
q '

0.5(Jn+1q + Jnq) is used. The update equation of E field can be
obtained by combining the auxiliary differential equation (7)
with Ampere’s law (9),

En+1 = En +
1t

ε∞ +
∑M

q=1 Re(βq)

[
∇ ×Hn+1/2

−Re
( M∑
q=1

(kq + 1)Jnq

)]
. (10)

Note that when the parameters of the CCPR dispersion model
are real-valued numbers, the last term (the complex conju-
gate term) in (4) disappears and thus this dispersion model
is equivalent to the Debye model. In this case, the update
equation of electric field E can be

En+1 = En +
1t

ε∞ +
∑M

q=1 βq/2

[
∇ ×Hn+1/2

−

( M∑
q=1

kq + 1
2

Jnq

)]
. (11)

To unify above two update equations, let us introduce new
FDTD coefficients Bq and Kq. Note that Bq = 0.5βq for
the real parameter and Bq = βq for the complex parameter.
In the similar manner, Kq indicates 0.5(kq + 1) for the real
parameter or (kq + 1) for the complex parameter. The final
update equation of E field is

En+1 = En +
1t

ε∞ +
∑M

q=1 Re(Bq)

[
∇ ×Hn+1/2

−Re
( M∑
q=1

KqJnq

)]
. (12)

The update procedures are as follows: update the magnetic
field H by using the Faraday’s law (1). After updating
the electric field E based on Ampere’s law (12), update

TABLE 2. The number of arithmetic operations for CCPR-FDTD
(per computational cell and field component).

the current field J by the constitutive relation between
E and J (7).
Let us consider the number of arithmetic operations in

updating one component of E and J (e.g., Ex and Jx). In
practical FDTD simulation, all multiplicative factors are pre-
computed before FDTD time marching [26]. For example,
the update equation of Ex is

Ex |
n+1
i+1/2,j,k = Ex |ni+1/2,j,k − Re

( M∑
q=1

(
C1,qJx,q|ni+1/2,j,k

))
+C2

(
Hz|

n+1/2
i+1/2,j+1/2,k − Hz|

n+1/2
i+1/2,j−1/2,k

)
−C3

(
Hy|

n+1/2
i+1/2,j,k+1/2 − Hy|

n+1/2
i+1/2,j,k−1/2

)
,

(13)

where

C1,q =
Kq1t

ε∞+
∑M

q=1 Re(Bq)
, C2=

1
1y

1t

ε∞+
∑M

q=1 Re(Bq)

C3 =
1
1z

1t

ε∞ +
∑M

q=1 Re(Bq)
. (14)

Note that the subscript denotes the space index. To update
one component of E field, five addition and subtraction (A/S)
of real-valued numbers and (M − 1) A/S of complex-valued
numbers are required, while two multiplication and division
(M/D) of real-valued numbers andM M/D of complex-valued
numbers are required. The required number of arithmetic
operation to update one component of J field can be found
by following the similar procedures as the update equation of
E. It is listed on Table 2. For updating one component of E
and J, two real-valued field variables (En+1x and Enx ) and M
complex-valued field variables (Jnx,q) are required. Note that
memory storage for Jn+1x,q is not required since it can overwrite
its previous value.

B. MODIFIED LORENTZ-FDTD
The modified Lorentz model can be simply converted from
the CCPR model, as alluded to earlier. The conversion pro-
cedure should be performed separately whether the CCPR
parameter is complex-valued or real-valued. Toward this pur-
pose, the CCPR model can be written as

εr,∞ +

MC∑
q=1

(
rq

jω − pq
+

r∗q
jω − p∗q

)
+

MR∑
q=1

rMC+q

jω − pMC+q
,

(15)

where MC denotes the number of complex-valued param-
eters, MR real-valued parameters, and MC + MR = M .
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The modified Lorentz model can be expressed as

εr (ω) = εr,∞ +
N∑
q=1

a0,q + a1,q(jω)
b0,q + b1,q(jω)+ b2,q(jω)2

, (16)

where N is the number of modified Lorentz terms which
will be mentioned later. Themodified Lorentz parameters can
be converted from the CCPR term with complex parameters
(q ≤ MC ) as

a0,q = −2Re(pqr∗q ), a1,q = 2Re(rq),

b0,q = |pq|2, b1,q = −2Re(pq), b2,q = 1. (17)

For the real parameters of the CCPR model (q > MC ),
the modified Lorentz parameters can be easily obtained
by combining two CCPR terms with real parameters
simultaneously:

a0,q = −(p2q−MC−1r2q−MC + p2q−MC r2q−MC−1),

a1,q = r2q−MC−1 + r2q−MC , b0,q = p2q−MC−1p2q−MC ,

b1,q = −(p2q−MC−1 + p2q−MC ), b2,q = 1. (18)

For odd-numbered MR, there exists one remaining CCPR
termwith real-valued parameters and the equivalent modified
Lorentz parameters can be simply written as

a0,N = rM , a1,N = 0,

b0,N = −pM , b1,N = 1, b2,N = 0. (19)

Note that N = M − MR/2 for even-numbered MR or N =
M −MR/2+ 1/2 for odd-numbered MR.
For the update equations of modified Lorentz-FDTD,

we consider Ampere’s law (2) and the constitutive relation
between E and J (3):

∇ ×Hn+1/2
= ε∞

En+1 − En

1t
+

N∑
q=1

Jn+1/2q , (20)

Jq = jωε0
a0,q + a1,q(jω)

b0,q + b1,q(jω)+ b2,q(jω)2
E. (21)

To update the J field, IFT and CDS are applied. In addition,
double averaging scheme [8], [27] is applied to the zeroth
order term,

f −→
f n+1 + 2f n + f n−1

4
. (22)

Therefore, the final update equation of J field can be obtained

Ca,qJn+1q + Cb,qJnq + Cc,qJ
n−1
q

= Cd,qEn+1 + Ce,qEn + Cf ,qEn−1, (23)

where

Ca,q = b0,q12
t + 2b1,q1t + 4b2,q,

Cb,q = 2b0,q12
t − 8b2,q,

Cc,q = b0,q12
t − 2b1,q1t + 4b2,q,

Cd,q = 2a0,qε01t + 4a1,qε0,

Ce,q = −8a1,qε0, Cf ,q = −2a0,qε01t + 4a1,qε0. (24)

The update equation of E can be obtained by combining the
above auxiliary equation (23) with Ampere’s law (20),(

ε∞

1t
+

N∑
q=1

Cd,q
2Ca,q

)
En+1

=

(
ε∞

1t
−

N∑
q=1

Ce,q
2Ca,q

)
En

−

( N∑
q=1

Cf ,q
2Ca,q

)
En−1 +∇ ×Hn+1/2

+

N∑
q=1

Cb,q − Ca,q
2Ca,q

Jnq +
N∑
q=1

Cc,q
2Ca,q

Jn−1q . (25)

The update procedures of modified Lorentz-FDTD are same
as the CCPR counterpart. The required number of arithmetic
operations of modified Lorentz-FDTD is less than the CCPR
counterpart because the former contains only real-valued
variables. For example, the update equation of Ex is

Ex |
n+1
i+1/2,j,k

= C1Ex |ni+1/2,j,k − C2Ex |
n−1
i+1/2,j,k

+C3
(
Hz|

n+1/2
i+1/2,j+1/2,k − Hz|

n+1/2
i+1/2,j−1/2,k

)
−C4

(
Hy|

n+1/2
i+1/2,j,k+1/2 − Hy|

n+1/2
i+1/2,j,k−1/2

)
+

N∑
q=1

(
C5,qJx,q|ni+1/2,j,k

)
+

N∑
q=1

(
C6,qJx,q|

n−1
i+1/2,j,k

)
,

(26)

where

C1 =

ε∞
1t
−
∑N

q=1
Ce,q
2Ca,q

ε∞
1t
+
∑N

q=1
Cd,q
2Ca,q

, C2 =

∑N
q=1

Cf ,q
2Ca,q

ε∞
1t
+
∑N

q=1
Cd,q
2Ca,q

,

C3 =
1
1y

1
ε∞
1t
+
∑N

q=1
Cd,q
2Ca,q

, C4=
1
1z

1
ε∞
1t
+
∑N

q=1
Cd,q
2Ca,q

,

C5,q =

Cb,q−Ca,q
2Ca,q

ε∞
1t
+
∑N

q=1
Cd,q
2Ca,q

, C6,q=

Cc,q
2Ca,q

ε∞
1t
+
∑N

q=1
Cd,q
2Ca,q

.

(27)

The number of arithmetic operations of modified
Lorentz-FDTD is listed on Table 3. In terms of memory
costs, three real-valued variables (En+1x , Enx , and E

n−1
x ) and

2N real-valued variables (Jnx,q and Jn−1x,q ) are required per
computational cell and E and J field components. Note that
memory storage for Jn+1x,q is not required since it can overwrite
its previous value.

It is not straightforward to compare the number of
arithmetic operations of the both FDTD formulations because
CCPR-FDTD contains complex-valued operations but mod-
ified Lorentz-FDTD performs only real-valued operations.
Let us consider the operation of two complex-valued num-
bers. One A/S of two complex-valued numbers contains
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TABLE 3. The number of arithmetic operations for modified Lorentz-FDTD
(per computational cell and field component).

TABLE 4. Computational efficiency based on real-valued numbers
(per computational cell and E and J field components).

FIGURE 1. Complex permittivity of human fat. Red solid lines indicate the
fitted curve dispersion model and black circles indicate Gabriel’s
dielectric properties provided by IFAC [28].

two A/S, while M/D of those does two A/S and four M/D.
To sum up, Table 4 shows the required number of real-
valued arithmetic operations in terms of Ex and Jx . It can be
found out that the number for updating CCPR-FDTD listed
in Table 4 grows faster than the modified Lorentz counterpart
as the number of poles increases. It is also important to com-
pare CCPR-FDTD with modified Lorentz-FDTD in terms of
memory requirement. Note that one complex-valued variable
should be assigned to two real-valued memory. As shown
in Table 4, 2M + 2 and 2N + 3 real-valued memory allo-
cations are required for CCPR-FDTD and modified Lorentz-
FDTD respectively (per computational cell and E and J field
components)..

III. NUMERICAL EXAMPLES
In this section, FDTD simulations are performed for the
CCPR dispersion model and the modified Lorentz model,
highlighting the comparison of their computational effi-
ciency. All FDTD simulations are performed on Intel
i7-6700 CPU. First, let us consider an inhomogenous one-
dimensional (1-D) case of human fat in the frequency range
of 0.3–3 GHz. The complex relative permittivity of human
fat can be found in [28]. The CCPR parameters are easily
obtained by the powerful vector fitting tool [22] and they are
listed in Table 5. As shown in Fig. 1, the vector fitting algo-
rithm is accurate to extract the CCPR parameters. Note that
the modified Lorentz parameters are obtained from the CCPR
parameters, as mentioned previously. For the 1-D FDTD
simulations, the space step size 1z = 1 mm, the time step

FIGURE 2. 1-D FDTD simulation results for human fat in 0.3–3 GHz.
(a) Amplitude of reflection coefficient. (b) Angle of reflection coefficient.

FIGURE 3. Complex permittivity of human dry skin. Red solid lines
indicate the fitted curve dispersion model and black circles indicate
Gabriel’s dielectric properties provided by IFAC [28].

size 1t = Cn1z/c0, and the Courant number Cn = 0.99 are
employed. Note that c0 = 1/

√
µ0ε0 and the maximum time

step size 1t is derived by applying von Neumann method to
satisfy the numerical stability condition [29]. The Gaussian-
modulated sinewave is excited in the freespace and the com-
putational domain of 10,000 FDTD cells is truncated by the
10 layer of perfectly matched layer (PML) [2]. To compare
the 1-D FDTD results with theory [30], the reflection coeffi-
cient is obtained. The reflection coefficient for the two FDTD
simulations is same to each other and both simulations yield
accurate result compared to the theoretical value as shown
in Fig. 2. The CPU time of CCPR-FDTD is approximately
44 % slower than that of the modified Lorentz counterpart.

Next, we consider a homogenous two-dimensional (2-D)
problem. The vector fitting tool is again used to extract
the CCPR parameters of human dry skin from 10 MHz to
100 GHz [28]. The extracted CCPR parameters are found
in Table 5. As shown in Fig. 3, the CCPR dispersion model
agrees verywell withGabriel’s data [28]. In this 2-D example,
the FDTD space step size 1x = 1y = 0.55 mm and the

time step size 1t = Cn/
(
c∞
√
1/12

x + 1/12
y
)
are employed

and the other conditions are the same as the 1-D case. Note
that c∞ = 1/

√
µ0ε∞. As shown in Fig. 4, both FDTD

simulations of human dry skin are same. The CCPR-FDTD
simulation takes longer time approximately 66 % than the
modified Lorentz-FDTD simulation in this example. In addi-
tion, the latter has advantage about 23% over the former in the
aspect of the memory cost as can be expected from Table 4.

As a final example, a 3-D Au nanosphere with the radius
of 40 nm is placed at the center of the FDTD compu-
tational domain of 150×150×150. The CCPR dispersion
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TABLE 5. CCPR parameters of numerical examples.

FIGURE 4. 2-D FDTD simulation results for dry skin in 10 MHz–100 GHz.

model for Au is adopted from [31]. The space step size
1x = 1y = 1z = 1 nm and the time step size

1t = Cn/
(
c0
√
1/12

x + 1/12
y + 1/12

z
)
are used. The total

number of time marching step is 20,000. An x-polarized
Gaussian-modulated sinewave on the xy plane is excited and
the 10-layer complex frequency shifted (CFS)-PML [2], [32]
is used to terminate the computational domain. The magni-
tude of Ex at the center of the sphere normalized by the inci-
dent field is calculated for the comparison of Mie theory [33].
Fig. 5 shows the spectral response of the normalized Ex .
As shown in Fig. 5, the results of the two FDTD formulations
agree well with each other and both are accurate compared to
the Mie theory. It takes 7.25 hours for the CCPR simulation,

FIGURE 5. 3-D FDTD simulation results for Au in 270–750 THz.

while only 6.17 hours for the modified Lorentz counterpart.
For the memory cost, the former takes less memory about
8 % than the latter because the CCPR parameters only con-
sist of complex-valued number. The CPU time and memory
requirement for three numerical examples are summarized
in Table 6.

It is worth discussing the CPU time acceleration of mod-
ified Lorentz-FDTD against CCPR-FDTD in more details.
In all numerical examples presented above, the computa-
tional time of modified Lorentz-FDTD is superior to that
of CCPR-FDTD. This can be inferred from the number of
arithmetic operation count in Table 4. For example, in the
very first problem (1-D human fat), the total numbers of A/S
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TABLE 6. Computational efficiency.

and M/D for updating E and J are 39 and 42 respectively for
CCPR-FDTD, while those for modified Lorentz-FDTD are
23 and 25 respectively. However, the ratio of the arithmetic
operation count number cannot exactly indicate the gain in
the FDTD simulation speed up. In actual FDTD simulations,
the FDTD time-marching procedure contains update ofH and
also additional auxiliary variables should be updated in the
PML region. In addition, the actual FDTD computation time
depends on the memory access time and the volume fraction
of dispersive media.

IV. CONCLUSION
We have proposed accurate and efficient FDTD simulation
for complex dispersive media. The accurate coefficients of
the CCPR dispersion model are extracted by applying the
state-of-art vector fitting tool. The CCPR parameters are
converted to the modified Lorentz parameters in order to
enhance the computational efficiency of FDTD simulations.
The number of arithmetic operations of CCPR-FDTD and
modified Lorentz-FDTD formulations are computed to elu-
cidate the higher speed of modified Lorentz-FDTD simula-
tion time against the CCPR-FDTD counterpart. The memory
requirement is also compared between CCPR-FDTD and
modified Lorentz-FDTD. Numerical examples are employed
to illustrate the accuracy and efficiency of the proposed dis-
persive FDTD simulation in the EM analysis of human tissues
and Au in a wide range of frequencies. The proposed FDTD
simulation can be extended to a variety of complex dispersive
media.
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