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ABSTRACT In this paper, we present robust localization algorithms that use range measurements. The
least median of squares (LMedS)-weighted least squares (WLS), LMedS-spherical simplex unscented
transform (SSUT) based WLS and Tukey-based extended Kalman filter (EKF) algorithms are proposed for
line-of-sight (LOS)/non-line-of-sight (NLOS) mixture environments. First, the LMedS solution is obtained,
and then sensors are predicted to be LOS or LOS/NLOS mixture sensors. The range observation predicted
as an outlier is replaced with the estimated distance obtained using the LMedS algorithm. Subsequently,
the two-step WLS method is executed using these new distance measurements. In the Tukey-based EKF
method, Tukey’s risk function and the 3-σ edit rule are employed in the innovation step. Furthermore,
the mean square error (MSE) analysis of the proposed algorithms is performed. We demonstrate that the
positioning accuracy of the proposed methods is higher than that of conventional methods through extensive
simulation.

INDEX TERMS Localization, robust, least median of squares, spherical simplex unscented transform,
weighted least squares, extended Kalman filter.

I. INTRODUCTION
Source localization is a technique in which the coordinates
of the source are determined by utilizing measurements
from each sensor, including the time difference of arrival
(TDOA), the time of arrival (TOA), the received signal
strength (RSS), or the angle of arrival (AOA). Localization
of the point target is of considerable interest in various fields
of research such as mobile communications, telecommunica-
tion, radar and sonar. Position estimation problems in line-of-
sight (LOS) environments have been intensely studied in pre-
vious works [1]–[6]. However, there are some open problems
in this area and a crucial task in location estimation problems
is to estimate the source location in LOS/non-line-of-sight
(NLOS) mixed situations [7]–[9]. For example, the LOS path
between the source and the sensors may be obstructed in
indoor or urban scenarios.

Generally, studies regarding location estimation for
the LOS/NLOS mixture problem are categorized into
three main areas: 1) mathematical optimizations [10]–[13],
2) robust statistics [14]-[19] and 3) LOS and LOS/NLOS
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mixture sensor identification [20]–[22]. We focus on robust
statistics-based localization in this paper. We investigate the
robust localization algorithm where the variance of inliers
is available. Furthermore, it is well known that the least
median of squares (LMedS) estimator demonstrates satisfac-
tory performance when outliers exist [14]–[16]. We utilize
the LMedS estimation to eliminate the adverse effects of
outliers in the context of LOS/NLOS mixture localization
and to obtain an initial solution. Subsequently, the distance
between the emitter and the sensor is calculated using this
initial solution and each sensor is determined to be an LOS
or LOS/NLOS mixture sensor using the initial solution and
the 3-σ edit rule [23], [24]. When the sensor is predicted to be
an LOS/NLOSmixture sensor, the corresponding observation
is replaced with the distance estimated based on the initial
solution. In contrast, when the sensor is determined to be an
LOS sensor, the corresponding measurement is not altered.
Note that we only predict whether the sensor is an LOS or
LOS/NLOS mixture sensor using the initial solution and 3-σ
edit rule. That is, we do not know exactly whether the sensor
is an LOS or LOS/NLOSmixture sensor. Second, the weight-
ing matrix is obtained algebraically or using the spheri-
cal simplex unscented transform (SSUT) [25]–[27]. Finally,
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the proposed LMedS-weighted least squares (WLS) method
employing the newly updated distances and the extended
Kalman filter (EKF) using Tukey’s cost function and 3-σ edit
rule are implemented.

The research for the robust estimator has been per-
formed as follows. The TOA-based robust localization using
multidimensional similarity (MDS) analysis under
LOS/NLOS mixture condition is investigated and its com-
putational complexity is comparatively low [28]. A novel
iterative reweighted variational Bayesian learning method
based on an off-grid model is presented for impulsive noise
processing and it automatically identifies the number of
sources without any prior knowledge [29]. In [30], the bal-
ancing parameter related to the NLOS error is introduced.
The proposed robust method formulation is converted into
a nonconvex optimization problem, which is then relaxed
into convex semi-definite programming. In [31], the adverse
effects of NLOS biases are mitigated by treating them as
nuisance parameters through a robust approach, in which
the problem dealt with is transformed into a generalized
trust region sub-problem using approximations and is solved
utilizing a bisection procedure. A Gaussian mixture model
(GMM), interacting multiple model (IMM) and EKF are
combined into GIMM-EKF [32]. It models the distribution
of range estimates for the LOS/NLOS mixture environments,
and then a Kalman filter-based IMM framework is introduced
with the state probabilities estimated from theGMM. Further-
more, an EKF is employed to determine the emitter position
based on the range estimates.

We propose the algorithms based on the three methods,
i.e., LMedS, SSUT and EKF for the following reason. The
LMedS estimator has been effective for reducing the adverse
effects of outliers. However, the auxiliary constraint has
not been utilized therein. Therefore, it is expected that the
accuracy of the LMedS technique will be enhanced with
the incorporation of the two-step WLS method, in which
the auxiliary constraint is used. The details of the auxil-
iary constraint can be found in [2]. The covariance of the
outlier-removed statistic is required to apply the constraint.
Naturally, the SSUT is utilized for estimating the mean and
variance of the outlier-resistant statistic as SSUT is effective
for estimating the mean and variance of the nonlinear func-
tion. The location accuracy of the LMedS method combined
with the two-step WLS and SSUT is superior to that of the
LMedS algorithm as can be seen from simulation results.
Furthermore, the EKF has been widely used for positioning
or tracking. However, accurate positioning is infeasible in
the LOS/NLOS mixture environments; thus, we develop the
Tukey-based EKF, in which the LMedS solution is used as
the initial state vector and Tukey’s risk function is utilized
in the innovation computation step. We summarize our main
contributions as follows:
• We develop robust closed-form localization methods,
i.e., LMedS-WLS and LMedS-SSUT WLS, where the
LMedS algorithm is adopted as an initial solution to esti-
mate the outlier-resistant distance. Also, the covariance

of the outlier-resistant statistic is derived algebraically
in the LMedS-WLS algorithm. Furthermore, the covari-
ance of the outlier-removed statistic is computed using
the SSUT. It is well known that the performance of
the mean and variance estimation obtained utilizing the
SSUT is superior to that obtained using the Taylor-series
linearization method [25].

• We propose a robust Tukey-based EKF localization
method where the innovation is determined based on
Tukey’s risk function and the 3-σ edit rule. The selection
of the initial state vector is important as the estima-
tion performance of the Kalman filter-based methods is
much dependent on the initial state vector. The initial
state vector is selected as the LMedS solution in the
proposed robust EKF.

• The root mean square error (RMSE) performance of the
proposed algorithms was superior to those of existing
algorithms and close to the Cramér-Rao lower bound
(CRLB).

• We analyze the mean square error (MSE) of the pro-
posed methods.

To the best of our knowledge, WLS and SSUT-based
approaches combined with the LMedS method have not
yet been investigated in the previous works. Further-
more, the EKF-based robust localization method combining
Tukey’s risk function and the 3-σ edit rule has not been
studied. Although there have been studies dealing with the
robust EKF, Huber’s risk function was utilized therein.

The rest of this paper is organized as follows. Section II
discusses the LOS/NLOS mixed location estimation problem
to be tackled in this work. Section III describes the existing
methods in detail. Section IV presents the proposed posi-
tioning algorithms using the two-step WLS, SSUT based on
the LMedS method and EKF algorithms based on Tukey’s
risk function and the 3-σ edit rule. Section V analyzes the
MSE of the LMedS-WLS algorithm and the computational
complexity of all localization methods. Section VI evaluates
the RMSE performances based on the simulation results.
Finally, Section VII presents our conclusions.

II. PROBLEM FORMULATION
The aim of the source location method using range measure-
ments is to predict the coordinates of a point target accurately
so that the error criterion, e.g., the MSE or sum of squared
error, is minimized. In the context of LOS/NLOS mixed
source positioning, the measurement equation is determined
as

ri = di + ni =
√
(x− xi)2 + (y− yi)2 + ni, (1)

where ni is distributed by (1−ε)N(0, σ 2
1 )+εN(µ2, σ

2
2 ), i =

1, 2, . . . ,MwithM denoting the number of sensors [33]–[36].
The measurement error ni is a random process that fol-
lows a two-mode Gaussian mixture distribution in which
the LOS noise component is distributed as N(0, σ 2

1 ) and
the NLOS noise follows N(µ2, σ

2
2 ) (N (µ, σ 2) denotes a
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Gaussian probability density function (PDF) with mean µ
and variance σ 2). The LOS noise has a probability of 1−ε
and the LOS/NLOS noise has a probability of ε. Similar to
previous LOS/NLOS mixture positioning studies, the mean
and variance of the outlier distribution cannot be obtained.
Meanwhile, the variance of inlier (σ 2

1 ) is assumed to be
known because it can be estimated by observing the energy
bins in the absence of the transmitted signal [37]. Here, ε (0 ≤
ε ≤ 1) is a measure of contamination, which is usually lower
than 0.1 [33]–[36], [x y]T represents the unknown source
coordinates and [xi yi]

T represents the known coordinates
of the ith receiver. Furthermore, ri is the range measurement
between the point emitter and the ith receiver and di is the
true distance between the emitter and ith sensor. Squaring (1)
and rearranging yield the following equation:

xix+ yiy− 0.5R+ mi = 0.5(xi2 + yi
2
− r2i ),

i = 1, 2, . . . ,M, (2)

where R = x2 + y2,mi = −dini − 1
2n

2
i . By representing (2)

in a matrix form, we obtain the following

Ax+m = b, (3)

where m = [m1, · · · ,mM]T, x = [x y R ]T,

A =

 x1 y1 −0.5
...

...
...

xM yM −0.5

 , and

b = [b1 · · · bM ]T =
1
2

 x21 + y
2
1 − r

2
1

...

x2M + y
2
M − r

2
M

 .
Throughout this paper, a vector is represented with a lower-
case boldface letter, a matrix is represented with an uppercase
boldface letter and the operator [·]T denotes a vector/matrix
transpose.

III. REVIEW OF THE CONVENTIONAL APPROACHES
A. LMedS ESTIMATOR [14]–[16]
Least sum of squares (LS) has been widely used in statistical
signal processing; however, it is vulnerable to outliers that
occur in real environments. As an alternative, the LMedS
algorithm can be utilized. LMedS estimation is robust to
outliers owing to its high breakdown value of 50%. This is the
fraction of outliers that can be tolerated while still returning
a good solution. The LMedS estimation is summarized in
Algorithm 1.

B. EKF
The EKF has been utilized in nonlinear systems and noise
models for replacing the Kalman filter. The state transition
and observation models are not linear functions of the state
but may be differentiable functions. The transition and obser-
vation models are represented as follows:

x(k) = f(x(k−1),u(k))+ w(k)

Algorithm 1 LMedS Estimation
1. Select m random sets of points with size p from the data
set, where p is the number of parameters to be estimated.
2. Calculate the LS solution for each subset to find a solution
for the parameters from the data set.
3. Calculate the median of the squared residuals for the m
random sets.
4. Calculate the minimum value among the median of the
squared residuals for the m random sets.
5. The LS solution associated with the minimum value is
determined as the LMedS solution.

Algorithm 2 EKF Algorithm

1. Initialize x(0) and P(0).
2. Predict state estimate x̂(k|k−1) = f(̂x(k−1|k−1),u(k)).
3. Predict covariance estimate
P(k|k−1)

= F(k)P(k−1|k−1)(F(k))T +Q(k).
4. Calculate Kalman gain
K(k)
= P(k|k−1)(H(k))T (H(k)P(k|k−1)(H(k))T + R(k))−1.

5. Update state estimate
x̂(k|k) = x̂(k|k−1) +K(k)(z(k) − h(̂x(k|k−1))).
6. Update covariance estimate
P(k|k)

= (I−K(k)H(k))P(k|k−1).

F(k) andH(k) are the state transition and observation matrices
defined as the following Jacobians:
F(k)
=

∂f
∂x |̂x(k−1|k−1),u(k) ,H

(k)
=

∂h
∂x |̂x(k|k−1) .

z(k) = h(x(k))+ v(k) (4)

where w(k) and v(k) are the process and observation noises
which are assumed to be zero-mean multivariate Gaussian
noises with covariance Q(k) and R(k), respectively. Further-
more, u(k) is the input vector. The EKF algorithm is summa-
rized in Algorithm 2.

C. SSUT [25]–[27]
The variance of the estimator can be obtained using the
Monte-Carlo (MC) method; however, in this case, tens
or hundreds of samples are required. In recent years,
the unscented transform (UT) has been utilized as an alter-
native to the MC method. The number of samples required
to estimate the mean is reduced drastically when the UT
is utilized. Furthermore, the SSUT has been proposed to
reduce the number of samples of the conventional UT, e.g.,
the UT requires 2n+1 points whereas the SSUT requires
n+2 points, where n is the dimension of the parameter to
be estimated [25]. Thus, the computational complexity of the
SSUT is less than that of the UT as the dimension increases.
The SSUT method is summarized in Algorithm 3.

IV. PROPOSED ROBUST LOCALIZATION METHODS
In this section, we present the proposed robust localization
methods. The rationale behind the superiority of the proposed
methods can be summarized as follows:
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Algorithm 3 SSUT
1. Choose 0≤ W0 ≤ 1.
2. Choose the weight:
Wl = (1−W0)/(n+ 1).
3. Initialize the vector sequence as:
e10 = [0], e11 = [− 1

√
2W1

], e12 = [ 1
√
2W1

].
4. Expand vector sequence for k = 2, · · · , n according to

ekl =



[
ek−10
1

]
, forl = 0;[

ek−1l
−

1
√
k(k+1)W1

]
, forl = 1, · · · , k;[

0k−1
k

√
k(k+1)W1

]
, forl = k+ 1,

where ekl indicates the lth sigma point of the k-dimension state
vector.
5. Select the sigma points as ℵkl = û +

√
Puuekl , where û is

the mean of u and Puu is the covariance.
6. Propagate the sigma points through the non-linear function
g(·): θkl = g(ℵkl ), l = 0,· · · ,n + 1.
7. Estimate the mean and covariance of the propagated vari-
able as follows:
E[θ̂ ] = E[g(x)] ' θ̂U =

∑n+1
l=0 W

m
l θ

k
l

Var[θ̂ ] = Var[g(x)] ' SU =
∑n+1

l=0 W
c
l (θ

k
l − θ̂U )(θ

k
l − θ̂U )

T

where Wm
l =

{
W0, l = 0;
1−W0
n+1 , l = 1, · · · , n+ 1.

W c
l =

{
Wm

0 + 1+ β − α2, l = 0;
1−Wm

0
n+1 , l = 1, · · · , n+ 1.

In general, 10−4 ≤ α ≤ 1 and β = 2 are the most appropriate
when the sample points follow a Gaussian distribution.

1) The error variance of the LMedS solution is calculated
and then utilized in the second-step to improve the perfor-
mance of the LMedS estimate.

2) The auxiliary constraint is further used to enhance the
accuracy of the LMedS solution.

3) It is well known that the estimation performance for the
Kalman filter-based methods heavily depends on the selec-
tion of the initial points. We set the initial point as the LMedS
solution, which enhances the accuracy of the Tukey-based
EKF. Additionally, Tukey’s risk function is employed in the
innovation step.

We combine the LMedS technique with the two-step WLS
method and SSUT for the following reason. The LMedS
method has been utilized as the robust estimator and it
has demonstrated a superior performance when the outlier
exists if the contamination ratio is less than 0.5. However,
the LMedS method does not attain the CRLB because it does
not employ the auxiliary constraint. Meanwhile, the two-
step WLS algorithm is known to be simple and accurate in
LOS conditions, but is vulnerable to LOS/NLOS mixture
conditions. Hence, we combine the LMedS method with the
two-step WLS algorithm to improve the performance of the
LMedS method. Note that the error variance for a nonlinear

statistic should be calculated to apply the two-step WLS
method. The SSUT is effective for estimating the mean and
variance of a nonlinear function. Therefore, the SSUT is
combined with the LMedS method for estimating the mean
and variance of the nonlinear outlier-resistant statistic. Also,
the robust version of the EKF has been widely applied. The
LMedS method is combined with the Tukey-based EKF to
determine the initial state vector appropriately and is adopted
in the calculation of the innovation.

A. THE LMedS-WLS ALGORITHM
Here, we explain the proposed LMedS-WLSmethod in detail.
First, the emitter location is estimated using the LMedS
method. Subsequently, the estimated distance between the
emitter and the sensor is calculated and then the absolute
difference between the range observation and this estimated
distance is calculated. If this measure is larger than 3σ1,
the corresponding measurement is substituted as an estimated
distance based on the 3-σ edit rule. However, if this measure
is smaller than 3σ1, the corresponding observations are iden-
tified as inliers and are unaltered. Then, the two-step WLS
localization [2], [3] is performed using these newly updated
observations. The first-step WLS estimate is obtained as
follows:

x̂f = (ATWnA)−1ATWnb̂n (5)

where b̂n = [b̂n1 · · · b̂
n
M ]T and b̂ni is defined as follows:

b̂ni =


−r2i + x

2
i + y

2
i

2
, if resi ≤ 3σ1;

−̂r2i + x
2
i + y

2
i

2
, if resi > 3σ1,

(6)

r̂i =
√
(̂xLMedS − xi)2 + (̂yLMedS − yi)2, [̂xLMedS, ŷLMedS]T

are the estimated coordinates using the LMedS method
and resi = |ri − r̂i|. Also, Wn

= C−1
b̂n

=

(diag[Var{b̂n1} · · ·Var{b̂
n
M }])

−1 and Var{b̂ni } is represented as
given below:

Var{b̂ni } =

{
r2i σ

2
1 , if resi ≤ 3σ1;

r̂2i q
T
i Rqi, if resi > 3σ1

(7)

where qi =
[
x̂LMedS−xi

gi
,
ŷLMedS−yi

gi

]T
,

gi =
√
(̂xLMedS − xi)2 + (̂yLMedS − yi)2, R = [Q]1:2,1:2

([Q]1:2,1:2 denotes the 2×2 submatrix of Q, which excludes
the third row and column),Q= (AT

LAL)−1AT
L8AL(AT

LAL)−1,
AL denotes the design matrix which is used when the LMedS
solution is obtained and 8 is defined as follows:

[8]i,j =

{̂
r2i σ

2
1 , if i = j;

0, if i 6= j.
(8)

Here, [8]i,j denotes the (i, j)th element of matrix 8. Fur-
thermore, the accuracy of the first-step WLS estimate can be
improved in the second-step [2], [3]:

x̂f,s = (HTC−1
ĥ

H)−1HTC−1
ĥ

ĥ (9)
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where

ĥ =
[
[x̂f]21 [x̂f]

2
2 [x̂f]3

]T
, (10)

H =

 1 1 0
0 1 1
1 1 1

 , and (11)

Cĥ = diag[2x 2y 1](ATC−1
b̂n

A)−1diag[2x 2y 1] (12)

' diag[2[x̂f]1 2[x̂f]2 1](ATC−1
b̂n

A)−1

× diag[2[x̂f]1 2[x̂f]2 1], (13)

[a]r is the r th component of vector a. The final
second-step WLS emitter position estimate is expressed as
follows:

x̂e =
[
sgn([x̂f]1)

√
[x̂f,s]1 sgn([x̂f]2)

√
[x̂f,s]2

]T
(14)

where sgn(·) denotes the sign function. The LMedS-WLS
localization is summarized in Algorithm 4.

Algorithm 4 LMedS-WLS Algorithm

1. Estimate [̂xLMedS, ŷLMedS]T using the LMedS algorithm,
where x̂LMedS, ŷLMedS are estimated x and y coordinates of
the emitter utilizing the LMedS algorithm.
2. Calculate r̂i =

√
(̂xLMedS − xi)2 + (̂yLMedS − yi)2 using

the LMedS solution for each sensor (i = 1, · · · ,M ), where
xi and yi are the x and y coordinates for the ith sensor.
3. Calculate resi = |ri − r̂i| for each sensor.
4. Compare resi with 3σ1 for each sensor.
5. If resi is smaller than 3σ1, the corresponding measurement
is identified as an inlier. The observations predicted as inliers
are not altered. On the contrary, when resi is larger than 3σ1,
the corresponding observation is replaced with r̂i.
Namely,

b̂ni =


−r2i + x

2
i + y

2
i

2
, if resi ≤ 3σ1;

−̂r2i + x
2
i + y

2
i

2
, if resi > 3σ1

(15)

6. Estimate the emitter position using the two-step WLS
algorithm and newly updated measurements.

B. THE LMedS-SSUT BASED WLS ALGORITHM
In this subsection, the LMedS-SSUT basedWLS localization
algorithm is described in detail. First, the emitter location
is estimated using the LMedS method in the same manner
as the LMedS-WLS method. Then, the estimated distances
between the emitter and the sensors are calculated and then
the absolute difference between the range observation and
this estimated distance is calculated. If this measure is larger
than 3σ1, the corresponding measurement is substituted as
an estimated distance based on the 3σ edit rule. That is, the
observations identified as inliers remain unaltered and those
predicted as outliers are replaced with the estimated dis-
tances. These corrected ranges are used as the mean of sigma

Algorithm 5 LMedS-SSUT Based WLS Algorithm

1. Estimate [̂xLMedS, ŷLMedS]T using the LMedS algorithm.
2. Calculate r̂i =

√
(̂xLMedS − xi)2 + (̂yLMedS − yi)2 using

the LMedS solution for each sensor (i = 1, · · · ,M ).
3. Calculate resi = |ri − r̂i| for each sensor.
4. Compare resi with the 3σ1 for each sensor.
5. If resi is smaller than 3σ1, the corresponding measurement
is identified as an inlier. The observations predicted as inliers
are not altered. On the contrary, when the resi is larger than
3σ1, the corresponding observation is replaced with r̂i.
6. The newly updated observations are utilized as the mean
for the sigma points of each sensor.
7. Choose 0≤ W0 ≤ 1.
8. Choose the weight: Wl = (1−W0)/(n+ 1).
9. Initialize the vector sequence as:
e10 = [0], e11 = [− 1

√
2W1

], e12 = [ 1
√
2W1

].
10. Expand the vector sequence for k = 2, · · · , n according
to

ekl =



[
ek−10
1

]
, forl = 0;[

ek−1l
−

1
√
k(k+1)W1

]
, forl = 1, · · · , k;[

0k−1
k

√
k(k+1)W1

]
, forl = k+ 1,

where ekl indicates the lth sigma point for the range for each
sensor.
11. Select the sigma points asℵkl = µr+

√
Prrekl , whereµr is

the newly updated range if the resi > 3σ1 and original range
if the resi ≤ 3σ1 and Prr is the variance for the corresponding
range.
12. Propagate the sigma points through the non-linear func-

tion g(·): θkl = g(ℵkl ) =
−(ℵkl,i)

2
+x2i +y

2
i

2 (ℵkl,i is the sigma
point):, l = 0,· · · ,n + 1.
13. Estimate the mean and covariance of the propagated
variable as follows:
E[θ̂ ] = E[g(x)] ' θ̂kU =

∑n+1
l=0 W

m
l θ

k
l

Var[θ̂ ] = Var[g(x)] ' SkU =
∑n+1

l=0 W
c
l (θ

k
l − θ̂U )(θ

k
l − θ̂U )

T

where Wm
l =

{
W0, l = 0;
1−W0
n+1 , l = 1, · · · , n+ 1.

W c
l =

{
Wm

0 + 1+ β − α2, l = 0;
1−Wm

0
n+1 , l = 1, · · · , n+ 1.

14. Estimate the emitter position using the two-step WLS
algorithm, propagated mean and variance. In general, 10−4 ≤
α ≤ 1 and β = 2 are optimal when the sample points follow
a Gaussian distribution.

points. Consequently, these sigma points are propagated

through the nonlinear transform g(ℵkl,i) =
−(ℵkl,i)

2
+x2i +y

2
i

2 (ℵkl,i
is sigma point) and the mean and variance are obtained for
these propagated sigma points. Then, two-stepWLS localiza-
tion is performed using the mean and variance of the propa-
gated variable. The LMedS-SSUT based WLS localization is
summarized in Algorithm 5.
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C. TUKEY-BASED EKF ALGORITHM
In the proposed Tukey-based EKF method, Tukey’s risk
function is utilized when determining the innovation in the
state correction step [38]. The Tukey’s risk function is defined
as follows:

ρ(ei) =


e2i
2
−

e4i
2c2
+

e6i
6c4

, if
resi
σ1
≤ c;

c2

6
, if

resi
σ1

> c.
(16)

The innovation is determined as the derivative of Tukey’s loss
function (ρ(ei)), known as the influence function in robust
statistics [38]. Accordingly, the innovation is calculated as

ei −
2e3i
c2
+

e5i
c4

when resi is smaller than cσ1 and as zero when
resi is larger than cσ1. When the observation is predicted
to be an outlier, the corresponding measurement is not used
in the state update because the Kalman gain is very small.
That is, the measurement is reflected for the state update
proportional to the Kalman gain. The threshold c is set to
three according to the 3-σ edit rule. The LMedS solution
is utilized as the initial state vector, Q = I2×2 and R =
IM×M . The Tukey-based EKF algorithm is summarized in
Algorithm 6.

V. PERFORMANCE ANALYSIS
A. MSE PERFORMANCE ANALYSIS
In this section, we analyze the MSEs of the proposed meth-
ods. The MSE is the sum of the squared bias and variance.
The RMSE can be obtained by taking the square root of the
MSE. The estimation error 1̂xe is represented as

1̂xe (17)

= D−12 1̂xf,s (18)

= D−12 (HTC−1
ĥ

H)−1HTC−1
ĥ

(̂h−Hxf,s) (19)

= D−12 (HTC−1
ĥ

H)−1HTC−1
ĥ

D1 (̂xf − xf) (20)

= G(ATC−1
b̂n

A)−1ATC−1
b̂n

(̂bn − Axf) (21)

where D1 = diag[2x 2y 1], D2 = 2diag[x y], G =

D−12 (HTC−1
ĥ

H)−1HTC−1
ĥ

D1 and xf, xf,s are the true values
for x̂f, x̂f,s. Then, the error covariance matrix of x̂e is repre-
sented as follows:

cov[1̂xLMedS-WLS
e ] = G(ATC−1

b̂n
A)−1GT . (22)

As E [̂h] ' h in a sufficiently small noise condition, the bias
for the second step estimate of the LMedS-WLS method is
approximately the zero vector. Thus, the bias of the final
solution for the LMedS-WLS algorithm is the zero vector.
Then, MSE(x̂e) ' tr[cov(x̂e)], where tr(·) denotes the trace
operator. The MSE performance for the LMedS-SSUT WLS
method can be analyzed in the same manner. The covariance
of the LMedS-SSUT WLS algorithm is derived as follows:

cov[1̂xLMedS-SSUT WLS
e ] = G(ATC−1

b̂s
A)−1GT (23)

Algorithm 6 Tukey-Based EKF Algorithm

1. Set the initial position to the x(0) = [̂xLMedS, ŷLMedS]T and
P(0)
= I.

2. Predict state estimate x̂(k|k−1) = F(k )̂x(k−1|k−1), where
F(k)
= I2×2, x̂ = [̂x ŷ]T and x̂, ŷ are the estimated location

coordinates.
3. Predict covariance estimate
P(k|k−1)

= F(k)P(k−1|k−1)(F(k))T +Q(k).
4. Calculate r̂i =

√
(̂x(k|k−1) − xi)2 + (̂y(k|k−1) − yi)2 for

each sensor (i = 1, · · · ,M ), where [̂x(k|k−1) ŷ(k|k−1)]T are
elements of x̂(k|k−1).
5. Calculate resi = |ri − r̂i| for each sensor.
6. Compare resi with the 3σ1 for each sensor.
7. Calculate the Kalman gain
K(k)
= P(k|k−1)(H(k))T (H(k)P(k|k−1)(H(k))T+R(k))−1, where

H(k) is the Jacobian of h(k) defined as H(k)
=

∂h
∂x |̂x(k|k−1) , h

(k)

= [
√
(x(k|k−1) − x1)2 + (y(k|k−1) − y1)2, · · · ,√

(x(k|k−1) − xM )2 + (y(k|k−1) − yM )2]T .
8. Update the state estimate x̂(k|k) = x̂(k|k−1) +K(k)e(k),
where c = 3, e(k) = [(en1)

(k), · · · , (enM )(k)]T , (eni )
(k)
={

e(k)i −
2(e(k)i )3

c2
+

(e(k)i )5

c4
, ifresi ≤ 3σ1;

0, ifresi > 3σ1.
e(k)i = [z(k)−h(̂x(k|k−1))]i and [a]i denotes the ith element of
a.
9. Update the covariance estimate
P(k|k)

= (I−K(k)H(k))P(k|k−1).

where Cb̂s = diag[Var(θ̂U ,1), · · · ,Var(θ̂U ,M )], b̂s =
[θ̂U ,1, · · · , θ̂U ,M ]T , θ̂U ,i is the same as that defined in Algo-
rithm 5.13 and the subscript i indicates the sensor index.
Var(θ̂U ,i) can be derived as follows:

Var(θ̂U ,i) =
n+1∑
l=0

(Wm
l,i)

2SkU ,i (24)

where Wm
l,i and S

k
U ,i are the same as those defined in Algo-

rithm 5.13. Furthermore, the state error covariance can be
utilized as the MSE performance of the Tukey-based EKF
algorithm. Namely, the MSE of the Tukey-based EKF can be
approximated as

P(k|k)
= (I−K(k)H(k))P(k|k−1). (25)

B. COMPUTATIONAL COMPLEXITY ANALYSIS
Table 1 shows the computational complexity of the exist-
ing and proposed robust algorithms, where M is the num-
ber of sensors, p is the number of parameters and I is the
iteration number. The computational complexity is depen-
dent on the matrix inverse and multiplication operations
because their computational load is higher than that of other
operations. The computational complexities of the proposed
LMedS-WLS and LMedS-SSUT WLS methods were higher
than that of the LMedS algorithm owing to the incorporation
of the two-step WLS procedure. Furthermore, the computa-
tional burden of the Tukey-based EKF algorithm was higher
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TABLE 1. Comparison of the computational complexity.

FIGURE 1. Deployment of sensors.

than that of the LMedS method. However, the computa-
tional complexities of all methods, excluding the bi-section
method, are approximately determined as O(M3) because p
is relatively small compared withM. Therefore, the proposed
methods have competitive advantages in both localization
accuracy and computational complexity compared to the
other algorithms. Although the proposed algorithms require
the matrix inverse operation, inverse matrix may be updated
intermittently in slowly varying environments. Consequently,
the computational complexity can be considerably reduced.

VI. SIMULATION RESULTS
We compared the performance of the proposed LOS/NLOS
mixed emitter positioning methods with those of a robust
LMedS method [16], a bi-section estimator [39] and a maxi-
mum correntropy criterion (MCC)-EKF technique [40] in this
section. The simulation settings are shown in Table 2.

The RMSE is defined as follows:

RMSE =

√∑10
i=1

∑200
k=1[(̂x

k(i)− x(i))2 + (̂yk(i)− y(i))2]
10× 200

(26)

where [̂xk(i), ŷk(i)]T is the estimated location of the point
target in the ith position set and kth iteration. Additionally,
x(i) and y(i) denote the ith true coordinates of the emitter.
Fig. 1 shows the arrangement of the receivers. Although we

FIGURE 2. Comparison of the RMSEs of the proposed estimators with
those of existing methods (a) RMSE in the case that sensors 8 and 9 are
LOS/NLOS mixture sensors and the remaining sensors are LOS sensors
(b) RMSE in the case that sensors 7, 8 and 9 are LOS/NLOS mixture
sensors and the remaining sensors are LOS sensors.

used a fixed sensor deployment in this simulation, the RMSE
performance varies according to the geometry of the sen-
sors. This observation can be justified based on the concept
of geometric dilution of precision (GDOP) (the localization
accuracy improves as the GDOP decreases).

The localization accuracywith respect to the standard devi-
ation of the NLOS error is displayed in Fig. 2. In Fig. 2(a),
sensors 8 and 9 were the LOS/NLOS mixture sensors and
the remaining sensors were LOS sensors. The bias of the
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TABLE 2. Simulation settings.

FIGURE 3. RMSEs of the localization algorithms as a function of standard
deviation of LOS noise (bias of NLOS noise (µ2): 4 m, standard deviation
of NLOS noise (σ2): 10 m).

NLOS error (µ2) was 4 m, and the standard deviation of
the LOS noise (σ1) was 0.1 m. Further, the initial states of
the EKF were set to the LMedS solution in the Tukey-based
EKF method. It is evident that the RMSEs of the proposed
robust WLS methods were lower than those of the other
existing methods. The RMSEs of the proposed algorithms
were approximately 0.09 m and the RMSEs of the LMedS,
bi-section and MCC-EKF methods were about 0.15 m,
2.0-4.0 m and 3.0-7.5 m in Fig. 2(a), respectively. The
proposed methods outperformed the LMedS, bi-section and
MCC-EKF methods by approximately 0.06 m, 1.91-3.91 m
and 2.91-6.41 m, respectively. The RMSEs of the proposed
methodswere nearly the same. TheCRLBwas obtained using
the MC integration techniques explained in [34]. The CRLB
was 0.08 m and the RMSEs of the proposed methods were
larger than the CRLB by 0.01 m. The theoretical values ((22)
and (25)) were approximately the same as the CRLB.

In Fig. 2(b), sensors 7, 8 and 9 were LOS/NLOS mixture
sensors, whereas the remaining environments were identical
to those in Fig. 2(a). The RMSEs of the proposed methods
were approximately 0.12m and the RMSEs of the LMedS, bi-
section and MCC-EKF methods were approximately 0.17 m,
2-6 m and 3-10 m, respectively. In Fig. 2(b), the proposed
methods outperformed the LMedS, bi-section andMCC-EKF
methods by approximately 0.05 m, 1.88-5.88 m and

FIGURE 4. RMSEs of the localization algorithms as a function of the
number of NLOS sensors (bias of NLOS noise (µ2): 4 m, standard
deviation of LOS noise (σ1): 0.1 m, standard deviation of NLOS noise (σ2):
10 m).

2.88-9.88m, respectively. The CRLBwas about 0.1m and the
RMSEs of the proposed methods were larger than the CRLB
by 0.07 m. The CRLB was approximately the same as the
theoretical value attained from (22) and (25).

Fig. 3 shows the RMSEs versus the standard deviation of
inliers. In Fig. 3, sensors 7, 8 and 9 were assumed to be
LOS/NLOS mixture sensors and the remaining sensors were
assumed to be LOS sensors. The RMSEs of the proposed
methods were lower than those of the other methods in Fig. 3.
The performance of all the robust methods became worse
as the standard deviation of the LOS error increased. The
RMSEs of the proposed methods approximated the CRLB in
the small LOS noise regimes, but were moderately degraded
than the CRLB under high LOS noise conditions.

Next, Fig. 4 illustrates the RMSEs versus the num-
ber of LOS/NLOS mixture sensors. The proposed robust
WLS-based methods outperformed the other methods,
as shown in Fig. 4. When the number of LOS/NLOS mix-
ture sensors was larger than three, the RMSEs of all the
robust WLS methods were significantly increased. Note that
the theoretical breakdown point of the LMedS algorithm is
b((M−(p+1))/2c+1

M , where bac is an integer part of a [14]. The
theoretical breakdown point of the LMedS method in this
study is 33.3 % because M = 9 and p = 3. Thus, it can
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FIGURE 5. RMSEs of the localization algorithms as a function of the bias
in the case that sensors 7, 8 and 9 are LOS/NLOS mixture sensors and the
remaining sensors are LOS sensors (standard deviation of LOS noise (σ1):
0.1 m, standard deviation of NLOS noise (σ2): 10 m).

FIGURE 6. Empirical cumulative distribution function (ECDF) of the
estimation error for robust localization methods in the case that
sensors 7, 8 and 9 are LOS/NLOS mixture sensors and the remaining
sensors are LOS sensors (standard deviation of LOS noise (σ1): 0.1 m,
standard deviation of NLOS noise (σ2): 10 m.

be observed that the simulation results were consistent with
the theoretical value. The RMSEs of the proposed meth-
ods increased as the number of LOS/NLOS mixture sensors
increased, but were lower than those of the existing methods.

Fig. 5 shows the RMSEs versus bias. The RMSEs of all
the methods were approximately constant as the bias varied
and the proposed methods outperformed the other existing
algorithms. Namely, the localization performances of the pro-
posed WLS-based algorithms were not affected by the bias

FIGURE 7. Risk and influence function of the Tukey-based EKF algorithm
(a) Risk function (b) Influence function.

because the localization estimate was dependent on the LOS
sensors.

The empirical cumulative distributive function (ECDF)
for the localization methods is displayed in Fig. 6 when
sensors 7, 8 and 9 were LOS/NLOS mixture sensors. The
proposed methods outperformed the LMedS algorithm and
the Tukey-based EKF localization method was superior to the
other proposed algorithms.

Fig. 7 shows the risk and influence function for the
Tukey-based EKF localization method. When the estimation
error is larger than a certain threshold, the loss function
is clipped to a constant. Furthermore, the influence func-
tion, which is the derivative of the risk function, redescends
towards zero when the estimation error surpasses the thresh-
old. Therefore, the proposed Tukey-based EKF algorithm is
less sensitive to the outliers compared with the non-robust
algorithm, in which the risk function is typically a square
function.

VII. CONCLUSION
Novel robust localization methods were developed utiliz-
ing the LMedS-WLS, LMedS-SSUT WLS and Tukey-based
EKF algorithms. First, the LMedS solution was obtained and
the distance measurements were updated. That is, the obser-
vation predicted as the outlier was replaced with the dis-
tance estimated using the LMedS algorithm. The proposed
LMedS-WLS and LMedS-SSUT WLS methods employed
the weighting matrix determined based on this LMedS solu-
tion. Furthermore, the Tukey-based EKF method utilized
the Tukey’s risk function and 3-σ edit rule for determining
the innovation. The RMSE performances of the proposed
LMedS-WLS, LMedS-SSUT WLS and Tukey-based EKF
methods were determined to be superior to those of existing
algorithms. Furthermore, the theoretical MSE performance
of the proposed localization algorithms was analyzed and
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the computational complexity was investigated for all the
localization methods.
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