
Received June 22, 2019, accepted July 9, 2019, date of publication July 16, 2019, date of current version August 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2929299

Fast and Power-Analysis Resistant Ring Lizard
Crypto-Processor Based on the
Sparse Ternary Property
PILJOO CHOI 1, (Member, IEEE), JI-HOON KIM 2, (Senior Member, IEEE),
AND DONG KYUE KIM 3, (Member, IEEE)
1Software Education Committee, Hanyang University, Seoul 04763, South Korea
2Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 04763, South Korea
3Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea

Corresponding author: Ji-Hoon Kim (jihoonkim@ewha.ac.kr)

ABSTRACT Ring Lizard (RLizard) is a quantum-resistant public-key cryptosystem based on the ideal
lattice. RLizard uses a sparse ternary polynomial, which facilitates implementation with lower complexity.
The Lizard scheme’s proposal for the National Institute of Standards and Technology’s post-quantum
cryptography standardization included its reference hardware design using the sparse ternary property;
however, in this paper, we present the RLizard crypto-processor with the improved processing speed and
security level against power analysis attacks. By additionally utilizing unused values for each memory
access in the conventional RLizard crypto-processor, the processing speed of the proposed RLizard crypto-
processors can increase by a factor of two or up to four times. The implementation results with three
different FPGA devices show that the area overhead is approximately 50–100 flip-flops (FFs) and 50–300
lookup tables (LUTs), occupying approximately 2%–3% of the total area. The vulnerability to power
analysis attacks and the proposed countermeasures were also analyzed. The experimental results prove the
vulnerability of unprotected implementation, and the implementation results show that the masking and
hiding countermeasures additionally require approximately 50–120 FFs and 100–360 LUTs. In addition, our
idea can be applied to other ideal-lattice-based cryptosystems using a sparse binary or ternary polynomial,
such as NTRU and Round5.

INDEX TERMS Coprocessors, digital circuits, field programmable gate arrays, side-channel attacks,
post-quantum cryptography.

I. INTRODUCTION
Modern public-key cryptosystems, such as RSA [1] and ellip-
tic curve cryptography (ECC) [2], [3], are based on factoring
and discrete logarithm problems, but both problems could
be more easily solved on a quantum computer by Shor’s
algorithm [4]. As alternatives to these problems, lattice prob-
lems, such as a learning with errors (LWE) problem [5] and a
learning with rounding (LWR) problem [6], have been known
to be quantum-resistant and are attracting considerable atten-
tion as new digital signature [7] and encryption [8] methods.
Although cryptosystems based on the standard lattice, which
operates over matrices, require large sizes of keys, the key

The associate editor coordinating the review of this manuscript and
approving it for publication was Fan Zhang.

size can be reduced by using the ideal lattice [9], which
operates over polynomial rings.

The dominant operation of the ideal-lattice-based cryp-
tosystems is a convolution, which is the multiplication of two
polynomials over a polynomial ring. For fast convolution,
a number theoretic transform (NTT) is widely used [10]–[13],
whereas some cryptosystems [14]–[20] use sparse binary or
ternary polynomials to lower the computational complex-
ity of a convolution. Binary or ternary polynomials have
coefficients ∈ {0, 1} or {0, 1,−1}, and ‘‘sparse’’ means most
parts of the coefficients are zeros. Hence, a large part of
the computations with zero coefficients can be removed, and
multiplications with ±1 can be simplified to additions and
subtractions.

From the proposals to the National Institute of Stan-
dards and Technology’s (NIST’s) post-quantum cryptography

98684 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-3354-8975
https://orcid.org/0000-0002-9809-1339
https://orcid.org/0000-0001-5614-0449


P. Choi et al.: Fast and Power-Analysis Resistant RLizard Crypto-Processor

standardization [21], we could find following some ideal-
lattice-based cryptosystems using a sparse binary or ternary
polynomials: NTRU [15], [16], Round5 [17], and ring Lizard
(RLizard) [18]–[20]. These cryptosystems can be imple-
mented with a simple structure and fast processing speed by
using the sparse binary or ternary property. However, to our
knowledge, there are only a few studies on their hardware
implementation. The NTRU crypto-processor in [22] calcu-
lates all the coefficients of convolution product in parallel.
This parallel style requires many resources, and the ternary
property is not used. In [23], the sparse ternary property is
also not used, so n2 multiplications are required, where n is
the order of the polynomial. In [24], the sparse ternary prop-
erty seems to be used, but the detailed hardware structure is
not explained. These three works regard the hardware imple-
mentation of the classic NTRU, and the proposals [15]–[17]
of the NTRU and Round5 to the NIST’s post-quantum cryp-
tography standardization included only their software imple-
mentation. As for RLizard, the work in [19] included only
its software implementation. The proposal of the Lizard
scheme [20] included even the Verilog source code for its
hardware implementation that uses sparse ternary property;
however, its RLizard crypto-processor can operate at only a
single basic processing speed.

Not only due to the vulnerability of the cryptographic
scheme itself, the secret key can also be exposed by
well-known side channel attacks, which are known to be
very effective. Hence, when implementing a cryptographic
scheme, resistance to existing side channel attacks must be
seriously considered. This point is supported by that the resis-
tance to side channel attacks are required in standards such
as Common Criteria (CC) [25] and FIPS 140-3 [26]. How-
ever, the previous research [15]–[17], [20] only addressed
the hardware implementation of NTRU and RLizard, but did
not include the countermeasure methods against side channel
attacks.

In this paper, we show the improved hardware design of
the RLizard cryptosystem. The contributions are as follows:

- The processing speed of the conventional RLizard
crypto-processor [20] was significantly improved with
almost no area overhead.

- The vulnerabilities to power analysis [27]–[30] were
analyzed, and countermeasures were proposed.

If the order of polynomials is large, memory usage is essen-
tial, and managing memory accesses can have a significant
impact on the processing speed. The main difficulty is that
the amount of data that can be accessed from memory at one
time is limited, so it is not simple to apply parallel processing
with area increase for speed improvement. Our contribution
is that under the data access limitation, we cleverly improved
the processing speed by using discarded values for each
memory access. This contrasts to the conventional RLizard
crypto-processor in [20] that uses only one of the loaded
values for each memory access. Additionally, the proposed
method is applicable to hardware implementations of other

cryptosystems using a binary or ternary polynomial, such as
NTRU and Round5.

We also show the conventional RLizard crypto-processor’s
vulnerabilities to the power analysis. Although [31] has
already conducted similar research on NTRU, their research
focused on software implementation, and its computation of
convolution is slightly different from that of our implemen-
tation. As a result, the power analysis experimental results
were also different, and different countermeasures were
proposed.

The organization of this work is as follows. Section II
provides information regarding the cryptographic algorithms
and main operations of the RLizard scheme. In Section III,
the common overall structure is shown, and the proposed
speed-up method is presented. In Section IV, the vulnerability
to power analysis attacks and the proposed countermeasures
are shown with the experimental results. Section V compares
the implementation results of the RLizard crypto-processors.
Section VI concludes this work.

II. PRELIMINARY
In this section, the cryptographic algorithms of the RLizard
scheme are described. Then, the main operations of the algo-
rithms for the hardware implementation are explained.

A. RLIZARD SCHEME
The RLizard scheme has three algorithms: RLizard.KeyGen,
RLizard.Enc, and RLizard.Dec. Their inputs and outputs,
such as keys, plaintexts, and cipher-texts, are expressed as
polynomials, and the algorithms perform polynomial oper-
ations. The detailed operations are shown in Table 1, where
p and q are powers of two (p < q), and polynomials and their
operations are defined over a ring Rq = Zq [x] /(xn + 1).

TABLE 1. Three algorithms of RLizard scheme.

In Table 1, a private key s(x) and temporary secret r(x) are
sparse ternary secrets, so most of their coefficients are zero,
and only h coefficients have nonzero values of ±1. An error
polynomial e(x) has coefficients in the range (−7, 7) accord-
ing to Gaussian distribution. a(x) and b(x) are public keys
with coefficients inZq.m(x) andm

′′

(x) are binary polynomials

representing plaintext.
(
c
′

1(x) , c
′

2(x)
)
∈ Znq × Znq is the inter-

mediate result of the encryption algorithm and is scaled down
by rounding off, so a cipher-text c = (c1(x) , c2(x)) ∈ Znp×Znp.

VOLUME 7, 2019 98685



P. Choi et al.: Fast and Power-Analysis Resistant RLizard Crypto-Processor

B. MAIN OPERATIONS OF RLIZARD
If RLizard.Enc is divided into RLizard.Enc1 for c1(x) and
RLizard.Enc2 for c2(x), RLizard has four algorithms. Let
their common polynomial operations be

f(x) = u(x) · v(x)+ w(x) . (1)

The polynomials of (1) for each algorithm are shown
in Table 2. Note that q/2p in wi of the RLizard.Enc1 and
Enc2 changes rounding off to rounding down. RLizard.Dec
also requires rounding off, but m

′′

i can be simply obtained by
XORing the two most significant bits of m

′

i.

TABLE 2. Coefficients of polynomials used in each algorithm.

Since xn ≡ −1 (mod xn+1), (1) can be represented as

fk = wk +
∑

i+j≡k mod n
(−1)

⌊
i+j
n

⌋
· uivj. (2)

u(x) is the ternary polynomial of s(x) or r(x), so instead
of (2), we can use

fk = wk +
∑

upos[i]+j≡k mod n
(−1)

usign[i]+
⌊
upos[i]+j

n

⌋
· vj, (3)

where upos and usign are arrays representing the positions
of the nonzero coefficients and their negative signs of u(x),
respectively. For example, when n = 8, h = 4, and u(x) =
1− x4 + x5 + x7, upos = [0, 4, 5, 7] and usign = [0, 1, 0, 0].
Using (3), (1) can be computed as shown in Algorithm 1.
fk for 0 ≤ k < n is initialized with wk in line 2, and
±vk−upos[i] (0 ≤ i < h) are accumulated to fk in lines 3-7.
Except for the initial value of fk in line 2, Algorithm 1 is
similar to the convolution computation algorithm in [31];
however, Algorithm 1 is more suitable for hardware imple-
mentation, and a ternary polynomial is used instead of a
binary polynomial.

Algorithm 1 Convolution Product and Addition
Input: upos, usign, v(x), w(x)
Output: f (x)
1: for k = 0 to n− 1
2: fk ← wk
3: for i = 0 to h− 1
4: j← k − upos[i]
5: neg← (j < 0) ⊕ usign[i] // ⊕ : XOR operation
6: fk ← fk + (−1)neg · vj mod n
7: end for
8: end for

III. HARDWARE DESIGN OF RLIZARD
CRYPTO-PROCESSORS
In this section, the overall hardware structure of the con-
ventional RLizard crypto-processor in [20] is first explained.

Then, our speed-up method is presented, and the modified
hardware design is compared with the conventional one. For
simple notation, the conventional RLizard crypto-processor
is called RLZDx1, and the two proposed RLizard crypto-
processors are called RLZDx2 and RLZDx4, as these crypto-
processors are up to two and four times faster than RLZDx1,
respectively.

A. COMMON HARDWARE STRUCTURE
The overall structure of the RLizard crypto-processor in [20]
is shown in Fig. 1. The adders and registers for accumulation
only require a small number of resources, and the dual-
port memory for storing polynomials occupies most of the
area. For example, key generation requires a total 1152-word
space for 512-word a(x), 128-word s(x) and 512-word b(x)
when the recommended parameters, p = 256, q = 1024,
t = 2, n = 1024, and h = 128 [18] are used. From now, we use
the recommended parameters if not mentioned. The required
spaces of polynomials are shown in Table 3.

FIGURE 1. Overall structure of RLizard crypto-processors.

TABLE 3. Required memory sizes of input polynomials.

To reduce the memory size, the RLizard crypto-processor
in [20] used the following two methods. First, e(x) and m(x)
are stored in the remaining bits of the words for a(x) and b(x),
as 12-bit space is still unused after storing two 10-bit coeffi-
cients of a(x) or b(x) within a word. Second, the output of
each algorithm, f (x) is not stored in the memory. Instead,
whenever one-word size of coefficients of f (x) are com-
puted and collected, the word is outputted. For example, key
generation requires only 640 words for input polynomials,
a (x) and s(x), instead of 1152 words to additionally store
the output polynomial, b(x). The proposed RLizard crypto-
processors also have the same hardware structure.

98686 VOLUME 7, 2019



P. Choi et al.: Fast and Power-Analysis Resistant RLizard Crypto-Processor

B. PROPOSED SPEED-UP METHOD
To present the proposed speed-up method, this subsection
compares the algorithms of the RLizard crypto-processors.
At first, the algorithm of RLZDx1 is shown. Then, it is shown
how the proposed method can improve the processing speed.

1) THE CONVENTIONAL METHOD IN THE RLZDX1
RLZDx1 performs (1) according to Algorithm 2. Compared
to Algorithm 1, codes about memory access and uses of
registers are added. Note that Mem0, Mem1, and Mem2 are
logically separated for simple explanation. They are imple-
mented as one dual-port memory in the crypto-processors.
The function HalfWrd in lines 2, 5, and 9 selects the upper
or lower half word. In decryption, wi and vi are one-byte
size, so the lines 2 and 9 are replaced with the following
codes: fk ← Byte(Mem2 [k � 2] , k mod 4) and vj′ ←

Byte(Mem1[j
′

� 2], j mod 4), where the function Byte
selects one byte from the given word.

Algorithm 2 Convolution and Addition in RLZDx1
Input:Mem0←(upos, usign), Mem1←v(x), Mem2←w(x)
Output: f (x)
1: for k= 0 to n− 1
2: wk ← HalfWrd(Mem2 [k � 1] , k mod 2)
3: t0 ← wk
4: for i= 0 to h− 1
5:

(
usign[i], upos[i]

)
←HalfWrd(Mem0[i� 1], i mod 2)

6: j← k − upos[i]
7: j

′

= j mod n
8: neg← (j < 0) ⊕ usign[i]
9: vj′ ← HalfWrd(Mem1[j

′

� 1], j mod 2)
10: t0←t0 + (−1)neg · vj′
11: end for
12: fk ← t0
13: end for

FIGURE 2. Execution example of Algorithm 2 for n = 8, h = 4,
Upos = [1, 2, 4, 7], and Usign = [0, 0, 1, 0].

Fig. 2 shows an execution example of Algorithm 2. The
coefficients in the blue rectangle (Group1), wi and vj′ are
accumulated to variable t0 to calculate fk . Note that when
loading the coefficients that belong to Group1, their adjacent
coefficients are also loaded together for each memory access.

In addition to Group1, one more coefficient is loaded for
each memory access in the key generation and encryption.
These additional coefficients are marked by the red rectan-
gle (Group2) in the Fig. 2. For example, in Fig. 2, when
w0, v6 and v4 (Group1) are loaded for f0, w1, v7, and v5
(Group2) are also loaded together, respectively. Although
some of coefficients in Group2, such as w1, v7, and v5, can
be used to calculate f1, RLZDx1 do not use them. If they
are also used, the processing speed could be improved. How-
ever, this cannot be achieved simply by adding only one
adder and one register, because only some coefficients in
Group2 are required for fk−1 and the others are required
for fk+1. As shown in Fig. 2, the positions of the red rectangles
are not fixed.

In decryption, wi and vi are one-byte size, so two more
coefficients, marked by the yellow rectangles (Group3)
in Fig. 2, were additionally loaded together. This means that
the processing speed of decryption can be higher than that of
key generation and encryption.

2) PROPOSED METHOD IN THE RLZDX2 AND RLZDX4
In RLZDx2 and RLZDx4, the adjacent coefficients aban-
doned in RLZDx1 were additionally used. RLZDx2 uses one
more coefficient (Group2), so its processing speed is double
that of RLZDx1. The pseudo-code is shown in Algorithm 3.
In lines 13-14 of Algorithm 3, tj′′ and tj′′+1 are two of t−1,
t0, and t1, so fk and one of fk−1 and fk+1 are calculated
together.

Algorithm 3 Convolution and Addition in RLZDx2
Input: Mem0←(upos, usign), Mem1←v(x), Mem2←w(x)
Output: f (x)
1: t−1 ← 0
2: for k= 0 to n− 2 step 2
3: (wk ,wk+1)← Mem2[k � 1]
4: t0 ← wk
5: t1←wk+1 − IV // IV = t

′

−1 if k = n− 2, or 0
6: for i= 0 to h− 1
7:

(
usign[i], upos[i]

)
←HalfWrd(Mem0[i� 1], i mod 2)

8: j← k − upos[i]
9: j

′

= (j mod n)− (j mod 2)
10: j

′′

= − (j mod 2)
11: neg← (j < 0) ⊕ usign[i]
12: (vj′ ,vj′+1)← Mem1[j� 1]
13: tj′′←tj′′ + (−1)neg · vj // tj′′ : t−1 or t0
14: tj′′+1←tj′′+1 + (−1)neg · vj′′+1 // tj′′+1: t0 or t1
15: end for
16: if k = 0 then
17: t

′

−1 ← t−1
18: else then
19: fk−1 ← t−1
20: end if
21: fk ← t0
22: t−1 ← t1
23: end for
24: fn−1 ← t−1

Fig. 3 shows an execution example of Algorithm 3. While
f0 is calculated, w1, v7, and v5 in the first red rectangle are

VOLUME 7, 2019 98687



P. Choi et al.: Fast and Power-Analysis Resistant RLizard Crypto-Processor

FIGURE 3. Execution example of Algorithm 3 for n = 8, h = 4,
Upos = [1, 2, 4, 7], and Usign = [0, 0, 1, 0].

accumulated to a register t1. Then, t1 is passed to t−1, and
v0 and v2 are accumulated. From t−1 and t0, f1 and f2 are
obtained together. In the same way, f3, f4, . . . , fn−2 can be
calculated. Only fn−1 is calculated in a different way. In Fig. 3,
v6 and v0 in the green rectangle are accumulated to a regis-
ter t−1. The value in t−1 is kept in t

′

−1 until f6 is calculated.
Then, t

′

−1, w7, v5, and v3 are accumulated to a register t1, and
f7 is obtained. RLZDx2 requires three additional registers,
t
′

−1, t−1, and t1. Furthermore, another adder is required to
calculate one of t−1 and t1.
RLZDx4 uses Algorithm 3 for key generation and encryp-

tion, and Algorithm 4 for decryption. Algorithm 4 processes
four coefficients together including three adjacent coeffi-
cients (Group2 and Group3). Consequently, RLZDx4 can
process decryption four times faster than RLZDx1. The addi-
tional coefficients are processed in a similar way to the
method in Fig. 3.

C. HARDWARE DESIGN OF RLIZARD
CRYPTO-PROCESSORS
The hardware structure of RLZDx1 and RLZDx2 is shown
in Fig. 4. The largest component is the dual-port memory,
and only a few small registers and adders are additionally
required. The values of upos and usign are loaded throughW0,
and coefficients of w(x) and v(x) are loaded throughW1. The
bit-selection to extract one or two coefficients from one-word

Algorithm 4 Convolution and Addition in RLZDx4
Input:Mem0←(upos, usign), Mem1←v(x), Mem2←w(x)
Output: f (x)
1: (t−3, t−2, t−1)← (0, 0, 0)
2: for k= 0 to n− 4 step 4
3: (wk ,wk+1,wk+2,wk+3)← Mem2[k � 2]
4: t0 ← wk
5: t1←wk+1 − IV1 // IV1 =t

′

−3 if k = n− 4, or 0
6: t2←wk+2 − IV2 // IV2 =t

′

−2 if k = n− 4, or 0
7: t3←wk+3 − IV3 // IV3 =t

′

−1 if k = n− 4, or 0
8: for i= 0 to h− 1
9:

(
usign[i], upos[i]

)
← HalfWrd(Mem0[i� 1], i mod 2)

10: j← k − upos[i]
11: j

′

= (j mod n)− (j mod 4)
12: j

′′

= − (j mod 4)
13: neg← (j < 0) ⊕ usign[i]
14: (vj′ , vj′+1, vj′+2 , vj′+3)← Mem1[j

′

� 2]
15: tj′′ ← tj′′ + (−1)neg ·vj′′ // tj′′ : t−3, t−2, t−1, or t0
16: tj′′+1←tj′′+1+(−1)neg·vj′′+1 // tj′′+1: t−2, t−1, t0, or t1
17: tj′′+2←tj′′+2+(−1)neg·vj′′+2 // tj′′+2: t−1, t0, t1, or t2
18: tj′′+3←tj′′+3+(−1)neg·vj′′+3 // tj′′+3: t0, t1, t2, or t3
19: end for
20: if k = 0 then
21: (t

′

−3, t
′

−2, t
′

−1)← (t−3, t−2, t−1)
22: else then
23: (fk−3, fk−2, fk−1)← (t−3, t−2, t−1)
24: end if
25: fk ← t0
26: (t−3, t−2, t−1)← (t1, t2, t3)
27: end for
28: (fn−3, fn−2, fn−1)← (t−3, t−2, t−1)

data,W0 andW1 is simply expressed by bit organizers (BOs)
such as BO1 and BO2 in Fig. 4. The accumulation part using
W1 is different depending on the crypto-processor version.
The RLZDx1 in Fig. 4 (a) chooses one coefficient (Group1)
from W1 and accumulates it to the register t0 using a single
adder. After accumulation, the final value piles up in the reg-
isterWrdOut . Meanwhile, the RLZDx2 in Fig. 4 (b) chooses
two coefficients (Group1 and Group2) from W1 and accu-
mulates one coefficient to the register t0 and the other to the
register t−1 or t1 using one additional adder. As explained in
the previous subsection, register t

′

−1 is additionally required

FIGURE 4. Hardware structures of RLizard crypto-processors: (a) RLZDx1 and (b) RLZDx2.

98688 VOLUME 7, 2019



P. Choi et al.: Fast and Power-Analysis Resistant RLizard Crypto-Processor

for fn−1. Similarly, the RLZDx4 can be designed by adding
six more registers and two more adders compared to in
RLZDx2, although the RLZDx4 is not included in Fig. 4.

IV. COUNTERMEASURE AGAINST
POWER ANALYSIS ATTACKS
All the above RLizard crypto-processors may be vulnerable
to CPA attacks [28]. In this section, the vulnerability of
RLZDx1 is analyzed representatively, and countermeasures
against CPA attacks are proposed. Then, we present the
power analysis experimental results on all the above RLizard
crypto-processors.

A. VULNERABILITY TO POWER ANALYSIS ATTACKS
The power consumption depends on the processed data.
By analyzing the correlation between data and power traces,
secret data can be revealed. These attacks are called cor-
relation power analysis (CPA). The main purpose of these
attacks is to reveal the secret key; hence, crypto-processors
are usually attacked while performing decryptions.

In this work, we conducted a CPA according to a typical
attack model in [30] as follows.

- Step 1: the attacker selects an intermediate result which
is calculated from the cipher-texts (c1 (x) , c2 (x)) and
key (ssign, spos), where (ssign, spos) includes the infor-
mation of the non-zero coefficients of the private
key, s(x) like (usign, upos). When k = 0 and i = 0,
the RLZDx1 sequentially performs

t0← c2,0, t0← t0 − (−1)neg · c1,j′ , (4)

where j
′

= −spos [0]mod n, and neg =
(
spos [0] < 0

)
⊕

ssign [0]. The attacker can select t0 in (4) as the interme-
diate result for CPA.

- Step 2: while running the RLizard processor with a
constant key and non-constant cipher-texts, the attacker
measures the corresponding power traces and recodes
the used cipher-texts and measured power traces.

- Step 3: the attacker calculates the hypothetical values of
t0 in (4) for the cipher-texts used in Step 2 and possible
guesses at the key since it is supposed that the key is not
known for the attacker.

- Step 4: the attacker maps the hypothetical intermediate
values obtained in Step 3 to power consumption values.
While (4) is performed, some bits of the register t0 are
changed, which causes power consumption. The number
of changed bits in the register t0 can be expressed as:

HD
(
c2,0, c2,0 − (−1)neg · c1,j′

)
, (5)

where HD (x, y) is the Hamming distance (HD) of x
and y. This is an HD model, which is one of the most
commonly used power models.

- Step 5: the attacker calculates correlation coefficients
between the power traces measured in Step 2 and the
hypothetical power consumption obtained in Step 4.

If the guess at the key is correct, there must be a mean-
ingful correlation. That is, spos [0] and ssign[0] can be
determined from the guess with the highest correlation
value. After spos [0] and ssign [0] are known, spos [i] and
ssign [i] for 1 ≤ i < h can be sequentially found in the
same way.

B. PROPOSED COUNTERMEASURE
Two types of countermeasures were used. The first method is
masking, which eliminates the correlation between data and
power consumption. A random number is usually mixed into
the intermediate value related to the secret to prevent the HD
for each guess from being calculated. In the RLizard crypto-
processor, the intermediate value is stored in the register t0.
The second method is hiding, which makes the power con-
sumption constant or randomized regardless of the processed
data. In the RLizard crypto-processor, the order of loading
spos [i] and ssign[i] can be randomized. The RLZDx1 with
these countermeasures against CPA attacks is calledRLZDx1-
AntiCPA, and the pseudo-code of RLZDx1-AntiCPA for
decryption is shown in Algorithm 5.

Algorithm 5 Convolution and Addition in RLZDx1-
AntiCPA

Input: Mem0←(upos, usign), Mem1←v(x), Mem2←w(x)
Output: f (x)
1: rH ← GenRN (log2 h) //GenRN (l): generates l random bits
2: for k= 0 to n− 1
3: t0 ← HalfWord(Mem2 [k � 1] , k mod 2) // t0 ← wk
4: rM ← 0
5: for i = rH + 1 to rH step 1 (mod h)
6: rT ← GenRN (log2 p)
7:

(
usign[i], upos[i]

)
←HalfWrd(Mem0[i� 1], i mod 2)

8: j← k − upos[i]
9: j

′

= j mod n
10: neg← (j < 0) ⊕ usign[i]
11: vj′ ← Byte(Mem1[j

′

� 2], j mod 4)
12: t0 ← t0 + (−1)neg · (vj′ + rT )
13: rM ← rM + (−1)neg · rT
14: end for
15: fk ← t0 − rM
16: end for

For masking, we tried two methods. First, we randomized
the initial value of the register t0. As a result, the actual power
consumed corresponds to

HD
(
c2,0 + r, c2,0 + r − (−1)neg · c1,j′

)
, (6)

where r is a random number. However, our experimental
result shows that this masking method is not effective; hence,
this masking method was not used and was excluded from
Algorithm 5. This is because (5) and (6) have a high corre-
lation value. This can be confirmed by that HD (r0, r0 + r1)
and HD (r0 + r2, r0 + r2 + r1) have a correlation value 0.45,
where r0, r1, and r2 are random numbers.
Alternatively, we randomized c1,j′ , which is each coeffi-

cient of c1(x) accumulated to the register t0. As a result,

VOLUME 7, 2019 98689



P. Choi et al.: Fast and Power-Analysis Resistant RLizard Crypto-Processor

actually consumed power corresponds to

HD
(
c2,0, c2,0 − (−1)neg · (c1,j′ + rT )

)
. (7)

In lines 6 and 12 of Algorithm 5, a random number rT is gen-
erated for each i and added to c1,j′ before c1,j′ is accumulated
to the register t0. rT is also accumulated to rM in line 13, and
rM is removed from fk in line 15. This masking method blinds
all selected coefficients of c1(x), so simple power analysis,
which observes the operations related zero values after setting
coefficients of input polynomial v(x) as zeros and nonzeros,
can also be prevented. Furthermore, different random values
of rT are used for 0 ≤ i < h; thus, it is expected that second-
order CPA can also be prevented.

For hiding, we randomized the starting value of i in line 5
of Algorithm 5 to randomize the moment when spos [0] and
ssign[0] are loaded from memory and used. This prevents
spos [0] and ssign[0] from being processed at the same time
point after the start. Moreover, the values previously accumu-
lated in t0 at that time also changes every time. As a result,
the correlation for the right guess becomes too small to be
distinguishable.

C. EXPERIMENTAL RESULTS
We implemented RLizard crypto-processors on XC3S1500
(Spartan 3) using Xilinx ISE 14.2 and acquired power traces
using LeCroy DDA-3000 Oscilloscope with 10 GHz sam-
ple rate at 1 MHz of clock frequency. We used a fixed
secret,

(
ssign [0] , spos [0]

)
= (0, 491). 40,000 different cipher-

texts (c1 (x) , c2 (x)) were used when attacking RLizard
crypto-processors without countermeasure, and the num-
ber of cipher-texts was increased to 200,000 when any
countermeasure was used.

FIGURE 5. Correlation between the power consumption and the
Hamming distances for each possible guess.

At first, we implemented RLZDx1 and attacked. Fig. 5
shows the correlations for all the possible guesses over time.
The blue line represents the correlation of the right guess,
which has the highest value at ∼3000 ns after the start
signal. Instead of correlations over time, observing only the
maximum correlations for all the possible guesses is suffi-
cient to determine the right guess. Fig. 6 shows those of
RLZDx1, RLZDx2, and RLZDx4 with no countermeasure,

with masking, and with hiding, where the possible guess at
the value of (ssign [0] , spos [0]) has values from zero to 2047.
Even though only the guess at spos[0] is right, the maximum
correlation can be high regardless of the guess at ssign[0],
so we represented all the maximum correlations for the right
guess spos[0] as red dots.

In Figs. 6 (a), (d), and (g), RLZDx1, RLZDx2, and
RLZDx4 have maximum correlation values of 0.155, 0.172,
and 0.287 for the right guess. These values are higher than
those for the other guesses. This means that attacks were
successful. Note that the maximum correlation values of the
RLZDx2 and RLZDx4 are higher than that of RLZDx1.
This is because two and four coefficients instead of one are
selected depending on spos [0] in RLZDx2 and RLZDx4,
respectively. This may make the attack on RLZDx2 and
RLZDx4 easier than that on the RLZDx1.

Figs. 6 (b), (e), and (h) show the experimental results
on RLizard crypto-processors with masking. The maximum
correlation for the right guess is not distinguishable, sowe can
see that the countermeasure is effective. On the other hand,
Fig. 7 shows the experimental results on RLZDx1 with the
method that randomizes the initial value of t0. t0 is initialized
as c2,0+ r instead of c2,0, and power consumption is affected
by random number r as explained by (6). As shown in Fig. 7,
the maximum correlation for the right guess was reduced, but
is still higher than the others. This means that this method
is not effective enough to prevent CPA, as explained in the
previous sub-section.

Figs. 6 (c), (f), and (i) show the experimental results on
RLizard crypto-processors with hiding, which are similar to
those when masking is applied. That is, this method is also an
effective countermeasure against CPA.

V. IMPLEMENTATION RESULTS
This section presents the implementation results of RLizard
crypto-processors to analyze the area overhead of the pro-
posed speed-up method and the proposed countermeasure
against CPA.

A. PERFORMANCE COMPARISON OF
RLIZARD CRYPTO-PROCESSORS
We implemented RLizard crypto-processors in three dif-
ferent Xilinx FPGA devices, XC3S1500, XC6SLX9 and
XC6VCX75T, using Xilinx ISE 14.2. The implementation
results after place and route are shown in Table 4. The source
codes of [20] were slightly more optimized, so the results of
RLZDx1 obtained here are slightly different from those of
the source codes provided in [20]. In addition, XC3S1500
requires more FFs than the other devices. This is because
the memory used in XC3S1500 does not support byte-write,
which is useful when storing the coefficients of e(x) and
m (x) in the remaining bits of each word after storing the
coefficients of a(x) and b(x).
The RLZDx2 and RLZDx4 have processing speeds

twice or four times faster than RLZDx1. Although the

98690 VOLUME 7, 2019



P. Choi et al.: Fast and Power-Analysis Resistant RLizard Crypto-Processor

FIGURE 6. Maximum correlations for each possible guess of: (a) RZDx1, (b) RZDx1 with masking, (c) RZDx1 with hiding, (d) RZDx2, (e) RZDx2 with
masking, (f) RZDx2 with hiding, (g) RZDx4, (h) RZDx4 with masking, and (i) RZDx4 with hiding.

FIGURE 7. Maximum correlations for each possible guess of RLZDx1 with
ineffective masking.

numbers of flip-flops (FFs) and lookup tables (LUTs)
increase approximately 20% to 140%, it cannot be said that
the required resources have increased much if two block
RAMs (BRAMs), which are the largest components, are
included. According to [20], the area of the memory part
is 98.3k gate equivalents (GEs), and the area of the other
part is only 1.4k GEs in ASIC implementation using the
Samsung 65-nm CMOS process. The area except for mem-
ory is less than 2% of the total area. Therefore, the pro-
cessing time of the RLizard crypto-processor was improved

to be two and four times faster, but the area overhead is
negligible.

B. IMPLEMENTATION OVERHEAD OF COUNTERMEASURE
AGAINST POWER ANALYSIS ATTACKS
Table 4 also shows the area overhead when the pro-
posed countermeasure is applied. Compared with RLZDx1,
RLZDx1-AntiCPA has an additional 51 FFs and 96 LUTs in
XC6SLX9, most of which are caused by the registers and
a random number generator (RNG) to store and generate
rH and rT . To reduce the overhead, a compact RNG [32],
which requires only 15 FFs and 18 LUTs, was chosen.
Because the RNG can be used to generate random errors in
RLizard.KeyGen, the area of the RNG can be removed from
the area overhead. In this case, the area overhead is only
36 FFs and 78 LUTs.

In terms of the processing speed, rT for i = 0 and k = 0
and rH can be generated while the crypto-processor is in an
idle state, and rT for 1 ≤ i < n can be generated in parallel
with the calculation of fi (0 ≤ i < n−1) using 15-bit LFSR.
The size of LFSR is determined according to log2 hp = 15,
as rH is used to blind hp-bit coefficients of c1(x). This does
not increase the required clock cycles at all and reduces the
maximum clock frequency, but not very large.

VOLUME 7, 2019 98691



P. Choi et al.: Fast and Power-Analysis Resistant RLizard Crypto-Processor

TABLE 4. Performance comparison with other lattice-based crypto-processors.

VI. CONCLUSION
In this work, we proposed hardware implementation methods
to improve the processing speed and the security against CPA
of RLizard crypto-processor. Our implementation results
show that the proposed RLizard crypto-processor can have
twice and four times faster processing speed with little area
overhead than the conventional one. As for the security
against CPA attacks, the vulnerability was analyzed, and the
proposed countermeasures were validated by experimental
results. The implementation results show that the overhead
for the proposed countermeasures is also very little. Although
we did not perform simple power analysis (SPA) [27] and
second-order power analysis [29], we expect that our coun-
termeasure method would be strong against them. In further
work, such experiments would also be performed. In addition,
we expect that our proposed methods can be applied to other
ideal-lattice-based cryptosystems using binary or ternary
polynomials such as NTRU and Round5.

ACKNOWLEDGMENT
The authors would like to thank Jae Hong Seo at Hanyang
University andMun-Kyu Lee at Inha University, who gave us
comments and reviewed this manuscript. The chip fabrication
and EDA tool were supported by the IC Design Education
Center(IDEC), Korea.

REFERENCES
[1] R. L. Rivest, A. Shamir, and L. Adleman, ‘‘A method for obtaining digital

signatures and public-key cryptosystems,’’ Commun. ACM, vol. 21, no. 2,
pp. 120–126, Feb. 1978.

[2] V. S. Miller, ‘‘Use of elliptic curves in cryptography,’’ in Proc. CRYPTO,
Santa Barbara, CA, USA, 1985, pp. 417–426.

[3] N. Koblitz, ‘‘Elliptic curve cryptosystems,’’ Math. Comput., vol. 48,
no. 177, pp. 203–209, 1987.

[4] P. W. Shor, ‘‘Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,’’ SIAM Rev., vol. 41, no. 2,
pp. 303–332, 1999.

[5] O. Regev, ‘‘On lattices, learning with errors, random linear codes, and
cryptography,’’ J. ACM, vol. 56, no. 6, pp. 34-1–34-40, 2009.

[6] A. Banerjee, C. Peikert, and A. Rosen, ‘‘Pseudorandom functions and
lattices,’’ in Proc.EUROCRYPT, Cambridge, U.K., 2012, pp. 719–737.

[7] P. Zhang, H. Jiang, Z. Zheng, P. Hu, and Q. Xu, ‘‘A new post-
quantum blind signature from lattice assumptions,’’ IEEE Access, vol. 6,
pp. 27251–27258, 2018.

[8] Y. Zhang, S. Wang, and Q. Du, ‘‘Revocable identity-based encryption
scheme under LWE assumption in the standard model,’’ IEEE Access,
vol. 6, pp. 65298–65307, 2018.

[9] V. Lyubashevsky, C. Peikert, and O. Regev, ‘‘On ideal lattices and learning
with errors over rings,’’ in Proc. EUROCRYPT, Monaco Nice, France,
2010, pp. 1–23.

[10] N. Göttert, T. Feller, M. Schneider, J. Buchmann, and S. Huss, ‘‘On the
design of hardware building blocks for modern lattice-based encryption
schemes,’’ in Proc. CHES, Leuven, Belgium, 2012, pp. 512–529.

[11] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,
‘‘Compact ring-LWE cryptoprocessor,’’ in Proc. CHES, Busan, Korea,
2014, pp. 371–391.

[12] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. C. Cheung,
D. Pao, and I. Verbauwhede, ‘‘High-speed polynomial multiplication
architecture for ring-LWE and SHE cryptosystems,’’ IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 62, no. 1, pp. 157–166, Jan. 2015.

[13] C. Du, G. Bai, and X.Wu, ‘‘High-speed polynomial multiplier architecture
for ring-LWEbased public key cryptosystems,’’ inProc. GLSVLSI, Boston,
MA, USA, May 2016, pp. 9–14.

[14] J. Hoffstein, J. Pipher, and J. H. Silverman, ‘‘NTRU: A ring-based
public key cryptosystem,’’ in Proc. ANTS, Portland, OR, USA, 1998,
pp. 267–288.

[15] OnBoardSecurity. NTRUencrypt and pqNTRUsign Submission to NIST.
Accecced: Apr. 1, 2019. [Online]. Available: https://www.onboardsecurity.
com/nist-post-quantum-crypto-submission

[16] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal,
‘‘NTRUprime: Reducing attack surface at low cost,’’ inProc. SAC, Ottawa,
ON, Canada, 2017, pp. 235–260.

[17] S. Bhattacharya, O. Garcia-Morchon, T. Laarhoven, R. Rietman,
M.-J. O. Saarinen, L. Tolhuizen, and Z. Zhang, (2018). Round5: Com-
pact and Fast Post-Quantum Public-Key Encryption. [Online]. Available:
https://round5.org/doc/round5paper.pdf

[18] J. H. Cheon, D. Kim, J. Lee, and Y. Song, ‘‘Lizard: Cut off the tail!
A practical post-quantum public-key encryption from LWE and LWR,’’
in Proc. SCN, Amalfi, Italy, 2018, pp. 160–177.

[19] J. Lee, D. Kim, H. Lee, Y. Lee, and J. H. Cheon, ‘‘RLizard: Post-quantum
key encapsulation mechanism for IoT devices,’’ IEEE Access, vol. 7,
pp. 2080–2091, 2019.

[20] National Institute of Standards and Technology, Post-Quantum
Cryptography—Round 1 Submissions. Accecced: Apr. 1, 2019. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/round-1/submissions/Lizard.zip

[21] National Institute of Standards and Technology, Post-Quantum Cryp-
tography. Accecced: Apr. 1, 2019. [Online]. Available: https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography

[22] A. C. Atici, L. Batina, J. Fan, I. Verbauwhede, and S. B. O. Yalcin, ‘‘Low-
cost implementations of NTRU for pervasive security,’’ in Proc. ASAP,
Leuven, Belgium, Jul. 2008, pp. 79–84.

[23] A. A. Kamal and A. M. Youssef, ‘‘An FPGA implementation of the
NTRUEncrypt cryptosystem,’’ in Proc. ICM, Marrakech, Morocco,
Dec. 2009, pp. 209–212.

[24] F. Hu, K.Wilhelm,M. Schab,M. Lukowiak, S. Radziszowski, and Y. Xiao,
‘‘NTRU-based sensor network security: A low-power hardware imple-
mentation perspective,’’ Secur. Commun. Netw., vol. 2, no. 1, pp. 71–81,
Jan./Feb. 2009.

[25] Information Technology-Security Techniques-Evaluation Criteria for IT
Security, Standard ISO/IEC 15408, 2009.

[26] Security Requirements for Cryptographic Modules, Standard FIPS PUB
140-3, NIST, Gaithersburg, MD, USA, 2019.

98692 VOLUME 7, 2019



P. Choi et al.: Fast and Power-Analysis Resistant RLizard Crypto-Processor

[27] P. Kocher, J. Jaffe, and B. Jun, ‘‘Differential power analysis,’’ in Proc.
CRYPTO, Santa Barbara, CA, USA, 1999, pp. 388–397.

[28] E. Brier, C. Clavier, and F. Olivier, ‘‘Correlation power analysis with a
leakage model,’’ in Proc. CHES, Cambridge, MA, USA, 2004, pp. 16–29.

[29] T. S. Messerges, ‘‘Using second-order power analysis to attack DPA
resistant software,’’ in Proc. CHES, Worcester, MA, USA, 2000,
pp. 238–251.

[30] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing
the Secrets of Smart Cards. New York, NY, USA: Springer, 2007.

[31] M.-K. Lee, J. E. Song, D. Choi, and D.-G. Han, ‘‘Countermeasures
against power analysis attacks for the NTRU public key cryptosystem,’’
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. 93, no. 1,
pp. 153–163, Jan. 2010.

[32] P. Choi, M.-K. Lee, and D. K. Kim, ‘‘Fast compact true random number
generator based on multiple sampling,’’ Electron. Lett., vol. 53, no. 13,
pp. 841–843, Jun. 2017.

PILJOO CHOI was born in Seoul, South Korea,
in 1982. He received the B.S., M.S., and Ph.D.
degrees in electronic computer engineering from
Hanyang University, Seoul, in 2010, 2012, and
2018, respectively, where he is currently a Pro-
fessor in the Software Education Committee.
His research interests include security system on
chip (SoC), crypto-coprocessors, and information
security.

JI-HOON KIM received the B.S. (summa cum
laude) and Ph.D. degrees in electrical engineer-
ing and computer science from KAIST, Daejeon,
South Korea, in 2004 and 2009, respectively.
In 2009, he joined Samsung Electronics. In 2018,
he joined the faculty of the Department of Elec-
tronic and Electrical Engineering, Ewha Womans
University, where he is currently an Associate
Professor. His current interests include CPU/DSP,
communication modem, and low-power SoC

design for security/biomedical systems. He is a Technical Committee Mem-
ber of the circuits and systems for communications and VLSI systems and
applications in the IEEE Circuits and Systems Society. He was a recipient
of the Best Design Award at the Dongbu HiTek IP Design Contest, in 2007,
and the First Place Award at the International SoC Design Conference Chip
Design Contest, in 2008.

DONG KYUE KIM was born in Seoul,
South Korea, in 1968. He received the B.S.,
M.S., and Ph.D. degrees in computer engineering
from Seoul National University, in 1992, 1994,
and 1999, respectively. From 1999 to 2005, he was
an Assistant Professor with the Division of Com-
puter Science and Engineering, Pusan National
University. Since 2006, he has been a Profes-
sor with the Department of Electronic Engineer-
ing, Hanyang University. His research interests

include security SoC, secure crypto-processors, crypto-coprocessors, and
information security systems.

VOLUME 7, 2019 98693


	INTRODUCTION
	PRELIMINARY
	RLIZARD SCHEME
	MAIN OPERATIONS OF RLIZARD

	HARDWARE DESIGN OF RLIZARD CRYPTO-PROCESSORS
	COMMON HARDWARE STRUCTURE
	PROPOSED SPEED-UP METHOD
	THE CONVENTIONAL METHOD IN THE RLZDX1
	PROPOSED METHOD IN THE RLZDX2 AND RLZDX4

	HARDWARE DESIGN OF RLIZARD CRYPTO-PROCESSORS

	COUNTERMEASURE AGAINST POWER ANALYSIS ATTACKS
	VULNERABILITY TO POWER ANALYSIS ATTACKS
	PROPOSED COUNTERMEASURE
	EXPERIMENTAL RESULTS

	IMPLEMENTATION RESULTS
	PERFORMANCE COMPARISON OF RLIZARD CRYPTO-PROCESSORS
	IMPLEMENTATION OVERHEAD OF COUNTERMEASURE AGAINST POWER ANALYSIS ATTACKS

	CONCLUSION
	REFERENCES
	Biographies
	PILJOO CHOI
	JI-HOON KIM
	DONG KYUE KIM


