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Abstract: The use of error-correcting codes (ECCs) is essential for designing reliable digital commu-
nication systems. Usually, most systems correct errors under cooperative environments. If receivers
do not know interleaver parameters, they must first find out them to decode. In this paper, a blind
interleaver parameters estimation method is proposed using the Kolmogorov–Smirnov (K–S) test.
We exploit the fact that rank distributions of square matrices of linear codes differ from those of
random sequences owing to the linear dependence of linear codes. We use the K–S test to make
decision whether two groups are extracted from the same distribution. The K–S test value is used as
a measure to find the most different rank distribution for the blind interleaver parameters estimation.
In addition to control false alarm rates, multinomial distribution is used to calculate the probability
that the most different rank distribution will occur. By exploiting those, we can estimate the inter-
leaver period with relatively low complexity. Experimental results show that the proposed algorithm
outperforms previous methods regardless of the bit error rate.

Keywords: interleaver; blind interleaver parameters estimation; non-cooperative systems; linear
block codes; channel coding

1. Introduction

The use of error correcting codes (ECCs) is essential for designing reliable digital
communication systems. However, while ECCs helps to accurately transmit and receive
information for random errors, it has relatively low probabilities to to correct burst errors.
To improve the error correction performance for burst type errors, an interleaving technique
is used to convert burst errors occurring in the channel into random errors [1].

For reconstructing the real bitstreams, the receiver has to find the structure and param-
eters of the channel code. A blind interleaver parameters estimation must be performed
first, following which the other parameters can be easily deduced.

A deinterleaving problem is usually considered in a non-cooperative context. Con-
sidering that receivers only know the intercepted sequences, blind interleaver parameters
estimation algorithms exploit the fact that the codewords generated by ECCs have linear
dependence [2–6].

In [2], Gaussian elimination is used to find the interleaver parameters. However,
because this method does not consider channel noise, the performance of estimation
deteriorates steeply as the number of errors increases. A blind interleaver parameters
estimation algorithm that uses Gauss-Jordan elimination through pivoting and considers
channel noises is described in [3]. This method finds almost dependent columns which have
the minimum Hamming weight and uses it as a measure for predicting interleaver period.

Some algorithms use the rank distribution of random square matrices, ρ, as a criterion
for blind interleaver parameters estimation [4–6]. In [7,8], they estimate interleaver param-
eters using the variation of rank ratio depending on the column length of the matrix. These
algorithms are based on the fact that the rank distribution of square matrices consisting of
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codewords, ρC, is far different from ρ. Because ρ follows a specific distribution, the inter-
leaver period of the intercepted bitstreams can be estimated by comparing this distribution
with ρC.

In [4], when s represents rank deficiency factor, which is the difference in ranks
between the rank of the l × l random binary square matrix, Λ, and l, they defined success
events as the rank deficiency s is greater than 2, s > 2. The number of success events is
used as a measure to estimate the interleaver periods by modeling ρ as a Bernoulli trial
that classifies events into success and failure based on the rank values.

In addition, the Kullback–Leibler divergence (KLD) was used as a measure for es-
timating the interleaver parameters [5]. KLD calculates the degree of rank distribution
difference between random square matrices and square matrices of the intercepted stream.
Further, KLD was also partially applied for false alarm control. In [9], maximum difference
selection (MDS) is proposed by selecting vectors having fewer errors and they adopted
KLD to control false alarm rates.

As an extension to [4], more events are considered using Multinomial distributions [6].
Because multinomial distributions can calculate the probability that each event will occur, it
predicts interleaver periods by finding the event that has the lowest probability. According
to the methodology of the analytical and histogram approach, zero mean ratio values
are used to estimate an interleaver period in [7]. Recently, normalized non-zero-mean-
ratio values are introduced as a measure for estimation of interleaver period [8]. Also,
blind interleaver parameters estimation algorithms have been proposed focused on the
case of a short length of received data [10,11]. In order to overcome degrading estimation
performance caused by the lack of available data, they generated additional data by
combining received data [10]. Then, the collected and generated data were used to construct
matrices. The rank deficiency of the matrices can be utilized to estimate interleaver periods.
In addition, the new approach estimating interleaver periods without generating additional
data has been proposed when the length of the received data is short [11]. They focused
on the case that the data collected was so short that matrices could not be sufficiently
constructed to calculate rank deficiencies. To solve this problem, the matrix created once
from the received data is split into multiple submatrices to calculate the rank deficiency.

In this paper, we do not consider the case of short received data and propose an
improved approach that utilizes the difference between the random binomial distribution
and the rank distribution of matrices composed of codewords. For a blind interleaver
parameters estimation, we used the Kolmogorov–Smirnov (K–S) test. K–S statistics has
been used in the automatic modulation classification (AMC) algorithm to measure the
fitness whether two groups are extracted from the same distribution [12,13]. We utilized the
K–S test as a metric to find the final candidate of interleaver peroids with the most different
rank distribution from the rank distribution of the random signals. We utilize the K–S test
as a metric to make decision whether two groups are extracted from the same distribution.
The K–S test value is used to find the most different rank distribution. The K–S test does
not include any logarithmic calculation and instead needs only the cumulative distribution
function (CDF) of two distributions. Therefore, differences between the two distributions
can be easily computed without requiring the complex logarithmic operation that is part of
the KLD.

Experimental results validated that our proposed algorithm has relatively low com-
putational complexity and outperforms existing algorithms. Furthermore, we can finer
control false alarm rates compared to other algorithms by using multinomial distribution.
In a noisy channel environment, simulation results demonstrate that the K–S test estimates
the interleaver parameter with high estimation accuracy.

The rest of this paper is organized as follows. Related work is described in Section 2
In Section 3, the proposed algorithm is explained. The proposed algorithm is compared
with conventional algorithms and analyzed based on experimental results in Section 4.
Finally, Section 5 conclude the paper.
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2. Materials and Methods

This section introduces some backgrounds to give a basic concept for understand-
ing the proposed algorithm. We introduce the need of interleaver parameter estimation.
First, the reason why a system for interleaver parameter estimation is needed in a non-
cooperative context. Through the following subsections, we show the rank distribution of
random square matrices, ρ, and explain conventional algorithms.

2.1. Interleaver Parameters Estimation for Deinterleaving Sequence

The system configuration for estimating interleaver parameter estimation in a non-
cooperative context can be represented as shown in Figure 1. For ECC, encoded information
is transmitted after the encoded data is interleaved. In non-cooperative context, receivers
indirectly collects the transmitted signals and they do not have prior information about
encoded data or parameters of interleaver. Therefore, the deinterleaving process is essential
for receivers to decode the collected data.

Figure 1. Illustration of the process of interleaver paramters estimation.

In this paper, we focus on block interleavers and introduce some existing methods
to predict the interleaver duration. Block interleaving refers to arranging encoded data
columns in a certain block unit and then transmitting them by changing columns and rows.
Figure 2 shows the difference in results according to whether or not block interleaving is
applied when a burst error occurs. Through the block interleaver, it can be seen that the
7-bit continuous burst error occurring on the channel is spread evenly on the receiver side.
In general, the linear dependence of codewords have been used to estimate interleaver
parameters [2–6,9–11].
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Figure 2. Illustration of block interleavers when the peroid of block interleaver ls = 4.

2.2. Rank Distributions of Square Matrices and Linear Dependence of Codewords

Assume that there is l × l square matrices, Λ, whose elements follow a uniform
distribution. The rank distributions of the Λ are computed as described in [14]. As l
increases, the rank distribution quickly converges to a specific distribution.

The rank distributions can be calculated as shown in Table 1 when l → ∞ [15]. Ps is
the probability that the rank of a random binary square matrix is l − s. It decreases steeply
with increasing s (s > 1). In Table 1, when s > 4, Ps is relatively very small and has no
significant effect, so we consider Ps(s = 4) as Ps(s ≥ 4).

A totally different probability distribution from that given in Table 1 is obtained when
the elements of matrices are not random signals but codewords. In channel coding, an (n, k)
linear block code has a generator matrix that has a full rank, where n is the codeword
length and k is the length of the message. The block code generates codewords and there is
linear dependence among codewords because they form a vector space [16].

Table 1. Rank distribution of the random binary square matrices.

s Ps

0 0.288788
1 0.577576
2 0.128350
3 0.005238
4 0.000048

Since block codes are typically specified for correcting wide-spread i.i.d. errors over
the block, the performance of the receiver deteriorates when burst errors occur. To spread
burst errors over the received bitstream, the encoded bits are interleaved by every certain
period of time. The interleaving interval is typically a multiple of the codeword length. In
other words, the interleaver period can be represented as S = βn where β ∈ N+.

Given the intercepted symbols, we can divide the bitstream by the length of l and
construct Λ. If l = S, the rows of the Λ have a linear dependence because the row elements
are composed of codewords. Therefore, the rank distributions of the Λ are far different
from that shown in Table 1.

Based on the linear dependence of the codewords, the ranks of the Λ can be used
as a criterion for estimating interleaver periods. This can be used to distinguish the two
distributions from matrices consisting of random binary signals and codewords [4–6].
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2.3. Bernoulli Trial Based Method

By using the rank deficiency factor s as an interleaver period estimator, the strict
failure of interleaver period prediction can be determined when (s < 2) is observed base
on Table 1. This simplifies the problem of interleaver parameters estimation to counting
the success events that follows the binomial distribution [4].

The constructed Λ from intercepted symbols can be considered as a random square
matrix, a failure case, when the predicted interleaver period is not equal to the real inter-
leaver period. On the contrary, when the estimated period matches the real one, the number
of success cases increases owing to the high probability of rank deficiency.

Finally, the predicted interleaver size l is declared only when the maximum number
of success events exceeds a certain threshold for false alarm control.

2.4. Multinomial Distributions Based Method

In [6], a rank distribution is calculated by counting the rank of the constructed Λ from
the received bitstream N times. Using the distribution, the probability of occurrence of the
rank distribution can be modeled by multinomial distribution as follows:

Pl×l =
N!

x0!x1!x2!x3!
Px0

0 Px1
1 Px2

2 Px3
3 (1)

where Ps(s ≤ 3) follows Table 1, xs represents the counted number that the rank of the con-
structed Λ equals to l− s, and N is the total number of counting ranks, N = x0 + x1 + x2 + x3.
Because values of the considered s range from 0 to 3, note that P3 equals 1− (P0 + P1 + P2).
Pl×l represents the distribution similarity between the length of two matrices consisting of
random and received signals, respectively. It is used to decide whether the received signals
consist of random signals or codewords.

When the distribution is the same as that shown in Table 1, Pl×l equals 1. This means
that the distribution is from Λ. If the distribution is far different from that shown in Table 1,
Pl×l decreases to 0 and we can consider that the elements of matrices are codewords.

2.5. Kullback–Leibler Divergence Based Blind Interleaver Parameters Estimation

When the constructed Λ is synchronized to real interleaver period, ρC follows a
different distribution from that given in Table 1 owing to the linear dependence among
codewords. As a measure of probability matching, KLD was used to find the most dif-
ferent distribution from the value of random matrices for blind interleaver parameters
estimation [5]. The KLD value is given by

∑ |P(i) log
P(i)
Q(i)
| (2)

where P(i) is the probability distribution calculated from the captured matrices and Q(i) is
that of random square matrices.

Equation (2) converges to 0 when the predicted interleaver period does not equal the
actual one. If the greatest value of KLD is higher than a preset threshold, l is declared to be
the interleaver period.

2.6. Maximum Difference Selection

In [9], they defined DMDS to calculate similarity of between two rank distributions
from random and received signals. DMDS can be denoted as follow:

DMDS = ∑
i
|P(X = xi)− P(Y = yi)| (3)

where P is probability mass function (PMF), X and Y are rank deficiency of random
matrices and observed rank deficiency from received signals, respectively. After trying
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to select vectors having fewer errors, false alarm rates control process is performed by
using KLD.

3. Proposed Algorithm

In this section, we explain the proposed blind interleaver parameters estimation
algorithm. The proposed algorithm adopts the K–S test to measure the difference between
the two distributions and multinomial distribution is used for controlling the false alarm
rates. After introducing the K–S test briefly, the proposed algorithm is described in detail.

The K–S test measures the fitness whether data are extracted from the same distri-
bution [13]. In this scenario, we use this test as a measure to find the most different rank
distribution. The degree of difference between the two distributions as calculated by this
test is given by

D = sup
x
|P(x)−Q(x)| (4)

where P and Q are CDFs and sup is the supremum that denotes to the least upper bound of a
set. This metric measures the maximum difference between the two cumulative distributions.

3.1. Kolmogorov–Smirnov Test

Figure 3 shows an example of the K–S statistics. The larger the K–S value, the greater
is the difference between the two distributions. This motivated us to consider the K–S test
as a measure for estimating interleaver parameters in our proposed algorithm. Compared
to KLD, the K–S test has a relatively lower complexity. Because it does not require a
logarithmic operation and needs only the CDFs of the two distributions, it can calculate
the degree of difference between two distributions with low complexity.

Figure 3. Illustration of the K–S statistic. The black arrow is the two-sample K–S statistic.

3.2. Proposed Algorithm

Motivated by the foregoing observations, this subsection describes how to exploit rank
distributions to estimate interleaver periods in detail. First, to exploit rank distributions for
interleaver period estimation, the rank distribution must be obtained.

We describe the process of getting rank distribution as shown in Figure 4. Given the
received bitstream, l vectors of length l are randomly selected to construct Λ and the rank
distribution is calculated by counting the rank of the matrices N times.

Sufficiently large N shall be considered to guarantee reliable rank distributions. For
example, if N is set to 10,000, we must receive a captured sequence of length at least 280,000
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when the interleaver period is 28. To resolve this excessive requirement, we exploited the
linearity of linear codes; i.e., the sum of two codewords is also a codeword.

Then, we use the K–S test as a measure of the probability matching problem. In other
words, we find l which has the most different distribution from that of random square
matrices. Equation (5) represents how we can predict interleaver period exploiting K–S test.

lS = arg max
l

Dl = arg max
l

sup
xl

|Pran(xl)−Qcon(xl)| (5)

where Pran represents the CDF of the rank distribution from the random square matrices and
Qcon represents the CDF of the rank distribution from constructed square matrices, respectively.

If l is not equal to the interleaver period, S, there is no linear dependence in the rows
of the constructed matrix. Therefore, the distribution may follow that shown in Table 1
with high probability. This results in the K–S test value, Dl , converging to near zero.

On the contrary, if l equals S, the rows of Λ consist of codewords. The distribution is
totally different from that given in Table 1 owing to the linear dependence of the codewords.
Therefore, Dl can reach the maximum value and l can be predicted as the interleaver period.

Figure 4. Processes used to obtain the rank distribution from the received bitstream.

Finally, multinomial distribution is used for false alarm control. It ensures that the
probability of the rank distribution at that time is lower than a threshold, which is sufficient
to judge that it does not happen by chance. The proposed algorithm is summarized in
Algorithm 1.
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Algorithm 1 Proposed Algorithm
Input: received sequence r, translate parameter d = 0, predicted interleaver period l = 7
Output: estimated interleaver period lS

1: Translate the received sequence by the length d.
2: Divide the translated sequence by the length l.
3: Randomly select l vectors and construct an l × l square matrix Λ.
4: Calculate the rank of the matrix.
5: Repeat the third and the fourth steps N times.
6: Construct rank distribution Ri

l
7: if d < l − 1 then Go to the first step with increment d as d+1.
8: if l < S + 1 then Set d to 0.
9: Go to the first step with increment l as l+1.

10: Compute (5) and declare lS to be an interleaver period.

4. Results

In this section, we present experimental results and compare the performance of
the proposed algorithm to that of previous algorithms. To generate bitstreams, a (7, 4)
binary Hamming code and two BCH codes, (15, 5), (15, 7), and (15, 11) were used [1]. The
generated bit length was 50,000 and a random block interleaver was used.

Instead of the signal-to-noise ratio(SNR), we compare the performance of each algo-
rithm based on the probability of errors occurring in the channel. We assumed that the
interleaved bitstream passed through a binary symmetric channel with different bit error
rates (BER), and even considered the possibility that the data collected by the receiver
would have been translated. The number of trials for constructing rank distributions was
500 for each searching process.

For each BER, we tested the process for calculating the probability of estimating
interleaver parameters 1000 times. Given the interleaver period, S, the search range of the
predicted interleaver period, l, was set from 7 to S + 1. The search range of the randomly
chosen translation value, d, was set from 0 to l − 1.

We compared the performance of the proposed algorithm with that of algorithms
based on Bernoulli trials [4], KLD [5], Multinomial [6], and MDS [9]. In the case of
Bernoulli [4], the interleaver period was predicted when the number of success events is
maximum. In KLD [5], the interleaver period is predicted when (2) is maximum. Likewise,
Multinomial [6] predicts interleaver periods by finding the minimum value of (1), and MDS
finds the predicted length l with the maximum value of (3).

To show objective performance comparison, we denote detection probability as below:

PD =
CN
EN

(6)

where EN is the total number of times the interleaver period is estimated, and CN is the
number of times among EN predicted correctly.

Figures 5–7 show the experimental results in terms of code rates, interleaver periods,
and the lengths of the intercepted bitstream, respectively. Since the value of (5) varies de-
pending on the linearity of the codewords in the received data, so the higher the probability
that the linearity of the codeword is not maintained, the faster the performance deteriorates
according to the increase of BER.

To compare performances based on the code rates, two BCH codes were used with
50,000 intercepted symbols. As shown in Figure 5, we can see that the proposed algorithm
had the highest detection probability of blind estimating interleaver parameters regardless
of the code rate change. It can be seen that when the code rate is high, performance
degradation begins at the lower BER than when the code rate is low. Further, Figure 5a,b
show that the higher the code rates, the lower the detection probability for the same BER.
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(a) (b)

Figure 5. Detection probability with (a) BCH(15,5) code, (b) BCH(15,7) code when S = 30.

In terms of interleaver periods, we compared the performances of the proposed
algorithm with the previous algorithms. Two interleaver periods, 28 and 42, were used
and bitstreams of length 50,000 were generated using Hamming (7, 4) code.

Figure 6 shows that the performance of our algorithm is better than that of other
algorithms in both interleaver periods. From Figure 6a,b, we observe that the perfor-
mance deteriorated when the interleaver periods increased because the probability that the
constructed matrices for rank calculation contain errors increases.

(a) (b)

Figure 6. Detection probability with Hamming (7, 4) code when (a) S = 28, (b) S = 42.

When comparing the performances based on the lengths of the intercepted bitstreams,
we ran the test 10,000 times for each BER to achieve more accurate results. Figure 7 visualizes
the detection and false alarm probability when the lengths of the bitstreams are 50,000 and
5000. When the BER is lower than 0.04, we can see that the longer the length of the
intercepted bitstreams, the higher is the performance for each method.

However, when the BER is higher than 0.04, we observed that the performance with
shorter intercepted symbols was the better in terms of detection probability. Further,
the proposed algorithm had the lowest false alarm rates as shown in Figure 7b. Figure 7
also shows that the proposed algorithm outperformed the previous algorithms for each
bitstream length.
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(a) (b)

Figure 7. Results with Hamming (7, 4) code when S = 35 (a) the detection probability, (b) the false
alarm probability according to the length of bitstreams.

In addition, for a fair performance comparison with Multinomial [6] and MDS [9],
additional experiments were conducted with the number of attempts to construct the rank
distribution at 1000. BCH (15, 7) and BCH (15, 11) was used to show superiority of the
proposed algorithm even at high code rates. Figure 8 shows that our method improved
even more with increasing number of trials compared to other methods. As the code rate
increases, the difference in performance from other algorithms has decreased, but it can be
seen that it still outperforms the other algorithms in terms of detection probability.

(a) (b)

Figure 8. Detection probability (a) BCH(15, 7) code with S = 35, (b) BCH(15, 11) code with S = 35.

Lastly, we calculated the run time for complexity comparison. Table 2 represents
the time it takes to estimate the interleaver period once when S = 30 with BCH (15, 11)
code. The false alarm control process was omitted, and the average time was obtained by
measuring the time taken to estimate the interleaver period 100 times for each algorithm.

Except for MDS [9] and Multinomial [6], Bernoulli [4], KLD [5], and proposed method
have the similar execution speed as represented in Table 2. It can be seen that Bernoulli,
KLD, and the proposed algorithm have a high proportion of the computational complexity
of Gauss elimination process in exploiting the rank distributions. Since Multinomial [6]
calculates the probability that each event will occur and finds the lowest probable event, it
takes more times to estimate the interleaver periods. We can see that MDS has a relatively
high computational complexity because MDS adopted the method of using vectors with a
high probability of low errors before comparing two distributions.
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Table 2. Comparison of the average run times when S = 30 with BCH (15, 11) code.

Method t (s)

Bernoulli [4] 11.5610
KLD [5] 11.4486

Multinomial [6] 14.3958
MDS [9] 22.3636

Proposed 11.5862

5. Discussion and Conclusions

In this paper, we proposed a blind interleaver parameters estimation algorithm based
on a combination of the K–S test and multinomial distribution in noisy channels. To compare
the performance from various perspectives, we compared the false alarm rates according
to the length of the available bitstream, the detection probability according to code rates,
and execution time. The performance of the proposed estimation algorithm was superior to
that of Bernoulli, KLD, Multinomial, and MDS.

We exploited the fact that rank distributions of linear codes differ significantly from
those of random sequences owing to the linear dependence of linear codes. To estimate
interleaver periods using that property, we adopted the K–S test as a measure of the
probability matching problem between the two rank distributions of the random binary
signal and the received signal. After finding the final candidate of the interleaver period,
we adopted Multinomial [6] to control false alarm rates. The value of (1) is lower than a
threshold, it is enough to judge that it does not happen by chance.

In terms of probability matching metric, KLD includes logarithmic operations and
considers all values between two PDFs, but the our method does not involve logarithmic
calculations and finds the largest difference between the two CDFs. Despite the absence
of logarithmic operations, our approach took 0.14 s longer than KLD, but with shorter
execution times than Multinomial and MDS.

Through the experimental results, the proposed algorithm is verified by comparing
false alarm rates, the estimated performance, and execution time. In terms of false alarm
rates, the probability of false alarm appears as low as KLD. We can see that our algorithm
outperforms Bernoulli, KLD, Multinomial, and MDS in terms of detection probability.
Also, we calculate execution time for Bernoulli, KLD, Multinomial, MDS, and our method.
Although our method was the third fastest among the compared algorithm, we can see that
the computational complexity of the proposed method was about 48% lower than that of
MDS. Experimental results verified that our method outperformed the previous algorithms
with a relatively low computational complexity.
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Abbreviations & Symbols
The following abbreviations and symbols are used in this manuscript:

ECC Error-Correcting code
K–S Kolmogorov–Smirnov



Sensors 2021, 21, 3458 12 of 12

KLD Kullback-Leibler Divergence
MDS Maximum Difference Selection
PMF Probability Mass Function
CDF Cumulative Distribution Function
AMC Automatic Modulation Classification
BER Bit Error Rate
ρ Rank distribution of random square matrices
s Rank deficiency factor
l the row(column) length of square matrices
Λ Rank of square matrices
Ps Probability that the rank of a random binary square matrix is l − s
S Interleaver period
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