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Development of topological optimization schemes controlling
the trajectories of multiple particles in fluid

Gil Ho Yoon1 ·Hongyun So1

Abstract
This paper describes the development of a new topology optimization framework that controls, captures, isolates, switches,
or separates particles depending on their material properties and initial locations. Controlling the trajectories of particles in
laminar fluid has several potential applications. The fluid drag force, which depends on the fluid and particle velocities and
the material properties of particles, acts on the surfaces of the particles, thereby affecting the trajectories of the particles
whose deformability can be neglected. By changing the drag or inertia force, particles can be controlled and sorted depending
on their properties and initial locations. In several engineering applications, the transient motion of particles can be controlled
and optimized by changing the velocity of the fluid. This paper presents topology optimization schemes to determine optimal
pseudo rigid domains in fluid to control the motion of particles depending on their properties, locations, and geometric
constraints. The transient sensitivity analysis of the positions of particles can be derived with respect to the spatial distributed
design variables in topology optimization. The current optimization formulations are evaluated for effectiveness based on
different conditions. The experimental results indicate that the formulations can determine optimal fluid layouts to control
the trajectories of multiple particles.

Keywords Topology optimization · Particle separation · Particle-fluid interaction · Transient adjoint sensitivity analysis ·
SHAKE algorithm

1 Introduction

This paper describes the development of a new topology
optimization scheme that manipulates and controls the tra-
jectories of multiple particles in laminar flow. Controlling
the motion of particles suspended in a carrier fluid has
been an important subject in engineering. Several rele-
vant studies can be found pertaining to microfluid, micro-
manufacturing, biology, and medicine (Qiu et al. 2015,
2018; Wylie and Koch 2000; Mo and Sangani 1994; Lee and
Balachandar 2010; Dinler and Okumus 2018; Wu and Yang
2019; Makhija et al. 2012). Viscosity is widely employed to
control the motion of particles. Depending on the size and
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mass of particles, the viscosity and inertial forces act dif-
ferently. These differences can be employed to control the
trajectories of particles in fluid. This type of technique has
become a major standard to manipulate the motion of par-
ticles with additional forces (Yoon 2020). To the best of
our knowledge, there have been few studies on the topol-
ogy optimization of structures or channels to manipulate the
motion of particles (Yoon 2020; Andreasen 2020). There-
fore, the aim of this study is to conduct transient sensitivity
analysis for the location of particles and develop new topol-
ogy optimization formulations to analyze the motions of
particles in steady-state laminar flow (Fig. 1). There have
been a few studies regarding the topology optimization of
the trajectories of particles in fluids (Yoon 2020; Andreasen
2020; Damiri and Bardaweel 2015; Prohm et al. 2013;
Pagano et al. 2014). After the introduction of structural
topology, the aforementioned optimization scheme has been
applied to several engineering applications (Bendsøe and
Kikuchi 1988; Wang et al. 2003; Zhang et al. 2018; Maute
and Reich 2006). Without initial optimal topologies, the
topology optimization scheme can provide the optimal lay-
outs of various engineering structures (Zhang et al. 2018;
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Fig. 1 Topology optimization of particles in laminar flow

Evgrafov et al. 2008; Dede et al. 2014; Yaji et al. 2016;
Deng et al. 2011). The application of this optimization to
fluid problems has been extensively studied. Moreover, the
topology optimization of turbulent fluids was studied previ-
ously (Papoutsis-Kiachagias and Giannakoglou 2016; Yoon
2016). The sensitivity analysis and topology optimization
for unsteady flow problems were formulated and presented
(Deng et al. 2011). The multiphysics system of the con-
jugate heat transfer problem was considered (Yoon 2010;
Dede et al. 2014; Yaji et al. 2016). A review of topology
optimization for the conjugate heat transfer problem can be
found (Dbouk 2017). The present study extends the work
presented to consider the trajectories of multiple particles
(Yoon 2020). In this study, we focused on specific issues
that consider multiple particles.

Subjects related to controlling particles are considered
to be important and complex in several science and
engineering fields, e.g., microfluidics systems, micro-
manufacturing, biology, lab-on-a-chip, and medicine. The
motions of particles are mainly influenced by the drag force
in laminar flow or external forces such as electrostatic,
electromagnetic forces, and micro-scale hydrodynamic
effects (Bockelmann et al. 2012; Hu et al. 1992; Wu
and Yang 2019; Yoon and Park 2010). Several numerical
approaches have been developed to analyze the motions of

particles (Wylie and Koch 2000; Mo and Sangani 1994;
Lee and Balachandar 2010; Wu and Yang 2019). The
analysis of this multiphysics system has challenges; e.g.,
the positions of multiple particles and the effect of the
particles on fluid should be mutually coupled. Owing to
difficulties in mutual coupling, assuming small particles,
it is possible to adopt a one-way coupling approach,
i.e., fluid to particle only. Not fully accounting for the
influence of particles on the surrounding fluid, Eulerian–
Lagrangian approaches for fluid and particle, respectively,
have been employed for the simulation purposes. This
one-way coupling approach is beneficial for the topology
optimization for forward and sensitivity analyses (see
Andreasen 2020 for the rigorous sensitivity derivation).
This one-way coupled multiphysics equation (Eulerian–
Lagrangian approach) can provide details of the flow and
enable interactions with small particles.

Based on the one-way coupling multiphysics analysis,
this study develops new topology optimization schemes to
split, capture, and control the trajectories of multiple parti-
cles. The topology optimization of particles considering the
fluid velocity as the objective function is reported (Yoon
2020). A similar topology optimization method for the
design synthesis of microfluidic particle manipulators was
independently presented with rigorous sensitivity derivation
(Andreasen 2020). The controlling, separating, and gath-
ering of multiple particles via the design of topologically
optimized pseudo rigid bodies are considered in the cur-
rent study. In the Navier-Stokes equation, Darcy’s force is
applied to model fluid in porous media and is parameter-
ized with respect to spatial design variables using the Solid
Isotropic Material with Penalization (SIMP) (Yoon 2020).
By modifying the multiphsyics equations and the transient
sensitivity analysis for the trajectories of multiple particles,
it is possible to determine the optimal distributions of porous
media.

The paper is organized as follows: Section 2 provides a
background pertaining to the coupled analysis of particles
and steady-state fluid motions and the development of the
sensitivity analysis of the objective function with particle
motion. Section 3 describes several topology optimization
formulations and studies. Section 4 presents the conclusions
of the research and provides suggestions for future studies.

2Multiphysics analysis and topology
optimization formulation

This section describes the development of the topology
optimization scheme and the multiphysics analysis coupling
between the Navier-Stokes equation and Newton’s second
equation of particles. The finite element procedure is
implemented to model the steady-state laminar flow, and
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the motions of particles are solved using Newton’s second
equation. The objective of the study is set as a function
of the final positions of the particles. Compared with the
relevant studies that consider the velocity of a particle,
this study considers the positions of multiple particles
focusing on the control of the particle locations (Yoon
2020). Newmark’s scheme is employed as a numerical
solver for the transient analysis of the particles. To model
the rigid domain in fluid, the pseudo force for the porous
material model is applied to the Navier-Stokes equation.
Transient sensitivity analysis of the positions of multiple
particles is performed.

2.1 Steady-state laminar fluid equation and particle
equation

Several innovative numerical theories have been developed
to track the motions of particles in fluid. This study assumes
that the particle size is small and does not affect the viscosity
and the motion of the fluid. With larger particles or external
forces, these effects cannot be negligible. The present study
advances the effort made to consider and track the positions
of the particles.

The steady-state laminar flow can be computed by
solving the Navier-Stokes equation with Darcy’s force, αu
to set the velocities of pseudo-rigid domain close to zero.

ρ(u · ∇)u = ∇ ·
[
−pI + μ(∇u + ∇uT)

]
− αu on Ω

∇ · (ρu) = 0 (1)

with the following boundary conditions:
No-slip b.c.: u = 0 on Γu0

Inflow or outflow b.c.: u = u∗ on Γu∗

Pressure b.c.:
[
−pI + μ(∇u + ∇uT)

]
· n = ppn on Γp

∗ (2)

The fluid domain is denoted by Ω . The velocity, pressure,
mass density, and dynamic viscosity are denoted by u, p, ρ,
and μ, respectively. The boundary conditions are described
either by the fluid velocity condition (no-slip boundary
condition along Γu0 , the inflow/outflow boundary condition
along u∗) or the pressure boundary condition along Γp

∗.
To model the pseudo-rigid domain, it is possible to include
Darcy’s force with the SIMP method.

α = αmaxγ
n (3)

In the Navier-Stokes equation (1), the Darcy force αu is
included with the maximumDarcy force αmax . For topology
optimization, this fictitious force is interpolated with respect
to the spatial design variables γ with the SIMP n. Domains
discretized with finite elements with small values for γ

correspond to fluid domains where domains with ones for γ

correspond to pseudo-rigid domains (Yoon 2020; Andreasen
2020; Dinler and Okumus 2018; Qiu et al. 2015; Damiri
and Bardaweel 2015; Pagano et al. 2014; Deng et al. 2011).

The domain with ones for the design variables is defined as
the pseudo rigid domain and the deformation of the solid
domain is not considered. In the related applications, i.e.,
microfluid, the streamline of fluid mainly moves particles
and the deformation of structure is neglected. Therefore, this
research also ignores the structural deformation. Newton’s
second law can be analyzed with respect to the fluid force
by neglecting the rotational motions of particles, as given
below:

d

dt
(mpv) = mpFD(u − v),

dX
dt

= v (4)

FD = 18μ

ρpd2
p

(5)

where the drag force coefficient is denoted by FD . The
mass, diameter, density, and velocity of a particle are
denoted by mp, dp, ρp, and v, respectively. The absolute
coordinate of the particle is denoted by X. The drag force
inside the laminar fluid is formulated as the function of
the difference between the velocities of particle u and fluid
v. The proportional constant of the force in (4) is mpFD .
Based on the product of the difference and the constant, the
direction of the drag force is opposite the direction of the
relative motion of the particle to fluid. Several experimental
and theoretical models have been developed (Hu et al.
1992; Kulkarni and Morris 2008; Walsh 1976; Bagheri
and Bonadonna 2016). For the stability of the analysis
of Newton’s equation, a smaller drag force is used. The
velocity vector is numerically integrated in order to evaluate
the loci of the particles.

2.2 Optimization formulation and sensitivity
analysis of the trajectories of particles

The objective of the optimization problem is to manipulate
the loci of particles depending on the size and mass.
Therefore, it is intended to maximize the control capability
of a device by structural optimization. To achieve this
objective, several optimization formulations are considered.

To achieve the objective, several simulation conditions
are assumed. The first assumed condition is the steady-
state laminar flow. Several particles of different sizes and
masses are placed in one location or different locations,
and they follow a streamline of laminar flow. Depending
on the properties of particles, they show different loci that
result from the control of the particles. To determine the
locations of the particles, the transient forward analysis
and the transient sensitivity analysis are performed and
the contact conditions among particles are ignored. In the
transient simulation of the particles, the consideration of
the contact increases the complexity in the forward and the
sensitivity simulations. Thus, the contacts among particles
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toward the pseudo-rigid body and the boundary condition
are not considered.

For the topology optimization considering the motions
of particles, the objective function should be formulated
with the position vector, which is the integrated velocity.
The velocity of the particle is considered, and to consider
the positions of multiple particles, a new optimization
formulation and its sensitivity analysis should be derived
(Yoon 2020). The positions of the particles can be defined
as follows:

Position of particle: X =
∫ tf

0
vdt + Xinit (6)

The velocity vectors and the initial locations of the particles
are denoted by v and Xinit , respectively. The simulation
time is denoted by tf . The Lagrangian L over a time period
is defined by the Lagrange multipliers. The initial position
of the particle is denoted by Xinit .

L =
∫ tf

0
vdt + Xinit +

∫ tf

0
λT(Mv̇ − F(v,u))dt

+
∫ tf

0
ψT(R(u, γ ))dt (7)

where the Lagrange multipliers are denoted by λ for
Newton’s equation and ψ for Navier-Stokes equation. The
objective function is a vector quantity rather than a scalar
quantity. For the sensitivity, the following differentiation of
the Lagrangian is obtained.

∂L
∂γe

= ∂

∂γe

∫ tf

0
vdt + ∂

∂γe

∫ tf

0
λT(Mv̇ − F(v,u))dt

+ ∂

∂γe

∫ tf

0
ψT(R(u, γ ))dt (8)

The differentiation is summarized as follows:

∂L
∂γe

=
∫ tf

0

∂v
∂γe

dt

+
∫ tf

0
λT

(
M

∂ v̇
∂γe

− ∂F
∂v

∂v
∂γe

− ∂F
∂u

∂u
∂γe

)

+ψT
(

∂R
∂u

∂u
∂γe

+ ∂R
∂γe

)
dt (9)

The first term of the second equation above is integrated
as follows:

∫ tf

0
λTM

∂ v̇
∂γe

dt

=
∫ tf

0

d

dt

(
λTM

∂v
∂γe

)
dt−

∫ tf

0

dλT

dt
M

∂v
∂γe

dt

= −
∫ tf

0

dλT

dt
M

∂v
∂γe

dt +
((

λTM
∂v
∂γe

)∣∣∣∣
tf

0

)
(10)

∂L
∂γe

=
∫ tf

0
ψT

(
∂R
∂γe

)
dt +

∫ tf

0

(
I − λT ∂F

∂v
− dλT

dt
M

)
∂v
∂γe

dt

+
∫ tf

0

(
−λT ∂F

∂u
+ ψT ∂R

∂u

)
∂u
∂γe

dt +
((

λTM
∂v
∂γe

)∣∣∣∣
tf

0

)
(11)

After separately gathering the terms involved for
∂v
∂γe

and ∂u
∂γe

and letting the involved factors be zeros,
the following transient sensitivity analysis with adjoint
sensitivity equations in (13) and (14) can be derived.

∂L
∂γe

=
∫ tf

0
ψT ∂R

∂γe

dt (12)

Adjoint system 1:
dλT

dt
M =

(
I − λT ∂F

∂v

)
(13)

with λ̇ = 0 and λ = 0 at t = tf based on the reversal time
integration scheme.

Adjoint system 2:
∫ tf

0

(
−λT ∂F

∂u
+ ψT ∂R

∂u

)
∂u
∂γe

dt = 0

(14)

The first adjoint variable λ can be solved for the adjoint
sensitivity equation in (13), and it is used to solve the second
adjoint system equation in (14) for ψ . The first Lagrange
multiplier λ in (13) is the solution of the transient system
with the time reversal. The Newmark integration scheme has
been used for the solutions (see Yoon 2020 for more details).

For large particles, the contact conditions between
the particles become important. To consider the contact
conditions among particles, the governing equatinos should
be modified. For an example, Newton’s second law should
be modified by adding the contact force as follows:

d

dt
(mpv) = mpFD(u − v) + Fc + Fcontact (15)

where the contact force is denoted by Fcontact whose direc-
tion and magnitude depend on the displacement, velocity,
design parameters, and parameters of the numerical integra-
tion scheme. Therefore, to consider the contact condition,
the new design sensitivity analysis should be derived con-
sidering these parameters and conditions. To simplify the
derivations, this research does not consider the contact con-
dition. The finite element procedure with 9-node element is
implemented for the fluid motion with the Newton-Raphson
solver. The particle motion is solved by the Newmaker
scheme (beta = 1/6, gamma = 1/3) considering the cur-
rent particle position and its associated fluid velocity. The
incremental time in the Newmark scheme is an important.
A small value for this incremental time is selected to main-
tain the stability in the numerical simulation of particles.
The time reversal scheme is used for the first adjoint system.
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The inversion of the tangent stiffness of the second adjoint
system is carried out one time owing to the steady-state
fluid motion. One crucial computational procedure is the
step to find out the particle velocity of particles. In the cur-
rent implementation, after finding the elements containing
particles, the corresponding natural coordinates at the cur-
rent positions of the particles are calculated. These natural
coordinates are used to calculate the derivative of the force
with respect to the velocity. As the particles do not interact
with each other, Matlab’s parallel approach can speed up the
procedure. In our simulation, a HPC cluster with 100 GB
memory and 72 cores is used with the parallel toolbox in
Matlab.

2.3 Constraint condition among particles: SHAKE
algorithm

When investigating the dynamics of multiple particles
or polyatomic molecules, geometric constraints must be
imposed among particles in the simulation. For example,
bond-length and bond-angle constraints among particles can
be imposed for the particle dynamic simulation. Several
approaches have been developed, and a method should
be chosen considering the accuracy of the simulation and
the computation time. In this study, the fast SHAKE
algorithm is implemented to impose constraints among
particles (Kräutler et al. 2001). The purpose of the SHAKE
algorithm is to add the constraint force, which imposes
geometrical constraints in Newton’s equation. The Nc

distance constraints can be defined as follows:

σk(X) = r2k1k2 − d2
k1k2

= 0, k = 1, ..., Nc (16)

where the distances between the particle k1 and k2 involved
in the k-th constraint and the corresponding constraint
distance are denoted by rk1k2 and dk1k2 , respectively. Based
on the constraint condition, the Newton equation is modified
considering the constraint force:

d

dt
(mpv) = mpFD(u − v) + Fc (17)

Fc = − ∂

∂X

[
Nc∑
k=1

lk(t)σk(X)

]
(18)

where the Lagrange multipliers for the constraint conditions
are denoted by lk . The second term on the right-hand side
of (17) represents the constraint force, fci . To determine the
constraint force and the Lagrange multiplier, the SHAKE
algorithm is employed (Kräutler et al. 2001). In the SHAKE
algorithm, the updated displacements without the constraint
forces are denoted by Xuc

i (t + Δt). Once the constraint
forces are added, the displacements are re-updated toXi (t +
Δt) = Xuc

i (t +Δt)+(Δt)2m−1
p Fc. The condition that these

new displacements should satisfy the constraint equation is
used to determine Lagrange multipliers, lk(t):

lk(t) =
[
Xuc

k1k2
(t + Δt)2 − d2

k1k2

]

4(Δt)2(m−1
k1

+ m−1
k2

)Xk1k2(t) · Xuc
k1k2

(t + Δt)
(19)

where Xk1k2 is defined as Xk1 −Xk2 Then, the displacement
can be updated considering the Lagrange multipliers. Owing
to the aforementioned approximation in the determination
of Xi (t + Δt), the above procedure should be iterated

Fig. 2 Example 1: A channel design to maximize the distance between
the two particles. (Initial locations: (0.54 cm, 0.5 cm), Reynolds
number: 21.3068 (21.3068 = 1000 × 0.03 ×1×10−3/4/352×10−6),
fluid: density = 1000 kg/m3, dynamic viscosity = 352 × 10−6 Pa×s,
particle: mass1 = 1.0865 × 10−13 kg (radius = 2.39 μm, density
= 1900 kg/m3), mass2 = 1.0865 × 10−11 kg (100 times larger
than that of the first particle), FD1 = 3.1715 ×10−12 N·s

kg·m , FD2 =
1.5857 × 10−12 N·s

kg·m , mass0: 30% of the design domain discretized by
120 by 180) and b the trajectories of the two particles in no-structure
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Fig. 3 An optimization result when separating the particles. a An
optimized layout with 30% mass tf = 150 s with 20,000 time steps
(n = 4, αmax = 104, objective function: −1.58019 ×10−2 m), and b
fluid velocity distribution and the particle trajectories (green: particle
1 (mass1 = 1.0865× 10−13 kg, FD1 = 3.1715× 10−12 N·s

kg·m ) and red:

particle 2 (mass2 = 1.0865×10−11 kg, FD2 = 1.5857×10−12 N·s
kg·m )),

b the fluid velocity, and c the optimization history

until the convergence of the corrected displacement. In the
adjoint equation, the Lagrange multipliers are considered
as the stiffness term. Although the Lagrange multipliers
are a function of the displacement, this study assumes that
they are constants in the adjoint equation as the Lagrange
multipliers that converged in the iterative procedure of the
SHAKE algorithm are insensitive to the displacements. This
assumption simplifies the implementation.

3 Numerical examples of topology
optimization

To show the application of the present topology optimiza-
tion and explore its limitation in designing optimal layouts,
which control the motions of particles, this section presents
optimization formulations whose objective function and
constraints and their derivatives can be obtained from the
formulations given in the previous section. To observe the
effect of different material properties and maintain numeri-
cal stability, the values of mass and drag force are arbitrarily
modified. The simulation time and time steps are selected
based on the stability of the motion of particle. For the
topology optimization, several optimization formulations
considering the locations of several particles are presented.
Therefore, using the derived sensitivity analysis using the
Lagrange multipliers, it is possible to calculate the sensi-
tivity of the objective function and constraint. The present
study does not apply sensitivity filter or density filter in
order to focus the optimization problem itself. It is pos-
sible to apply some filters to control feature of optimum
design and to consider the manufacturability. To solve the
optimization problem, the method of moving asymptotes
(MMA) algorithm is employed (Svanberg 1987).

3.1 Topology optimization example 1: particle
separation device problem

For the first optimization example, the topological optimiza-
tion problem separating two heterogeneous particles with
different masses and drag forces but with identical release
positions is considered (Fig. 2). For the fluid boundary con-
dition, the parabolic distributed fluid (the inlet boundary
condition) is defined at the bottom left boundary of the
design domain and the fluid outlet boundary condition (the
pressure boundary condition) is defined at the upper left
boundary. In order to show the effect of the inertia force and
the drag force on the optimum design, some artificial mate-
rial properties are assumed here. It is assumed that the first
particle is set lighter than the second particle, which signif-
icantly changes the inertia force but the drag coefficient of
the first particle is 2 times larger that of the second particle.
Although they are released in the same location (0.54 cm,
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0.5 cm) just after the fluid inlet, their trajectory responses
differ from one another in the fluid. This may be regarded as
a limited application of the inertia micro fluid device. The
almost identical initial trajectoreis of the particles are shown
in Fig. 2b. To efficiently separate them, the optimization
formulation in (20) is formulated and solved. The objective
function in (20) is the difference in the x positions of the
two particles. The mass constraint and the difference in the
y positions are imposed as the constraints. The second con-
straint in (20) is imposed for the efficient movement of the
particles. Without this second constraint, the motion of one
particle may be frozen to maximize the objective function,
which we do not intend to. By distributing spatial materi-
als at the fluid design domain and increasing the objective
function, the particles can be separated effectively.

Min
γ

(p1
x − p2

x) = Difference of the x - coordinates

Subject to Mass ≤ mass0∣∣∣p1
y − p2

y

∣∣∣ ≤ ε (ε = 0.0006)

γ = [γ1, γ2, ..., γNe ], γmin � γ � 1, γmin = 0.001 (20)

where the x positions of the particles are denoted by p1
x and

p2
x and the y positions are denoted by p1

y and p2
y . The Ne

design variables are γ and the allowable mass is denoted by
mass0. Note that the mass constraint is added to obtain a
local optimum.

To maximize the objective function satisfying the
constraints, the optimal distributions of large Darcy’s force
or the pseudo solid domain should be designed through the
topology optimization process. By solving (20), a complex
channel utilizing the difference in the inertia forces of the
particles can be obtained. Figure 3a shows an optimized
layout obtained via the present optimization formulation
with a simulation time of 150 s. The loci of the particles
in this system smoothly incline toward the outlet. The
complex curved channel shape above the initial location can
be obtained. Just before the initial release, the expansion
chamber shape maximizes the fluid velocity (see Fig. 3b).
Subsequently, the curved expansion chamber makes a
streamline deflect toward the upper domain to detour the
particles with the different inertia forces. Then, the upper
structures maximize the difference in the x positions with
similar y positions imposed by the second constraint. Some
porous domains with various permeability values appear.
Figure 3c shows the optimization history.

To further illustrate the feature of the present formula-
tion, the different initial locations are considered in Fig. 4a

Fig. 4 Optimization results
when separating the particles. a
An optimized layout with the
different locations (initial
locations: (1 cm, 0.5 cm)) and b
an optimized layout with
different locations (initial
locations: (2 cm, 0.5 cm))
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and b. The spatially optimized fluid motions optimized for
each condition can be obtained by solving the optimiza-
tion problem using the present topology optimization. The
optimized layouts use the inertia forces by developing the
curved layouts. Some isolated particles appear on the right
side of Fig. 4b. This may be because the present formulation
optimizes the final positions of the particles without consider-
ing the fluid motion. After several iterations with intermediate
design variables, materials are distributed in that region. As
the optimization process continues, some materials gather,
and the optimization algorithm does not remove them as that
region is not sensitive to the objective function or the con-
straints. In addition, the fixed mass constraint is added to
penalize the intermediate design variables. By maximizing
the velocities or minimizing the head loss, small particles
may disappear, but the current study focuses on the motions
of the particles. These problems show that the present topol-
ogy optimization framework can be an effective tool to
design a channel that controls or sorts particles.

3.2 Topology optimization example 2: particle
gathering device problem

For the second example, structural topology optimization
to gather multiple particles is considered, as shown in
Fig. 5. This optimization intends to find an optimal layout
that gathers identical or heterogeneous spatially distributed
particles. It is intended to modify the flow to make
the particles gather at an area whose location should be
determined by the optimization. The design domain and the
boundary conditions are shown in Fig. 5.

For this purpose, the optimization problem in (21) is pro-
posed herein. To control the loci of the four particles, the vari-
ations in the coordinates, i.e., σx for the variation in the x
coordinates and σy for the variation in the y coordinates, are
considered in the optimization formulation. The optimiza-
tion formulation “OP 2X” sets the variations in the x coordi-
nates of the particles as the objective function with the mass
constraint and the variations in the y coordinates of the par-
ticles as the constraint. The allowable limit of the variation
is set to Δ. In addition, it is possible to recombine the above
objective function and the constraints for a specific purpose.

Min
γ

σ 2
x

Subject to Mass ≤ mass0

σ 2
y ≤ Δ2

γ = [γ1, γ2, ..., γNe ], γmin � γ � 1, γmin = 0.001 (21)

The x and y locations of the i-th particle are denoted by pi
x

and pi
y , respectively. The number of the particles is denoted

Fig. 5 Example 2: a A channel design gathering the four particles
(initial locations: (0.54 cm, 0.6 cm), (1 cm, 0.6 cm), (2 cm, 0.6
cm), (3 cm, 0.6 cm), Reynolds number: 21.3068 (1000 × 0.03 ×1 ×
10−3/4/352× 10−6), fluid: density = 1000 kg/m3, dynamic viscosity
= 352 × 10−6 Pa×s, particle: mass = 1.0865 ×10−13 kg, FD =
1.5857 × 10−12 N·s

kg·m , mass0: 30% of the design domain discretized by
120 by 180) and b the trajectories of the four particles in no-structure

by NM and the variances and averages of the x and y
coordinates with NM particles are defined as follows:

p̄x =

NM∑
i=1

(
pi

x

)

NM
, p̄y=

NM∑
i=1

(
pi

y

)

NM

σ 2
x =

⎛
⎜⎜⎜⎝

NM∑
i=1

(
pi

x

)2

NM
-
(
p̄x

)2

⎞
⎟⎟⎟⎠ , σ 2

y =

⎛
⎜⎜⎜⎝

NM∑
i=1

(
pi

y

)2

NM
-
(
p̄y

)2
⎞
⎟⎟⎟⎠(22)
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Fig. 6 An optimization result when gathering the particles. a An
optimized layout with 30% mass tf = 300 s with 40,000 time steps
(n = 4, αmax = 104, objective function: −1.58019 ×10−2 m), and
b fluid velocity distribution and the particle trajectories (mass1,2,3,4=
1.0865 ×10−13 kg, FD = 3.1715×10−12 N·s

kg·m ), and c the optimization
history

Using the derived adjoint equations in the previous
section, it is possible to obtain the sensitivity values of
the above objective and the constraint with respect to the
design variables. To demonstrate the above optimization
formulation, the four particles of equal mass (mass =
1.0865 ×10−13 kg and FD = 3.1715 × 10−12 N·s

kg·m) are
initially located at (0.0054 m, 0.006 m), (0.01 m, 0.006 m),
(0.02 m, 0.006 m), and (0.03 m, 0.006 m), respectively,
in the domain. The simulation time is set to 300 seconds
with 40,000 time steps. An optimal layout to gather the
particles using the optimization formulation in (21) is shown
in Fig. 6a. The trajectories are plotted with different colors.
The loci of the particles in this system tend to incline
toward the triangular structure. As the particles are gathered
after 300 s, an optimal layout with longer trajectories
inversely prorated according to the initial position of x is
obtained. The left larger triangular structure and the bridge-
like structure beneath the triangular structure create the flow
channel to optimize the trajectories of the particles. The
small arc structure appears along the end of the trajectory
of the first particle to minimize the fluid leakage to the
outlet. This small arc structure helps the leftmost particle
to travel along with the other particles. The bottom bridge-
like structure should be post-processed as the physical
interpretation of the inner holes is meaningless. In other
words, the outer rim of the bridge structure dominantly
changes the direction of the flow to optimize the fluid
motion for the given optimization formulation. It appears
owing to the modeling method of the pseudo rigid body,
which includes Darcy’s force. This aspect also can be
addressed by considering the manufacturing constraint. The
trajectories of the second and the third particles are almost
the same. Figure 6c shows the optimization history.

Separated domains can appear in the current optimiza-
tion framework with the modeling of three-dimensional
fluid channel with the two-dimensional simulation. Isolated
domains can be fabricated using some fabrication tech-
niques such as etching, milling, or CNC machining. To
study and explore the effects of the isolated structure on
the triangular structure, the post-processing of the struc-
ture is performed, as shown in Fig. 7. After removing the
structure, the fluid motion is modified such that the par-
ticles are spread, as presented in Fig. 7. As displayed in
Fig. 7c, an investigation of the trajectories reveals that the
first particle moves further toward the left side after the
structure is removed. This implies that the present optimiza-
tion scheme finds out the auxiliary structure to gather the
particles. In addition, the effect of the mesh refinement is
tested with the different mesh refinements in Fig. 8a and
b. The similar layouts are obtained with a little subtlety
between them. In Fig. 8c, the post-processed designs espe-
cially the bridge-like structure and the trajectories of the
particles are tested. The similar trajectories can be obtained.
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Fig. 7 Post-processing of the
design in Fig. 6. a The
post-processed design and the
trajectories, b a comparison of
the trajectories, and c the
trajectory of each particle
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Fig. 8 Effect of fluid mesh refinement and the post-processing. a An
optimal design with a 120 × 90 mesh, b an optimal design with a 160
× 120 mesh, and c the post-processing result

Note that the optimal layouts with the isolated structure can
be manufactured.

The optimization problem with the equivalent formula-
tion and boundary condition without considering the initial
locations and mass of the particles is tested, as shown in
Fig. 9. The initial locations of the particles are set to (0.0054
m, 0.002 m), (0.01 m, 0.002m), (0.02 m, 0.0005 m), and
(0.02 m, 0.0003 m), respectively. In addition, the first two
particles are 10 times heavier than the other two, and this
naturally induces different initial forces. With this configu-
ration, an optimized layout in Fig. 9a can be obtained. The

feather-like structures appear at the end of the triangular
structure. The bill-shaped void part appears at the end of
the triangular structure, which appears to control the fluid
motion for smooth transition of the third particle.

Moreover, an optimization with 10 particles is tested
using the proposed formulation (Fig. 10). The conditions,
except the number of the masses, are the same as those of the
first test of the second example. By increasing the number
of particles, it appears that the fluid channel between the
triangular and bottom structures becomes more elaborate
and smoothed. The upper arc structure is attached to the
main triangular structure to control fluid motion, thereby
preventing the spread of the particles.

Figure 11 shows an optimal layout with 100 identical
masses to demonstrate the potential, capability, and
limitation of the present algorithm and optimization
framework. As our numerical code may not be optimized
with limited computing resources, a shortage of memory
occurs with a long simulation time by increasing the
number of involved masses. In particular, the first Lagrange
multiplier requires a large amount of physical memory. To
address this, the simulation time is reduced to 50 s with
10,000 time steps for the optimized layout in Fig. 11. The
optimized channel is similar to the one in the previous
example but with smoother boundaries. As information
about the final positions of the particles is only considered
in the optimization framework, the greater the number
particles and the involved information, the smoother and
clearer are the optimized channels. The upper arc structure
in Fig. 10 does not appear as the particles do not travel to
the upper part. In a cluster computer with sufficient memory
and cores, the simulation time is increased again for the
optimal layout in Fig. 12. The optimized shape is similar
to that of Fig. 10, with an upper arc structure. The channel
shape becomes smoother in this design. This illustrates
that the richness of the trajectories and the dataset allows
the optimization algorithm to refine the design where fluid
velocities control the particle velocity and the final locations
of the particles.

Additionally, the geometric conditions imposed by the
SHAKE algorithm are considered in the optimization prob-
lem of the second example in Fig. 5. With the same opti-
mization formulation in (21), the three pairs of two particles
are linked with the geometric conditions in that the distances
of each pair should be 0.002 m in Fig. 13a. This implies that
optimization should be conducted while maintaining these
distances. The optimized design of this optimization prob-
lem is shown in Fig. 13b. The trajectories of the pairs are
indicated in different colors. This example demonstrates the
optimized layout in a manner similar to previous examples
with sharp edges. Figure 13c shows the optimization his-
tory. It demonstrates that the SHAKE algorithm works well
with the present optimization algorithm.
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Fig. 9 An optimization result
with four particles (the first two
particles are heavier than the
other particles). a An optimized
layout with 30% mass
tf = 200 s with 40,000 time
steps (n = 4, αmax = 104,
objective function: −1.4982
×10−5 m), b fluid velocity
distribution and the four particle
trajectories (initial x location :
(0.0054 0.002) m, (0.01 0.002)
m, (0.02 0.0005) m, and [0.02
0.0003] m,
mass1,2 = 1.0865 × 10−12 kg,
mass3,4 = 1.0865 × 10−13 kg,
FD = 3.1715× 10−12 N·s

kg·m ), and
c the magnitudes of the
velocities
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Fig. 10 An optimization result with 10 particles. a An optimized
layout with 30% mass tf = 300 s with 40,000 time steps (n =
4, αmax = 104, objective function: −4.3621 × 10−3 m) and
b fluid velocity distribution and 10 trajectories (initial x location:
[0.005:(0.03–0.005)/9:0.03] m, initial y location: 0.005 m, mass =
1.0865 ×10−13 kg, FD = 3.1715 × 10−12 N·s

kg·m ))

3.3 Topology optimization example 3: multiple
particles with the SHAKE algorithm

To demonstrate the geometric constraint in the present
optimization formulation, a triangular constraint is imposed
for three particles in Fig. 14. The addition of the geometric
constraints would make it possible to impose the triangular
constraint during analysis and design. The dimensions of
the design domain, including the left bottom fluid inlet
and the right upper outlet, are set as 4 cm × 3 cm in

Fig. 11 Optimization result with 100 particles. a An optimized layout
with 30% mass tf = 75 s with 10,000 time steps and b fluid
velocity distribution and the 100 particle trajectories (initial x location:
[0.005:(0.03–0.005)/99 :0.03] m, initial y location: 0.005 m, mass =
1.0865 ×10−13 kg, FD = 3.1715 × 10−12 N·s

kg·m ))

Fig. 14a. The objective of the optimization problem should
be properly formulated to efficiently move the particles.
To demonstrate this feature, the following optimization
problem maximizing the sum of the x locations of the
particles subject to the mass constraint is solved:

Max
γ

p̄x=

NM∑
i=1

(
pi

x

)

NM

Subject to Mass ≤ mass0
γ = [γ1, γ2, ..., γNe ], γmin � γ � 1, γmin = 0.001 (23)
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Fig. 12 Optimization result with 100 particles. a An optimized layout
with 20% mass tf = 200 s with 40,000 time steps and b fluid
velocity distribution and the 100 particle trajectories (initial x location:
[0.005:(0.03–0.005)/99:0.03] m, initial y location: 0.005 m, mass =
1.0865 ×10−13 kg, FD = 3.1715 × 10−12 N·s

kg·m ))

where x and y locations of the i-th particle are denoted
by pi

x and pi
y , respectively. The objective of the above

optimization problem is to maximize the location of the x
coordinates of NM particles.

Figure 14b shows an optimized layout with the optimiza-
tion formulation. The channel shape appears in front of the
pairs, and the expansion chamber is designed based on the
present optimization formulation to guide the fluid motion
toward the outlet. During the optimization process, the geo-
metric constraints with constant distances are successfully
imposed and maintained. In addition, a saw-like structure

Fig. 13 Optimization with the geometric constraints imposed by the
SHAKE algorithm. a Optimization problem definition, b optimal
design with three pairs, c fluid velocities, and d the optimization
history
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Fig. 14 Example 3: An optimization result with three particles with
triangular geometric constraints. a Optimization problem definition, b
optimized layout with 50% mass tf = 300 s with 40,000 time steps,
c fluid velocity distributions and the three particle trajectories (initial
locations: (0.0054 m, 0.004 m) , (0.0059 m, 0.004 m), (0.00565 m,
0.00425 m), mass = 1.0865 ×10−13 kg, FD = 3.1715× 10−12 N·s

kg·m )),
mass0: 50% of the design domain, and d the optimization history

Fig. 15 An optimization result of 20 particles with random geometric
constraints. a An optimized layout with 50% mass tf = 300 s with
40,000 time steps and b the fluid velocity distribution and the 20
particle trajectories

is formed at the outlet, and the outlet is partially cov-
ered to maximize the objective function. Figure 14c shows
the optimization history. This demonstrates that the present
optimization formulation works well with the SHAKE algo-
rithm.

To further demonstrate the SHAKE algorithm in the
present optimization formulation, 10 pairs with 20 particles
are considered, as shown in Fig. 15. As the initial locations
of the particles are randomly chosen, the distances of the
pairs are different. The optimal layout shown in Fig. 15 is
similar to that with the triangular particles. To maximize
the initial velocity, the channel collecting the inlet fluid is
designed based on the present optimization formulation.

3.4 Topology optimization example 4: particle
switching and sorting device problem

In the last example, the optimization problem related to
switching or sorting two particles using different material
properties and inertial forces is considered (Fig. 16). This
optimization problem focuses on utilizing the difference
in the inertial forces exerted on the two particles for
the sake of maximizing the distance in the y direction
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Fig. 16 Example 4. A channel
design to switch particles
(Reynolds number: 85.2273
(1000 × 0.03 ×1 × 10−3/

352 × 10−6), n = 3,
αmax = 5 × 104, fluid: density
= 1000 kg/m3, dynamic
viscosity = 352 × 10−6 Pa×s,
mass0: 20% of the design
domain, the analysis domain
discretized by 400 × 120)

between the particles. A local optimal design restraining
the motion of one particle can be obtained by considering
only the distance. Thus, the two constraints with the x
displacements of the two particles are included in the
optimization formulation (24). The inlet boundary condition
is defined at the center of the left side, and the right side
includes two side outlets. The design is limited to the middle
domain in Fig. 16. One of the challenges in this optimization
problem is to switch the particles first and then maximize
the distance. Based on several numerical exercises, it has
been found that the initial distance between the particles
may not be large in an optimized layout that enables
switching the particles with the given material properties.
This is regarded as one of the main physical difficulties in
this optimization. The initial distance is set to 0.5 cm in
the y direction on the left side of the design domain. To
obtain the differences among the inertial forces, the mass
of the second particle is set to be 100 times greater than
that of the first particle, mass2 = 100 × mass1, and the
drag force is set as 0.5 times greater than that of the first
particle, FD1 = 2×FD2. The optimization algorithm should
challenge the differences of the material properties to find
out an optimal layout for the optimization formulation in
(24). The locations of the particles in the y direction are
denoted by p1

y and p2
y , and those in the x direction are

denoted by p1
x and p2

x . The lower bounds of the x positions
of the particles are set to 3 cm. Without any constraints
on the x displacements, few local optimal layouts trapping
the motion of the heavier particle can be obtained. That is
regarded as a solution for the optimization but not practical.
In other words, the second and third constraints help the
optimization algorithm determine a channel structure that
smoothly moves and switches the particles. Figure 17a
shows an optimal layout that separates the particles. It is
interesting that a small triangular structure is obviously

formed between the initial locations of the particles. This
triangular structure separates the input fluid. The fluid above
the triangular structure moves downward to guide the first
particle whose trajectory is rendered in red color. The fluid
underneath the triangular structure moves upward to guide
the second particle whose trajectory is rendered in green
color. Then, the upper and lower structures blocking the
flow appear. As per our analysis, the upper and bottom
structures near the triangular structure play an important
role in controlling fluid motion and drag force. Figure 17b
and c show the fluid velocity and the optimization history.
The present structure is a local optimum. The number of
particles, upper bound of the pseudo force, penalization in
topology optimization, and lower bounds of the constraints
mainly affect the optimized layout.

Min
γ

− (p1
y − p2

y)

Subject to Mass ≤ mass0
δ ≤ p1

x (δ = 3 cm)

δ ≤ p2
x (δ = 3 cm)

γ = [γ1, γ2, ..., γNe ], γmin � γ � 1, γmin = 0.001

(24)

As a next test, by assigning the same mass to the
two particles initially separated 0.5 cm, an optimal layout
switching and separating the particles is pursued in the
example. A symmetric design shown in Fig. 18a can
be obtained using a symmetric condition. Above and
beneath the triangular structure, the funnel-shaped structure
collecting the input fluid before the triangular structure
and pouring the fluid after the funneled shape structure
appears. As the fluid motion is guided by the optimal
structure, the switching of the particles is successfully
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Fig. 17 An optimization result with two particles switching their
trajectories (initial locations: (1 cm, 1 cm), (1 cm, 1.5 cm), particle:
mass1 = 1.0865 × 10−13 kg, mass2 = 1.0865 × 10−11 kg, FD1 =
3.1715×10−12 N·s

kg·m , FD2 = 1.5857 × 10−12 N·s
kg·m ). a An optimized

layout with 20% mass tf = 225 s with 30,000 time steps (objective
function: −7.5149 ×10−4 m), b fluid velocity distribution, and c the
optimization history

achieved. The aforementioned example shows that the

Fig. 18 An optimization result with the identical two particles
switching their trajectories (initial locations: (1 cm, 1.25 cm), (1 cm,
1.75 cm), particle: mass1 = mass2 = 1.0865 × 10−12 kg, FD1 =
FD2 = 1.5857 × 10−12 N·s

kg·m ). a An optimized layout with 20% mass
tf = 120 s with 16,000 time steps (objective function: −1.2080686
×10−3 m), b fluid velocity distribution, and c the optimization history
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present optimization framework can effectively control the
trajectories of several particles.

4 Conclusions

This study describes the development of topology optimiza-
tion formulations for optimal layouts that gather, control, or
separate multiple particles by manipulating the fluid drag
force. Recently, studies on the motions of particles in fluids
have become increasingly important. For example, SARS-
CoV-2 can spread via coughing in a corridor, and it is
important to control the aerosol cloud traveling in the corri-
dor to prevent infection. To contribute to this subject from
a structural optimization viewpoint, this study derives a
transient sensitivity analysis for the trajectories of multiple
particles and develops several topology optimization for-
mulations considering the trajectories of particles in fluids.
Steady-state laminar flow is assumed, and the effect of the
particle on the surrounding fluid is neglected. Two Lagrange
multipliers are required for the Navier-Stokes equation and
Newton equation. As the force terms of the adjoint equa-
tion originated from Newton’s second law (of particles)
are time-varying, transient sensitivity analysis with the time
reversal scheme is essential. The final locations of particles
are mathematically considered in the objective function and
constraints to control the trajectories. To show the validity
of the present formulations, several demonstration problems
are solved, and the optimal layouts to control the motions
of the particles and fluid can be obtained. It has been shown
that the richness of the trajectory and the sensitivity analysis
allows the optimization algorithm to refine optimal lay-
outs, whose fluid velocities can control the particle velocity
and the final locations of the particles. The present topol-
ogy optimization scheme can help control the trajectories
of particles suspended in fluids. As part of future research,
the motions of several particles must be optimized, and the
contact between the particles and the wall needs to be con-
sidered to examine local particle concentration, migration,
and segregation. Furthermore, the rudimentary theory of
the multiphysics system can be improved. In addition, the
mixing of particles in a 3D turbulent flow can be researched.
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