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UWB-gestures, a public dataset of 
dynamic hand gestures acquired 
using impulse radar sensors
Shahzad Ahmed, Dingyang Wang, Junyoung Park    & Sung Ho Cho    ✉

In the past few decades, deep learning algorithms have become more prevalent for signal detection 
and classification. To design machine learning algorithms, however, an adequate dataset is required. 
Motivated by the existence of several open-source camera-based hand gesture datasets, this descriptor 
presents UWB-Gestures, the first public dataset of twelve dynamic hand gestures acquired with ultra-
wideband (UWB) impulse radars. The dataset contains a total of 9,600 samples gathered from eight 
different human volunteers. UWB-Gestures eliminates the need to employ UWB radar hardware to 
train and test the algorithm. Additionally, the dataset can provide a competitive environment for the 
research community to compare the accuracy of different hand gesture recognition (HGR) algorithms, 
enabling the provision of reproducible research results in the field of HGR through UWB radars. Three 
radars were placed at three different locations to acquire the data, and the respective data were saved 
independently for flexibility.

Background & Summary
Hand gesture recognition (HGR) provides a convenient and natural method of human-computer interaction. 
User-friendly interfaces for human-machine interactions can be built using hand gestures. In HGR, gesture data 
are first acquired using a suitable sensor, and then patterns within the acquired sensory signals are recognized to 
identify different hand movements. Several sensors exist for data acquisition, including wearable devices1, cam-
eras2, and radar sensors. Recently, radar has been considered a key enabling technology for HGR due to its many 
benefits over other sensors; for example, radar is less prone to lightning conditions than camera-based sensors. In 
addition, radar-based HGR systems do not require wearable devices. Currently, several commercial devices (such 
as Google Pixel 4 smartphones) are equipped with built-in radar for HGR.

Deep learning algorithms have shown great potential for the recognition and classification of hand gestures. 
Recent studies demonstrated a high classification accuracy for ultra-wideband (UWB) radar-based hand gesture 
classification3,4, where several sliding and circular hand motions were classified using deep learning approaches. 
Similarly, researchers from Google designed and manufactured a miniature radar named Soli solely for hand ges-
ture recognition and sensing using a random forest classifier driven by low-dimensional features5. Recently, Wang 
et al.6 used the same Soli radar sensor5 to classify eleven different gestures using a convolutional neural network 
(CNN)-based classifier. Another study7 recognized six different gestures with radar sensors intended for vehicular 
and infotainment interfaces, and the classification output (class) was fed to an Android system to perform the 
desired operation based on gestures. Furthermore, a system called Radar Categorization for Input & Interaction 
(RadarCat)8 was established to provide a set of applications, including gesture recognition-based random forest 
classifiers. Recently, Park et al.9 focused on providing both radar hardware and a recognition algorithm for hand 
gestures; six different gestures were classified using long short-term memory (LSTM). The aforementioned stud-
ies suggest that machine learning-based solutions will enable radar sensors to have considerable positive impacts 
on HGR. However, machine learning algorithms are based on learning paradigms and therefore require some 
overhead, such as sufficient computing power and the need for a sufficiently large dataset to train the algorithm. 
Without an adequate hardware assembly and acquisition environment, it is often not possible to develop and test 
deep learning frameworks. Thus, to build HGR algorithms without purchasing hardware, a public dataset of hand 
gestures acquired through radar sensors is needed.

Several (signal and image) datasets for training deep learning algorithms are available to the public for down-
load. For instance, ImageNet10 and LabelMe11 provide large collections of images intended for use in visual object 
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recognition. These datasets eliminate the need to acquire images to test different machine learning algorithms 
and simultaneously provide a competitive platform for comparing the performance of different algorithms in 
similar environments. Recently, a small collection of governmental response events for COVID-1912 was released, 
and over 13,000 policy announcements were made by the governments of 195 countries; this public dataset can 
be used to train a CNN for the detection of COVID-19. Similarly, PhysioBank13 presents a collection of over 75 
datasets containing samples of different biomedical signals, such as cardiopulmonary and neural signals, from 
both patients and healthy individuals. However, few vision-based hand-gesture datasets exist; among them are 
the Cambridge Hand Gesture Database (released in 2009) containing nine hundred sequences of images for 
nine different hand gesture classes14, MSRGesture3D (released in 2012)15 and EgoGesture16 (released in 2018). 
Furthermore, the RGBD-HuDaAct17 dataset provides a human activity recognition dataset acquired with a video 
camera and a depth sensor. Pisharady and Serbeck18 reported a comprehensive review of all available vision-based 
hand gesture datasets, and recently, a dataset of continuous-wave radar datasets for vital signs and heartbeats with 
six different human subjects recorded over 223 minutes was released19. However, no such public radar dataset 
exists for hand gestures. For all the studies regarding HGR with radar and other radio sensors, researchers first 
collect training data before testing their algorithms.

In this paper, we present the first-ever dataset of hand gestures collected using ultra-wideband (UWB) impulse 
radar. We expect that this dataset may eliminate the need to acquire data for algorithm testing and will provide a 
competitive environment for the research community to compare the accuracy of existing and newly proposed 
algorithms. The overall summary and the scope of this study are presented in Fig. 1. Three different radar sensors 
operating independently in a monostatic configuration are deployed, and the data from each radar sensor are 
saved separately in the repository. Consequently, the evaluation of HGR algorithms can be performed either by 
using a single radar sensor or by exploiting signals from multiple radar sensors simultaneously. An application 
example of a CNN-based classifier, as explained in Fig. 1, is also demonstrated in a subsequent section.

Methods
Literature survey-based selection of hand gestures.  First, we performed a brief literature review to 
select hand gestures since there is no existing standard for selecting radar sensor-collected hand gestures to test 
HGR algorithms. Researchers always select a gesture set randomly to evaluate their algorithms. However, studies 
suggest that the nature of gestures is usually the same, i.e., swiping, sliding, pushing and cyclic rotation, among 
other movements. For example, Kim and Tomajian20 used 10 gestures of a similar nature to perform HGR using 
Doppler radar. Khan et al.21 used UWB radar to classify five gestures comprising hand sliding and pointing ges-
tures acquired from three different human volunteers. Similarly, Ryu et al.22 constructed a feature-based gesture 
recognition algorithm and tested it on 7 hand gestures, including moving the hand left, right, up, down, clock-
wise, and counterclockwise and pushing the hand. Recent studies on radar sensor-based HGR20–26 used gestures 
of a similar nature to test their algorithms. Nevertheless, although the gestures were similar in nature, the data 
acquisition environment and type of radar differed among each study. As a result, the performance evaluation of 
each new algorithm varies as a function of the recorded dataset. Moreover, in all of the aforementioned studies, 
the datasets used for training and evaluating the algorithms consisted of a small number of samples. For example, 
the dataset used in Fhager et al.26 comprises only 180 samples per gesture. Ryu et al.22 performed each of their 7 
gestures only 15 times for training purposes. A small number of training samples and human participants may 
cause a machine learning algorithm to be biased and lead to overfitting given only the known data samples; as a 
result, the algorithm may not be robust enough against unknown test data samples. To cope with the aforemen-
tioned challenges, the presented dataset has the following features:

•	 UWB-Gestures contains most (if not all) of the previously used gestures in radar-based HGR studies, as there 
is no procedural standard for acquiring hand gestures.

•	 Multiple volunteers were used to acquire the data to provide larger intragesture variations.
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Fig. 1  Summary of the overall workflow: collection of the UWB-Gestures dataset using three UWB radars and 
an application example of classification with a DCNN.
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•	 Multiple (three) radar sensors were used for data acquisition, and the data of each radar sensor are separately 
accessible to provide flexibility in terms of preferences for hardware placement and number of radar sensors. 
Multiple radar sensors also permit hand tracking and trajectory prediction.

In this paper, we present the first-ever public dataset (called UWB-Gestures) of twelve different dynamic hand 
gestures, as presented in Fig. 2(a–l), where the gestures were acquired with UWB impulse radar. The modality of 
the video of each of the performed gestures is available at (http://casp.hanyang.ac.kr/uwbgestures). We selected 
eight swiping (sliding) gestures, as shown in Fig. 1(a–h): left-right (LR) swipe, right-left (RL) swipe, up-down 
(UD) swipe, down-up (DU) swipe, diagonal (diag)-LR-UD swipe, diag-LR-DU swipe, diag-RL-UD swipe and 
diag-RL-DU swipe. Additionally, Fig. 2(i–k) present clockwise rotation (CW), counterclockwise (CCW) rotation, 
and an inward push gesture. One empty gesture was added for each user to permit gesture and nongesture clas-
sification. The hands shown in Fig. 2 represent the starting point of each gesture. As stated earlier, these gestures 
were carefully selected based on the preferences of other researchers.

Participants.  The data were gathered from eight different participants to introduce more intragesture vari-
ations. Table 1 presents the details of each individual participant that can be used for analyzing intragesture and 
intergesture variations with respect to different hand sizes. The average age of the participants was 25.75 years old, 
and the average body mass index (BMI) was 22.19 ± 5 kg/m2. Although most of the human participants involved 
in the data acquisition process were from research occupations, they were provided with basic training prior to 
data acquisition.

Data acquisition hardware.  For data acquisition, we selected the XeThru X4 UWB impulse radar sensor 
from Novelda (Norway) due to its small size and extensive usage in different radar sensor-based applications, 
such as gesture recognition3,21,25, vital sign monitoring27,28 and automobiles29. The detailed technical specifications 
of the radar sensor are listed in Table 2. As shown in Table 2, the Novelda radar sensor is a UWB impulse radar 
sensor with a bandwidth of 2 GHz centered at a frequency of 8.745 GHz. The connectivity diagram is shown in 
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Fig. 2  Gesture vocabulary: (a–l) show the twelve selected hand gestures for the UWB-Gestures dataset.

Volunteer Age (years) Weight (kg) BMI

1 28 67 24

2 26 88 27.17

3 29 56 18.20

4 24 65 19.9

5 21 57 19.70

6 23 65 21.75

7 24 75 21.9

8 31 82 25

Average 25.75 69 22.19

Table 1.  Details of the included human volunteers.
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Fig. 3(a), which demonstrates that the Novelda radar sensor consists of a pair of transmitter (Tx) and receiver 
(Rx) antennas and a DSP microcontroller that is further connected to a host computer, where MATLAB is used 
to collect and save the data. The front and back of the complete radar chip are shown in Fig. 3(b). The dataset was 
collected at Hanyang University, Seoul, South Korea.

Unlike traditional narrowband radar sensors, UWB radar transmits a signal with a wide frequency spectrum 
for a very short duration. For every sequence of transmitted impulse-like signals, the corresponding received 
signal x[n] consists of the reflected signal from N different paths and an additive noise term30. As a result, the 
received UWB signal is a linear combination of these N delayed and distorted signals and can be represented by:

∑= − +
=

x n k a s n k T N[ , ] ( , )
(1)i

N

ni i
1

path

where s[n] represents the estimate of the transmitted pulse shape received at the receiver that is usually distorted 
due to several different factors, such as the reflection, refraction and scattering coefficients of objects, and N rep-
resents additive noise. In addition, ani and Ti represent the scaling factor and duration, respectively, of the signal.

The terms N and K in Eq. (1) represent the rows and columns of the 2D received radar signal matrix, known 
as the fast time and slow time, respectively30. Here, the fast time (rows) of the radar signal matrix expresses the 
distance of the hand from the radar, while the slow time (columns) represents the frames transmitted by the radar 
(the duration of the hand gesture). The signal represented in Eq. (1) contains both the reflections from the target 
(hand) and the unwanted reflections from static objects within the operational area of the radar sensor, such 
as the human body. These unwanted reflections are usually termed clutter. The final 2D matrix containing the 
received hand reflections for one single gesture movement against an individual radar signal can be expressed as:
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In this paper, hand gestures were recorded for 4.5 seconds, which corresponds to 90 (slow-time) rows. We 
adjusted the range of radar to 1.2 meters, yielding 189 fast-time samples.

Parameter Specification

Accuracy ~1 millimeter

Center frequency 8.745 GHz

Sampling frequency 23 GHz

Frame rate 20 frames/second

Bandwidth (–10 dB) 1.5 GHz

Pulse repetition frequency 40.5 MHz

Antenna beamwidth 65 degrees

Number of antennas 1 pair of Tx and Rx antennas

Table 2.  Technical specifications of the used radar.
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Data acquisition setup.  The conceptual acquisition setup is presented in Fig. 4(a), which comprises 3 
radars named RL, RT and RR (placed at the left, top and right sides, respectively, of the experimental setup). All 
three radars operate independently in a monostatic configuration, and signal transmission and reception are per-
formed independently by each radar. The gestures were performed in the middle of all three radars. The distance 
between the left and right radars was 1.1 meters, and the distance between the midpoint of the horizontal radars 
and the top radar was 0.55 meters. Figure 4(b) illustrates the actual experimental setup and the data matrices 
against all three radars for gesture 1 (LR swipe). As shown in Fig. 4(b), as the hand moves from left to right, the 
target signal of the left radar (RL) can be seen moving away from it. In contrast, the target signal can be seen mov-
ing towards RR. For the case of the radar used, a distance of 1 meter contains 156 fast times. Every sample consists 
of 90 slow time frames, which is equivalent to a duration of 4.5 seconds.

Data Records
The UWB-Gestures dataset is available for download at Figshare31 (https://doi.org/10.6084/
m9.figshare.12652592). The data are placed in two separate folders to comply with the file size limit. Since the 
data were gathered using MATLAB, the stored files are MAT files. Additionally, to ensure license-free distribution 
of the dataset, we converted the dataset to a comma-separated values (CSV) file. For clarity, the modality video 
of each gesture is available on our homepage. The structure of the data descriptor is shown in Fig. 5. The dataset 
contains eight directories corresponding to each of the individual participants listed in Table 1. Each folder also 
contains two directories containing the raw data and clutter-removed data. The raw data comprise the recorded 
gestures in raw form, whereas the clutter-removed data consist of a preprocessed version of the raw data. During 
preprocessing, the clutter is estimated using the loopback filter29 based on the following principle:

= ∝ − + − ∝c k c k x k[ ] [ 1] (1 ) [ ] (3)n n n

where c represents the clutter term, which is extracted using the previously estimated clutter and the current 
received radar signal x[n], and the alpha (α) term represents the weighting factor that controls the learning rate 
of the filter. Particularly, for our dataset, alpha was chosen as 0.9. The estimated clutter c is then subtracted from 
the received radar signal x to obtain the clutter-free output y.

= −y k x k c k[ ] [ ] [ ] (4)n n n

As an example demonstrating how to access the subfiles in the folders, the link to access the files containing all 
the clutter-removed samples of gesture 4 (DU swipe) performed by human volunteer 2 is shown below:

~\UWB-Gestures\HV_02\ClutterRemovedData_HV02\HV_02_G4_ClutterRemoved.mat

Here, HV_02 refers to human volunteer 2, and G4 refers to gesture 4. The final MAT files containing separate 
variables corresponding to the three different radar systems are expressed as follows:

•	 Left Radar: HV2_G4_RadarLeft_ClutterRemoved_100samples.
•	 Top Radar: HV2_G4_RadarTop_ClutterRemoved_100samples.
•	 Right Radar: HV2_G4_RadarRight_ClutterRemoved_100samples.
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Note that all the variables representing each radar value are saved as separate CSV files, resulting in three 
times more CSV files than MAT files. All the samples of each gesture are placed in a 2D file with the fast time on 
the horizontal axis and the slow time on the vertical axis. As stated above, every group of 90 slow-time values 
constitutes 1 gesture sample. A MATLAB script to access and view the hand gesture samples is also included and 
discussed in a later section in detail.

Technical Validation
Signal pattern analysis.  Figure 6 presents the signal patterns for all the remaining gestures. As seen in 
Fig. 6, each hand gesture movement corresponds to a distinctive pattern. As a practical example, for the LR swipe 
and RL swipe cases, the right and left radar sensors show opposite patterns, whereas radar 3 shows a straight 
vertical line. On the other hand, for the UD swipe and DU swipe cases, the left and right radars show a straight 
vertical line pattern, while radar 3 showed a varying pattern. Similar variations can be observed for each gesture. 
Similarly, Fig. 6(i) and (j) present the radar images corresponding to clockwise and counterclockwise rotational 
gestures, respectively.
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Example with a CNN-based classifier.  To provide an example of applying the proposed dataset, we 
implement a novel DCNN-based classifier with four hidden layers, as shown in Fig. 7. The radar data matrix is 
converted into images, and these images are fed as input to the DCNN architecture. We perform classification 
using only a single radar sensor (left radar). Consequently, the size of the input layer to the DCNN is 90 × 189 
(fast time × slow time of the single radar data matrix). We employ a 3 × 3 convolutional filter for each of the four 
hidden layers. The learning rate is set to 0.01, and 30 epochs are used for training purposes.

Table 3 presents the classification accuracy of the 4-layer DCNN algorithm shown in Fig. 7 with input from 
only the left radar sensor (RL). The first column of each row represents the original class, whereas the first row 
represents the predicted class of gestures. The diagonal values represent the overall success rate, and the values 
found elsewhere are the classification errors. In Table 3, the diagonal terms representing the success rate are 
marked in bold for clarity. The classifier based on the 4-layer DCNN architecture yielded an accuracy of 94% for 
the single radar sensor.

Code availability
The files uploaded to Figshare31 also contain two independent programs for data visualization and for the example 
demonstration of the DCNN network presented in the above section. The first program can be used to generate 
the distance vs. time graph for user 1, as shown in Fig. 6. The dataset, its subfolders and the code (having the ‘m’ file 
extension) are extracted to the same directory where the code can be executed. After running the code, the user-
interface instructions and comments in the code can be used to plot the distance-time (fast time vs. slow time) 
samples of the hand gestures. The same program can be used to plot the graphs for the other human volunteers as 
well. The second program is uploaded to a separate directory called “Exemplary CNN demonstration”, which can 
generate results similar to those shown in Table 3. Note that the exact accuracy may vary across trials.
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Fig. 7  Example of the DCNN-based classifier for the proposed data descriptor.

a b c D e f g h i j k l

a 90.6 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.7 0.0 1.4

b 0.0 95.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0

c 0.0 0.0 97.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

d 0.0 0.0 1.0 94.2 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0

e 0.0 0.0 0.0 3.6 97.8 0.0 0.0 0.0 0.0 0.7 2.9 0.0

f 1.0 0.7 0.0 0.0 0.0 87.8 5.0 0.7 0.0 0.0 0.0 0.7

g 2.0 4.3 0.0 0.0 0.0 11.5 90.6 0.7 2.8 0.7 2.2 0.0

h 0.0 0.0 0.0 2.2 0.0 0.0 1.4 91.4 3.2 0.0 0.0 0.0

i 0.0 0.0 0.0 0.0 0.0 0.7 0.0 5.8 94.0 0.0 0.0 0.7

j 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 90.6 1.4 0.0

k 2.2 0.0 0.0 0.0 2.2 0.0 2.2 0.0 0.0 6.5 93.5 4.3

l 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 92.8

Overall classification accuracy for a single radar 94%

Table 3.  Classification accuracy of the CNN-based classifier.
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