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Preoperative immune landscape predisposes adverse outcomes
in hepatocellular carcinoma patients with liver transplantation
Sang-Ho Yoon 1, Seo-Won Choi1, Suk Woo Nam2, Kyoung Bun Lee3✉ and Jin-Wu Nam 1,4,5✉

Immune class in hepatocellular carcinoma (HCC) has been shown to possess immunogenic power; however, how preestablished
immune landscapes in premalignant and early HCC stages impact the clinical outcomes of HCC patients remains unexplored. We
sequenced bulk transcriptomes for 62 malignant tumor samples from a Korean HCC cohort in which 38 patients underwent total
hepatectomy, as well as for 15 normal and 47 adjacent nontumor samples. Using in silico deconvolution of expression mixtures,
22 immune cell fractions for each sample were inferred, and validated with immune cell counting by immunohistochemistry. Cell
type-specific immune signatures dynamically shifted from premalignant stages to the late HCC stage. Total hepatectomy patients
displayed elevated immune infiltration and prolonged disease-free survival compared to the partial hepatectomy patients.
However, patients who exhibited an infiltration of regulatory T cells (Tregs) during the pretransplantation period displayed a high
risk of tumor relapse with suppressed immune responses, and pretreatment was a potential driver of Treg infiltration in the total
hepatectomy group. Treg infiltration appeared to be independent of molecular classifications based on transcriptomic data. Our
study provides not only comprehensive immune signatures in adjacent nontumor lesions and early malignant HCC stages but also
clinical guidance for HCC patients who will undergo liver transplantation.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is a leading cause of cancer-
related death and is associated with a myriad of both intrinsic and
extrinsic risk factors, including viral hepatitis1,2. Because viral
infections (hepatitis B virus (HBV) or hepatitis C virus (HCV)) can
drive chronic inflammation in the liver, HCC is reported to have a
strong correlation with cirrhosis3. Although extensive inflamma-
tory signals in premalignant disease can impact immune activity in
later tumors, the detailed features of these inflammatory stages in
terms of immune infiltration and dysregulation remain to be
elucidated. For the treatment of HCC, surgical resection (partial
hepatectomy (PH)) is the main option for the majority of cases;
otherwise, liver transplantation (total hepatectomy (TH)) can be
carried out, often improving survival rates4. As the incidence of
transplantation has increased, tumor relapse after grafting has
become an urgent issue. However, it is still uncertain how the
preestablished immune context in the prehepatectomy period is
associated with relapse in the posthepatectomy period5,6.
Cancer immunotherapy is a strategy for attacking tumor cells

by stimulating the host’s own immune system or introducing
engineered immune cells. Although many have witnessed
marvelous successes with immune checkpoint inhibitors, this
approach has not been widely applied in HCC7. However, a
recent study identified an immune-specific class of HCC in a
group of HCC patients8, suggesting that successful immu-
notherapy might be possible in HCC. In fact, nivolumab and
pembrolizumab, anti-PD-1 checkpoint inhibitors, have already
been approved by the U.S. Food and Drug Administration for
patients with late-stage HCC treated with sorafenib9,10. Hence,
to identify immunotherapy responders among HCC patients, a
better understanding of the tumor microenvironment (TME)

and the discovery of significant biomarkers in conjugation with
operational methods are necessary.
Here, using computational deconvolution of bulk RNA sequen-

cing (RNA-seq) data, we examined immune cell signatures of
124 samples, comprising various stages in tumor-adjacent non-
tumor and malignant tumors, from a Korean HCC cohort that had
undergone liver transplantation and surgical resection. We then
explored the relationships between immune cell contents and
clinical outcomes to identify prognostic cell types in the TH group.
We found that infiltration of regulatory T cells (Tregs) prior to
transplantation was an independent predictor of a poor outcome.
Furthermore, comprehensive analysis of prehepatectomy immune
landscapes delineated how the immune cell network is dynamically
reshaped during HCC development.

RESULTS
Transcriptomic analysis of HCC and adjacent nontumor
lesions
We sequenced the transcriptomes of a total of 124 samples,
comprising 62 malignant tumors, 47 adjacent nontumors, and 15
normal samples, from a Korean HCC cohort (Fig. 1a and
Supplementary Table 1). Most of our tumor samples were
sequenced in early stage or grade; about two-thirds of them
were acquired from patients having TH. To explore the relation-
ship between disease stages, samples were projected into two-
dimensional space using principal component analysis (PCA) of
the top 1000 most variable protein-coding genes (Supplementary
Fig. 1a). Tumor samples were clearly separated from nontumor
samples, whereas nontumor samples represented an intermediate
state. In particular, dysplastic nodule (DN) samples were projected
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along with the tumor samples, whereas those from fibrotic and
cirrhotic liver tissue were close to the normal samples (Supple-
mentary Fig. 1a, inset). Because the adjacent nontumor samples
were separated into two distinct states, they were categorized as
either fibrosis low/high grade and cirrhosis (FibCS) or DN (DN low/
high grade) (Fig. 1a, outer rim).
To compare these projection results with those of other cohorts,

925 RNA-seq samples from three publicly available HCC cohorts
(TCGA-LIHC, n= 418; RIKEN, n= 447; GSE77509, n= 60)11,12 as
well as a normal liver cohort from GTEx (n= 132)13 were projected
together with ours using t-SNE14 after batch correction15. The
normal, nontumor, and tumor samples were separately projected
from each other (Fig. 1b and Supplementary Fig. 1b)16. FibCS
samples were closely related to the GTEx and Korean nontumor
samples, whereas the high-grade DN samples were related to the
other nontumor samples, perhaps indicating shared features
between developing cancer and tumor-adjacent tissue. In fact, an
estimation of immune and stromal fractions17 showed that the DN
and nontumor groups formed an intermediate state between the
FibCS and tumor groups (Supplementary Fig. 1c). In addition, the
HCC samples across the cohorts displayed an immune-depleted
TME, although some samples showed immune- and stromal-
enriched features. Because our HCC samples were aligned
sequentially from various nontumor stages to tumors in the PCA
and t-SNE plots, we applied a trajectory analysis using Monocle 2

to verify transitions in transcriptomic programs during disease
progression (Fig. 1c). Using the normal samples as a root state,
nontumor samples were first separated from tumors. These
nontumor samples (state 5) differed from those in the root state
(state 1) in the level of immune cell infiltration (Supplementary Fig.
1d). Tumor samples were enriched with proliferative programs
and relatively depleted of immune signatures as depicted with
ESTIMATE scores (Supplementary Fig. 1c, e, f). The samples were
further divided into two branches and characterized by extra-
cellular matrix interactions and inflammatory responses (Tumor 1)
or metabolic pathways (Tumor 2) (Fig. 1c–e). Because the tumor
samples were binarized based on inflammatory signatures, we
further investigated the TME in detail.

Estimation of immune infiltrates using deconvolution
Because a number of patients displayed an immune-enriched
molecular signature, we investigated immune cell types that were
populated in the TME and their associations with disease states. To
address these questions, relative and absolute fractions of 22
immune cell types were inferred using CIBERSORT18, a computa-
tional method that predicts immune cell fractions using gene
expression profiles (Fig. 2a). To validate the inferred fractions,
immunohistochemistry (IHC)-based cell counts of seven major
immune cell types (CD3+ total T cells, CD8+ cytotoxic T cells,
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Fig. 1 Overview of Korean HCC cohort characteristics. a Pie chart of the number of samples in each stage of histopathological classification.
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same as in b. Numbers on the trajectory line indicate branching points. Two paths of tumor samples are noted as Tumors 1 and 2. d Branch
expression analysis of two paths (Tumors 1 and 2) of branch 1 in c. e GO terms and KEGG pathways enriched in each cluster in d. The top-five
significant terms (FDR < 0.05) were visualized.
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CD45RO+ memory T cells, CD68+ macrophages, CD163+ M2
macrophages, MUM1+ plasma cells, and MPO+ neutrophils) were
compared using the other specimens from same patients, and all
of them correlated with the inferred absolute score (P < 0.05;
Spearman’s correlation ≥0.2; Fig. 2b). Because a discrepancy
between RNA and protein abundances has been repeatedly
reported with a range from 0.35 to 0.5 across tissues19–21, the
range of the correlation that we observed is thought to be fairly
valid. For example, TG2-026 and TG3-006 correlated with high
absolute scores for memory T cells, specifically showing 850 and
140 cells/mm2, respectively, whereas TG3-012 and TG2-001
correlated with low absolute scores and had only 6 and 12 cells/
mm2, respectively (Fig. 2c, left). Similarly, TG1-005 and TG2-005
correlated with high absolute scores for M2 macrophages (242
and 141 cells/mm2, respectively), whereas only 19 and 11 cells/
mm2 were observed in TG3-001 and TG3-012, which correlated
with low absolute scores (Fig. 2c, right).
Based on the inferred absolute scores, samples from the Korean

and other HCC cohorts were projected using PCA (Korean cohort;

Supplementary Fig. 2a) and t-SNE (Korean+ others; Fig. 2d and
Supplementary Fig. 2b). Disease groups were separated from each
other, but different cohorts were mixed together (Fig. 2d and
Supplementary Fig. 2b). However, FibCS and DN samples were
barely clustered and mixed with nontumor samples, indicating the
heterogeneity and dysregulation of their immune composition
compared to normal liver tissue. In short, inferred immune
fractions could be used as a proxy for the immune landscape in
our HCC cohort and identified distinguishing features in
premalignant stages in terms of immune infiltration that were
not observed in the previous analysis.

Dynamics of immune infiltrations during HCC development
Because the Korean cohort included 34 HCC patients plus one
patient with a high-grade DN who underwent TH (n= 35 with
survival information), whereas other cohorts did not, we next
compared the TH patients to those who underwent PH (n= 19
with survival information) in terms of immune infiltration. First, the
TH group showed better disease-free survival (DFS) rates
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(P < 5.39 × 10−4, log-rank test; Fig. 3a and Table 1), although the
tumor stage and grade in the TH and PH groups were comparable
to each other. Other than DFS, a few clinical parameters differed
between TH and PH, probably representing patient selection or
different clinical procedures prior to transplantation. For example,
patients treated with embolization or ablation (pretreatment)
were only found in the TH group who displayed elevated levels of
fibrosis. Moreover, the tumors in the TH group showed higher
immune and stromal contents and immune cell fractions than
those in the PH group (Fig. 3b; stromal score, P= 1.62 × 10−4;
immune score, P= 8.17 × 10−4, and Supplementary Fig. 2c;
P= 9.08 × 10−3, Welch’s t-test).
The Pre-Cancer Genome Atlas project highlighted the impor-

tance of investigating premalignant lesions to understand
carcinogenesis22, and our tumor-adjacent nontumor samples offer
an opportunity to unveil molecular/immune changes that occur
during HCC development. To examine dynamic changes in
immune cell contents, median fraction changes and correlations
(Fig. 3c and Supplementary Fig. 3a, b) between 22 immune cell
types were measured across disease stages. When nontumor
samples from the Korean HCC cohort were considered, immune
cells showed a sharp increase in FibCS, indicating elevated
inflammatory responses and infiltration. However, most cell types
were merely correlated with each other (Supplementary Fig. 3b,
fibrosis/cirrhosis). In contrast, many of the cell types in DN samples
were decreased (Fig. 3c), but significant associations with
protective immunity were observed, including CD8+ T cells,

plasma cells, and M1 macrophages (Supplementary Fig. 3b, DNs).
These networks were maintained in early tumor stages but began
to disappear in later stages; M2 macrophages started to establish
strong correlations with other cell types. During tumor develop-
ment, immune cell changes in PH samples were concordant across
cohorts, with gradual depletion of the majority of cell types except
for Tregs and macrophages. In TH samples, however, M1 and M2
macrophages increased in T1 to T2 but were depleted in later
stages, whereas Tregs, NKs, and plasma cells were increased
compared to PH samples (Fig. 3c). We also observed depletion of
cytolytic activity (CYT) and mucosal-associated invariant T-cell
markers23,24, and an increase in T-cell exhaustion over HCC
progression, which indicates a process of immunosuppression in
TH (Fig. 3d–f). We lastly compared inflammation between paired
nontumor and tumor samples; however, there were no associa-
tions in either the ESTIMATE immune score or CIBERSORT absolute
scores (Supplementary Fig. 3c)25.

Tregs as a predictor of a high risk of relapse in TH
Although patients with similar tumor stage and grade who
underwent TH showed a better clinical outcome than those who
underwent PH, some displayed recurrence and/or metastasis
(Fig. 3a and Table 1). Moreover, some clinically important immune
cell types, such as M1/M2 macrophages or Tregs, were differen-
tially infiltrated between TH and PH that may contribute to disease
relapse (Fig. 3c). To explore this issue, we clustered Korean HCC
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samples based on immune cell contents (Fig. 4a). The TH group
was clearly separated into two clusters (IM1 and IM2) that
differed in immune infiltration and with respect to other clinical
features such as survival. The immune-depleted TH samples
in the IM1 cluster displayed lower amounts of immune
cell infiltration (P < 5.41 × 10−7; Welch’s t-test, Fig. 4c), higher
amounts of Wnt/β-catenin signaling pathway activity and
immunosuppressive cell types (Fujita subclass)25, depletion of
the Hoshida S1 subtype (P= 2.15 × 10−3, One-sided Barnard’s
test; 5.87 × 10−3, Fisher’s exact test), and a marginally increased
relapse rate (P= 0.084) (Fig. 4a). PH samples were also
segregated by immune infiltration, which showed that the

majority of samples were clustered into the immune-depleted
IM1 cluster (Fig. 4a). These immune clusters were also segregated
by PCA using CIBERSORT (Supplementary Fig. 2d) and tumor
branches in the trajectory analysis (Fig. 4b and Supplementary
Fig. 4b). We clustered Korean HCC samples based on gene
expression using non-negative matrix factorization (NMF)26, but
we were unable to obtain clearly distinguished immune clusters
with this method (Fig. 4a and Supplementary Fig. 4a).
Adjacent nontumor samples (n= 47) were stratified into four

groups using immune cell scores (Supplementary Fig. 5a, b, PL-
IM1 ~ 4). These samples were largely separated into two states in
the trajectory analysis (Fig. 1c and Supplementary Fig. 1d, states 1

Table 1. Comparison of clinical parameters between total and partial hepatectomy patients in the Korean HCC cohort.

Parameters Group TH (n= 35) PH (n= 19) P (Fisher’s exact test)

Survival Dead 4 (11.43%) 2 (10.53%) NS

Alive 31 (88.57%) 17 (89.47%)

Recur/meta Yes 8 (22.86%) 13 (68.42%) *1.51 × 10−3

No 27 (77.14%) 6 (31.58%)

Tumor stage Stage I/II 29 (82.86%) 12 (63.16%) NS

Stage III+ 6 (17.14%) 7 (36.84%)

TNM (T) T1/2 29 (82.86%) 14 (73.68%) NS

T3/4 6 (17.14%) 5 (26.32%)

Grade G1/2 31 (88.57%) 13 (68.42%) NS

G3 4 (11.43%) 6 (31.58%)

Edmondson grade ES1/2 24 (68.57%) 11 (57.89%) NS

ES3/4 10 (28.57%) 7 (36.84%)

NA 1 (2.88%) 1 (5.26%)

Angioinvasion Yes 9 (25.71%) 11 (57.89%) **3.73 × 10−3

No 26 (74.29%) 8 (42.11%)

Viral infection HBV 31 (88.57%) 8 (42.11%) ***1.21 × 10−5

HCV 4 (11.43%) 2 (10.53%)

None 0 9 (47.37%)

METAVIR activity A0 0 2 (10.53%) NS

A1/2 5 (14.29%) 16 (84.21%)

NA 30 (85.71%) 1 (5.26%)

METAVIR fibrosis F1/2 0 10 (52.63%) ***5.84 × 10−6

F3/4 33 (94.29%) 9 (47.37%)

NA 2 (5.71%) 0

Pretreatment Yes 21 (60.0%) 0 ***5.06 × 10−6

No 13 (37.14%) 18 (94.74%)

NA 1 (2.88%) 1 (5.26%)

Child–Pugh A 11 (31.43%) 18 (94.74%) ***6.93 × 10−7

B/C 24 (68.57%) 0

NA 0 1 (5.26%)

Family history Yes 16 (45.71%) 7 (36.84%) NS

No 10 (28.57%) 10 (52.63%)

NA 9 (25.71%) 2 (10.53%)

Parameters (Units) Mean ± SD Mean ± SD P (Welch’s t-test)

Age (year) 52.71 ± 8.09 59.95 ± 9.87 **0.010

Weight (kg) 67.50 ± 10.44 66.16 ± 8.09 NS

Height (cm) 166.34 ± 7.38 164.93 ± 7.12 NS

AFP (ng/ml) 41.22 ± 75.68 38.43 ± 51.71 NS

Tumor size (cm) 3.25 ± 2.28 7.75 ± 5.27 ***5.84 × 10−6

P values were calculated using the Fisher’s exact test or Welch’s t-test.
NA not applicable, NS not significant, SD standard deviation.
*P < 0.05; **P < 0.01; ***P < 0.001.
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and 5) and state 5, which showed a higher load of immune
infiltration is preferentially found in PL-IM3 and 4. In contrast,
immune-depleted state 1 is prevalent in PL-IM1 and 2. These
nontumor immune clusters were independent of those defined in
paired tumor samples. Macrophages, which were the most
abundant cell type in fibrosis/cirrhosis samples, showed dynamic
changes during HCC development (Fig. 3c and Supplementary Fig.
3b). Two types of differentiated macrophages with opposing
functions, M1 and M2, were enriched in PL-IM3 and PL-IM2,
respectively, although these two immune clusters are mainly
associated to a single NMF cluster, PL2 (Supplementary Fig. 5a, c).
Likewise, gene expression-based clustering again failed to
separate immune-enriched from immune-depleted samples
(Supplementary Fig. 5a, d, NMF PL1 ~ 3). Overall, our immune cell

clustering, in contrast to the expression-based clustering, was able
to identify elevated immune signatures that could be ignored by
other types of molecular clustering.
We next sought to identify specific immune cell types

correlated with clinical outcomes. Of the 22 immune cell types
analyzed, infiltration of Tregs was found to be a strong indicator of
tumor relapse in TH after false discovery rate (FDR) correction
(FDR < 6.39 × 10−3 for the absolute score; FDR < 1.62 × 10−3 for the
relative fraction; Fig. 4d) and in multivariate analysis (P < 0.039;
Supplementary Fig. 6a). The number of FOXP3+ cells determined
by IHC also showed a positive correlation with the absolute
fraction of Tregs (P= 0.043; Supplementary Fig. 6b, g). Tregs
are known to be the main source of immune exhaustion and are
linked to poor outcomes in human cancers, including HCC27–31.
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As expected, patients with Treg infiltration displayed immunode-
pletion (Fig. 4a and Supplementary Figs. 4c and 6c). Moreover,
Tregs were confined in the tumor, inversely correlated with the
amount of total T cells, and were associated with the expression of
a chemokine receptor, CCR8 (Supplementary Fig. 6d–f)32,33. In the
PH group, we found that activated NK cells and M2 macrophages,
which were previously reported to be localized in tumor-
surrounding stroma34,35, were correlated with poor outcome
(Supplementary Fig. 4d). To investigate whether our nontumor
samples could better represent macrophage infiltration in para-
tumor tissues, we stratified paired nontumor samples by immune
cell fractions and tested the relationship with prognosis. In
summary, we found that M2 macrophage and activated NK cell
infiltration predicted poor DFS rates in PH patients using adjacent
nontumor samples; predictions could be further improved by
considering tumor pairs together, but in a small number of patients
(Supplementary Fig. 5e). Taken together, our data suggest that

established Treg infiltration prior to liver transplantation predicts
poor outcomes in the TH group.

Associations of Treg infiltration with tumor metastasis signals
and pretreatment
In addition to the high risk of relapse, patients with Treg
infiltration displayed a marginally higher proportion of angioinva-
sion than those without Tregs (Fig. 5a; P= 0.073; One-sided
Barnard’s test). Angioinvasion, a critical process for metastasis, can
be induced by Tregs. In line with this point, Tregs have also been
reported to promote metastasis of HBV+ HCC36–38. Hence, we
searched for epithelial–mesenchymal transition (EMT) markers
that were dysregulated. A total of 431 EMT-related genes were
manually curated from independent studies (Fig. 5b)39–41. Thirteen
and seven of these genes were found to be dysregulated in TH
and PH samples, respectively (Fig. 5c). For example, among four
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dysregulated mesenchymal genes in TH (C1S, SERPING1, C1R, and
GZMK), three of them are associated with the complement
cascade, and GZMK is an effector molecule of cytotoxic cells,
suggesting suppression of immune responses. Six out of 13
dysregulated genes in the TH group were associated with Treg
fractions, but only CYB561 showed a positive correlation with the
level of Tregs and tumor relapse (Fig. 5c, left, and d).
When other clinical backgrounds were examined in TH,

infiltration of Tregs was not only associated with pretreatment
in both Korean HCC and TH patients (P= 0.036, One-sided
Barnard’s test; Figs. 5e and 6a) but was also found to be the
sole predictor of tumor relapse in the pretreatment subgroup
(n= 21, FDR < 0.056) (Fig. 6b, c). Intriguingly, CYB561 expression
was also upregulated upon pretreatment, and this gene was
confirmed as a predictive biomarker in the pretreatment subgroup
(Fig. 5f). Our results underscore the possible connection of
pretreatment with the infiltration of Tregs and suggest that the
expression of the epithelial marker CYB561 can be used as a
biomarker for Treg infiltration. In fact, considering additional
Korean HCC cohorts (n= 701; TH= 320 and PH= 381) with
clinical information, the relapse of TH patients was significantly
biased to distant metastasis or recurrence with metastasis rather
than local recurrence, compared to PH patients (P= 8.81 × 10−9,
chi-square test; Supplementary Fig. 7a). Combined analysis with
the TCGA cohort showed a similar trend as that of the extended
Korean cohort (P= 1.98 × 10−11, chi-square test; Supplementary
Fig. 7b). Furthermore, TH patients undergoing pretreatment
appeared to have more relapses or metastasis than those without
pretreatment (P= 3.04 × 10−3; P= 8.81 × 10−3, respectively, chi-
square test; Supplementary Fig. 7c, d). These patients were neither
biased to higher T stage nor Edmondson–Steiner grade (P= 0.29;
P= 0.47, respectively, chi-square test; Supplementary Fig. 7e, f),
indicating that the results were independent of patient selection.

TNFRSF4 is associated with infiltrating Tregs in the TH group
To further elucidate the molecular signatures related to the
infiltration of Tregs, ligands and receptors for cytokines and
chemokines in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database were further examined. The expression of most
cytokine/chemokine genes was inversely correlated with the Treg
level (Fig. 6d). For example, the expression of LIFR, a metastasis
suppressor in HCC42, was associated with improved survival rates
and inversely correlated with Treg infiltration (r=−0.40 and
−0.50 in the TH and pretreatment subgroups, respectively). Only
TNFRSF4 expression, which is known to be expressed in
immunosuppressive Tregs43,44, was correlated with the Treg level

(r= 0.60) and displayed an increased hazard ratio in the
pretreatment subgroup (Fig. 6d), although its significance was
marginal in the TH group (P < 0.075; Supplementary Fig. 8a, b).
Expression of the gene encoding the TNFRSF4 ligand, TNFSF4, also
showed an adverse impact on DFS; however, it was not associated
with any of the cell types (Supplementary Fig. 8b).

DISCUSSION
Unlike other HCC cohorts, the HCC cohort we studied here
included a number of patients who underwent liver transplanta-
tion in addition to those who underwent surgical resection. The
profiling of immune landscapes showed that TH patients
comprised two groups displaying distinct immune signatures that
were strongly associated with the clinical parameters and
outcomes of the patients. Generally, patients waiting for a
transplant undergo pretreatment regimens (embolization or
ablation)45,46. Although pretreatment could affect patient immune
responses or even gene expression at the molecular level,
comprehensive studies to understand these effects are unprece-
dented to our knowledge. In fact, patients undergoing pretreat-
ment tended to display elevated Treg infiltration. Our study also
showed that Treg infiltration was strongly associated with adverse
signatures, such as angioinvasion or tumor relapse in TH. It is likely
that Treg infiltration encourages early dissemination of tumor cells
not detected pretransplantation. In fact, compared to relapsed PH
patients, relapsed TH patients tended to have distant metastasis
rather than local recurrence. In addition, Treg infiltration and
pretreatment were both associated with expression levels of the
CYB561 gene, which could be utilized as a surrogate for the
prediction of adverse outcomes in TH patients. Intriguingly, we
noticed a positive correlation between the expression of CYB561
and that of the hypoxia-inducible factor gene HIF1A in our TH
patients and the TCGA cohort (Supplementary Fig. 6h), suggesting
that CYB561 expression might be associated with a hypoxic
condition in tumors. Development of such a biomarker would be
clinically meaningful because IHC or cell sorting is not always
feasible and is often laborious, especially for studying a large
number of patients.
Although the immune landscape shaped during tumorigenesis

can affect the characteristics of cancer, how immune networks are
established in the premalignant and malignant stages is unknown.
Because our dataset also included pairs of tumor and nontumor
samples in various stages, investigation of the immune network in
this context offers an unprecedented snapshot of immune
dysregulation during HCC development. Fujita and his colleagues
performed transcriptomic and genomic analyses of samples from
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Japanese liver cancer patients and classified 234 samples into the
following immune clusters: CYT, Treg, tumor-associated macro-
phage (TAM), or CTNNB125. They reported that the inflammation
in nontumor samples was not correlated with that of the paired
tumor samples. Similarly, we found that immune features of
normal/nontumor samples were uncorrelated with those of their
tumor counterparts, although an inflammation signal was highly
induced in fibrotic and cirrhotic samples (Supplementary Fig. 3c).
In addition, our study found that inflammation surged in the early
premalignant stages spanning from fibrosis to cirrhosis, then
decreased to a level similar to that in the tumor samples
(Supplementary Fig. 1c).
Although our analysis could recapitulate the immune network

dysregulation, the nontumor samples in our study were not time
serial but were rather from adjacent stroma in HCC patients;
hence, immune profiles could be affected by nearby tumor
lesions. However, because invasive sampling of premalignant
tissue in cancer-free individuals is infeasible and because these
diseases are already on the course of tumor development, our
data provide a unique opportunity to investigate diverse aspects
of premalignancy in the liver at high resolution. In addition, the
significance of M2 macrophages in PH samples increased when
we stratified samples based on fractions inferred from both tumor
and paired adjacent nontumor samples. Activated NK cell signals
followed similar trends with slightly higher P values. M2
macrophages, also known as TAMs, have been reported to
support progression of tumors including HCC35,47; however, the
significance of this cell type was ambiguous in previous studies
using digital dissections31,48–50. This result could be partly due to
the localization of the M2 macrophages, because they are
frequently enriched in tumor-surrounding stroma, the site from
which our nontumor samples were obtained34,35. Given these
points, we anticipate that our preliminary results will highlight the
importance of M2 macrophages and that the nontumor samples
used in this study will be a supplementary resource for evaluating
the immune features of the HCC microenvironment.
Deconvolution using gene expression profiles is a useful

strategy for associating functions of immune or stromal compart-
ments in bulk mixture samples. One caveat of using this strategy is
that the performance could be heavily dependent on the quality
and representativity of the reference matrix. In fact, CIBEROSRT
and other methods use a reference matrix based on gene
expression profiles from peripheral blood cells. Expression profiles
in tumor tissues may differ substantially from that of normal cells
and this variation may not be fully covered by current reference
matrices. In this study, we correlated inferred CIBERSORT scores
with IHC cell counts from the same patients, resulting in
correlations ranging from 0.2 to 0.32. These significant yet low
correlations could be partly caused by inconsistencies between
RNA expression and protein abundance, by the representativity of
the reference matrix used, or by tumor heterogeneity. Perhaps a
reference matrix derived from HCC single-cell RNA-seq data or
augmented with noncoding RNA expression profiles would
enhance the correlation.
Our research identifies adverse effects of Treg infiltration in

patients in the TH group who have undergone pretreatment.
Moreover, we also argue that adjacent nontumor samples are
valuable resources for monitoring the dysregulation of the
immune network during HCC development. Based on our study,
patient TME-based therapeutic approaches that modulate a
specific immune cell type, combined with surgery or transplanta-
tion, would improve HCC patient survival rates.

METHODS
Collection of samples
HCC and nontumor samples were collected from HCC or chronic liver
disease patients, respectively, who had undergone surgical resection at

Seoul National University Hospital between 2004 and 2009. A total of 62
tumor samples were collected, 25 of which had a paired sample—one
from nontumor tissue and 24 from premalignant lesions. Of the 15 normal
samples, one was collected from a metastatic cancer patient who
underwent PH, and the other 14 were collected from patients with
cholangiocarcinoma or polycystic liver disease after histological confirma-
tion. Of the 47 nontumor lesion samples that we prepared, 24 were paired
with tumor samples as mentioned above. Tissue samples were immedi-
ately snap-frozen and stored in liquid nitrogen. Then, matched formalin-
fixed, paraffin-embedded blocks were made for histological diagnosis
and immunohistochemical staining. In total, 124 samples from 98 patients
were collected.

Ethics approval and consent to participate
All tissue samples were obtained after receiving written informed consent
from the patients according to the Declaration of Helsinki. This study was
approved by the Institutional Review Board of Seoul National University
Hospital (H-1501-042-639).

High-throughput RNA sequencing (RNA-seq)
Liver tissues were removed and flash-frozen on dry ice, and RNA was
harvested using Trizol reagent. One microgram of total RNA was
extracted from samples and subsequently subjected to quantitative
real-time PCR. RNA-seq libraries were constructed using an Illumina
TruSeq RNA Sample Prep Kit (FC-122-1001, Illumina, CA). RNA-seq libraries
were sequenced in paired-end reads using the HiSeq 2000 platform (LAS,
Gimpo, South Korea).
Public RNA-seq data (n= 1057) were downloaded from the Genomic

Data Commons portal (TCGA-LIHC, n= 418), European Genome-Phenome
Archive (EGA; EGAD00001001880) (RIKEN, n= 447), National Center for
Biotechnology Information (NCBI) Gene Expression Omnibus (GEO;
GSE77509, n= 60), and database of Genotypes and Phenotypes (dbGaP;
GTEx-liver, n= 132). Encrypted cip files (RIKEN) downloaded from the EGA
were converted to fastq using an EGA client (version 2.2.4) with a provided
decryption key. SRA files (GSE77509 and GTEx-liver) downloaded from
NCBI GEO and dbGaP were converted to fastq using fastq-dump with a
--split-files option in SRA Toolkit (version 2.8.0)51.

Clinical data generation
Clinical information for 98 HCC patients, such as postoperative tumor
recurrence or metastasis, survival, and preoperative treatment, was
collected from existing medical records. Of the 54 patients with clinical
information available, 35 underwent TH, and the remaining 19 underwent
PH. Criteria for the determination of pathologic T stage followed the liver
tumor, intrahepatic bile duct tumor, or perihilar bile duct tumor staging
guidelines established by the American Joint Committee on Cancer52.
Pathological information, such as angioinvasion, tumor differentiation,
fibrosis grade, HCC grade, and DN status, was obtained from pathological
reports and by slide review. Angioinvasion was defined as tumor thrombi
in vascular lumen, which could be identified under microscopic examina-
tion of hematoxylin and eosin-stained glass slides.

Preprocessing and analysis of RNA-seq data
For preprocessing, a total of 124 Korean RNA-seq data samples were
first examined for sequencing quality using FastQC (version 0.11.5)53.
Then, they were aligned to the human reference genome hg19 using
Bowtie (version 1.0.0)54 with default parameters. Mismatch rates across
aligned reads were calculated from the resulting bam files using an in-
house Python script, and reads having a mismatch ratio higher than
10% in either end position were trimmed using Seqtk (version 1.0-
r31)55. The remaining reads were then filtered using Sickle (version
1.33)56 if their Phred base quality score was lower than 20. The filtered
RNA-seq reads were aligned to the human genome (hg19) using STAR
aligner (version 2.5.2b)57 with a transcriptome annotation file (GEN-
CODE version 19, GTF formatted) specified by a --sjdbGTFfile parameter.
Read quantification was performed using featureCounts58 from the
Subread package (version 1.5.1)59 with -p, -t exon and -g gene_id
parameters with transcriptome annotation used in the alignment
step. Two samples with low mapping rates (TG3-022 and TG1-025)
were excluded from subsequent analyses, and the remaining 122 sam-
ples were used throughout this study. The resulting output files from
featureCounts were aggregated and converted to fragments per
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kilobase of exon per million fragments mapped (FPKM) values using an
in-house Python script. The FPKM values were subsequently normalized
using quantile normalization to adjust intersample variations in R using
the normalize.quantiles() function in the preprocessCore package60.
Protein-coding genes (gene_type “protein_coding” in GTF) were then
selected from the normalized expression table, and redundant genes
were filtered out. The remaining number of protein-coding genes was
20,242. For tumor samples, 53 out of 62 had available clinical
information (34 TH and 19 PH patients), and an additional DN high-
grade sample with complete clinical data was included in the TH group.
For the other four HCC and normal liver tissue datasets (TCGA, RIKEN,

GSE77509 HCC, and GTEx), only Sickle filtering was performed on the raw
RNA-seq reads after a quality check using FastQC. Following transcriptome
alignment, read quantification and normalization steps were performed
with the protocol used with the Korean HCC cohort.

Principal component analysis (PCA)
In total, 20,242 protein-coding genes were first sorted by expression
variances across samples, and the 1000 most varying genes were selected.
Using either these 1000 genes or CIBERSORT absolute scores for 22
immune cell types, PCA was performed in R using the FactoMineR package
with default parameters. A total of five principal components (PCs) were
extracted during the analysis even though only PC1 and PC2 are visualized
in the figures.

Batch correction and dimensionality reduction analysis of a
meta-dataset
Before performing t-distributed stochastic neighbor embedding (t-SNE)
analysis of the meta-dataset (Korean, TCGA, RIKEN, and GSE77509 HCC and
GTEx-liver samples; n= 1179), normalized FPKM expression tables of the
top 5000 highly expressed (sorted by median expression) protein-coding
genes were merged. To diagnose batch effects potentially introduced by
merging independent datasets, BatchQC61 was used in R. As expected, the
batch effect prevailed in the meta-dataset and showed a higher level of
explained variation (median= 20.11, 1st quartile= 10.19 and 3rd quartile
= 32.87) than the “conditions” of a sample (four conditions were manually
specified: nontumor, premalignancy (FibCS and DN), tumor, and normal
liver (Korean Nontumor and GTEx)) (median= 9.287, 1st quartile= 4.681
and 3rd quartile= 15.48). To resolve the batch effect, batch adjustment
using empirical Bayes (ComBat)15 was performed in R, and the adjusted
expression table was subsequently subjected to another round of BatchQC.
The batch effect after adjustment was significantly diminished to a median
percent explained variation of 1.734 (1st quartile= 0.8105 and 3rd
quartile= 3.326), whereas those of the conditions were only slightly
affected (median= 6.047, 1st quartile= 2.512, and 3rd quartile= 11.8),
indicating proper normalization of the batch effect. Negative expression
values in the adjusted expression table were set to 0 during adjustment.
Then, t-SNE analysis was performed on the batch-corrected expression

table using the Rtsne package62 with dims= 3 and pca_scale= TRUE or
default parameters (initial_dims= 50, perplexity= 30, and theta= 0.5) in R.
The analysis was repeated using the top 500, 1000, 2000, and 5000 highly
expressed genes; only the results for the top 5000 genes are shown in
Supplementary Fig. 1b because the results all exhibit similar trends.

Running ESTIMATE and the calculation of purity scores
Stromal, immune, and ESTIMATE scores were inferred using the ESTIMATE
package (version 1.0.13) in R. ESTIMATE is an enrichment test evaluating the
amounts of stromal or immune cells in a given microarray or RNA-seq sample
using 141 stromal and 141 immune signature genes, and this test is
performed in two steps. First, filterCommonGenes() was run with an
id= “GeneSymbol” option to select the subset of genes to be used in
enrichment tests from an input expression matrix. In total, 10,205 genes out
of the 20,242 protein-coding genes in our expression table matched in the
ESTIMATE test and were used for the enrichment test. Next, a function
estimateScore() with platform= “illumina” was run to calculate stromal,
immune, and ESTIMATE scores. A total of 138 stromal and 141 immune
signature genes were found in our expression matrix. The calculated stromal,
immune, and ESTIMATE scores were saved in a text file for later use. Because
the purity score is not automatically converted from the ESTIMATE score
when the platform= “illumina” option is specified in the estimateScore()
function, an in-house Python script performed the task. The scores generated
by ESTIMATE are summarized in Supplementary Table 3.

Monocle 2 trajectory analysis
Read count matrix of Korean HCC samples were applied to Monocle 2
(http://cole-trapnell-lab.github.io/monocle-release/) for the trajectory ana-
lysis with default parameters. The 2127 highly variable genes were selected
with criteria of dispersion_empirical ≥ 2 * dispersion_fit & mean_expression ≥
10. For each branching point, we used BEAM for branch expression
analyses. Only genes significantly dysregulated (Q value < 0.00005) along
each branch were used.

Estimation of immune cell contents
The expression table for each dataset was separately uploaded to the
CIBERSORT website (https://cibersort.stanford.edu) and run with the
following CIBERSORT options: run relative and absolute modes together
(beta), a LM22 reference file, 500 permutations, and disable quantile
normalization. The resulting CIBERSORT absolute scores and relative
fractions for the 22 immune cell types in our cohort are shown in
Supplementary Table 4.

IHC staining and interpretation
Quantification of immune cells (T cells, cytotoxic T cells, macrophages,
plasma cells, and neutrophils) was assessed by IHC staining on tissue
microarrays and automatic quantification by QuPath63. CD45Ro
(Ventana; 790-2930; Mouse monoclonal (UCHL-1)) for total immune
cells, CD3 (Ventana; 790-4341; Rabbit monoclonal (2GV6)) for total
T cells, CD8 (NOVO; PA0183; Mouse monoclonal (4B11)) for cytotoxic
T cells, Foxp3 (Abcam; ab20034; Mouse monoclonal (236A/E7)) for Tregs,
CD68 (DAKO; M0814; Mouse monoclonal (KP1)) for macrophages, CD163
(NOVO; NCL-CD163; Mouse monoclonal (10D6)) for M2 macrophages,
MUM1 (DAKO; M7259; Mouse monoclonal (MUM1P)) for plasma cells,
and MPO (DAKO; A0398; Rabbit polyclonal) for neutrophils were used as
cell type markers. Four-μm-thick glass slides were stained using Ventana
BenchMark XT and OptiView universal DAB staining kit (Ventana #760-
700). Staining procedure of automatic stainer is antigen retrieval (100 °C
for 24 min in citrate buffer), peroxidase inhibition (37 °C for 4 min in 3%
H2O2), primary antibody (37 °C for 16 min), Linker (HQ linker; 37 °C for
8 min), polymer amplification (HRP multimer; 37 °C for 8 min), chromo-
gen by DAB (37 °C for 8 min), counterstaining by hematoxylin (37 °C for
8 min), and post counterstain (37 °C for 4 min).

Validation of CIBERSORT immune cell types
For validation of the immune cell fractions inferred by CIBERSORT, IHC-
based cell counts of eight cell types were performed with samples from
matched patients (Supplementary Table 5). The immune cell types
measured were as follows: CD3+ total T cells, CD8+ cytotoxic T cells,
CD45RO+ memory T cells, FOXP3+ Tregs, CD68+ macrophages, CD163+

M2-type macrophages, MUM1+ plasma cells, MPO+ neutrophils, and
CD45+ total leukocytes. To group cell types in the IHC results into
categories such as “memory T cells” or “macrophages” using the
CIBERSORT results, the following CIBERSORT cell types were aggre-
gated: CD3+ total T cells= CD8+ CD4 naive+ CD4 memory resting+
CD4 memory activated+ follicular helper+ gamma-delta T cells;
CD45RO+ memory T cells= CD4 memory resting+ CD4 memory-
activated T cells; CD68+ macrophages=monocytes+M0 macro-
phages+M1 macrophages+M2 macrophages. The IHC-based cell
counts and CIBERSORT scores were correlated using the cor.test()
function with method= “spearman” in R.

t-SNE analysis using CIBERSORT absolute scores
Inferred CIBERSORT absolute fractions of 22 immune cell types in the
Korean, TCGA, RIKEN, and GSE77509 HCC and GTEx-liver data were
manually merged into a single file, and then dimension reduction analysis
(t-SNE) was performed using the Rtsne R package. The specified
parameters were dims= 3 and pca_scale= TRUE or the default settings.
Batch correction was not performed, and a batch effect was not present in
the t-SNE result.

NMF signature genes and GO analysis
To cluster molecular subtypes in the Korean HCC cohort, a machine-
learning approach, NMF (version 0.20.6), was performed in R. Before
NMF, genes with a median expression level <1 FPKM were excluded
using an in-house Python script. The NMF parameter r was set from
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2 to 10, and the number of iterations per r (nrun) used a default
(100 iterations) option. Then, the best performing r value was chosen by
comparing cophenetic (reproducibility of a model), dispersion (stability
of a model), evar (explained variance achieved by a model), and
silhouette values. Signature genes in each NMF class were extracted
with an in-house R script using the following NMF function: basis
(extractFeatures(<NMF object>, method= “kim,” format= “subset“)).
For each HCC subtype, gene ontology (GO) analysis was performed

with the list of signature genes via DAVID Bioinformatics Resources
6.864,65. The “Functional Annotation Clustering” result in the “Combined
View for Selected Annotation” section was downloaded for the
interpretation of a subtype. For the visualization of GO analyses in
Supplementary Figs. 4a and 5d, only the first significant GO term (FDR <
0.05) in the GO categories of GOTERM_BP_DIRECT, GOTERM_CC_DIRECT,
GOTERM_MF_DIRECT, UP_KEYWORDS, and KEGG_PATHWAY was selected
as a representative description of the cluster if multiple clusters were
present with several statistically significant GO terms. When only one
cluster was identified and harbored several significant GO terms (FDR <
0.05), all of the GO terms were visualized.

Immune cell–cell network
The absolute scores of 22 immune cell types inferred by CIBERSORT
in the Korean, TCGA, and RIKEN HCC cohorts were separated by
annotated disease stages (nontumor; FibCS; DN low-/high-grade; and
tumor T1-3/4 stages). Within a single stage, Pearson’s correlation
between immune cell types was performed, and only cell–cell interac-
tions with significant coefficients (P < 0.05) remained. The resulting
correlation tables were visualized using cell fractions, correlation
coefficients and P values in Cytoscape (version 3.5.1). In Cytoscape,
absolute scores are presented by different font sizes, correlation
coefficients by width and edge color (red= positive, blue= negative
correlation coefficient) and correlation P values by the transparency of
the edges. Legends for color and font size were generated using the
more advanced version 3.8.2.

Clustering analysis
For clustering of immune cell fractions, the “heatmap.2” function was
specified as the hclust agglomeration method of “complete” and distance
function of “euclidean” in R. For clustering of gene expression values, NMF
was performed on expression matrices using the NMF package (version
0.20.6)66 with default parameters in R.

Statistics
All statistical analyses were performed using R (version 3.2.3 or 3.5.3).
Welch’s t-test and Spearman/Pearson correlations were performed to
compare expression values or scores and relationships between groups,
respectively. Enrichment of a class in a subtype or comparisons of binary
classes were analyzed by the Barnard’s test. Survival analysis was
performed using the survival R package (version 2.41-3)67. P values were
adjusted for multiple-hypothesis testing using the function “p.adjust()” with
the “fdr” method.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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