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ABSTRACT

Background: Rapid triage reduces the patients' stay time at an emergency department 
(ED). The Korean Triage Acuity Scale (KTAS) is mandatorily applied at EDs in South Korea. 
For rapid triage, we studied machine learning-based triage systems composed of a speech 
recognition model and natural language processing-based classification.
Methods: We simulated 762 triage cases that consisted of 18 classes with six types of the main 
symptom (chest pain, dyspnea, fever, stroke, abdominal pain, and headache) and three levels 
of KTAS. In addition, we recorded conversations between emergency patients and clinicians 
during the simulation. We used speech recognition models to transcribe the conversation. 
Bidirectional Encoder Representation from Transformers (BERT), support vector machine 
(SVM), random forest (RF), and k-nearest neighbors (KNN) were used for KTAS and 
symptom classification. Additionally, we evaluated the Shapley Additive exPlanations (SHAP) 
values of features to interpret the classifiers.
Results: The character error rate of the speech recognition model was reduced to 25.21% 
through transfer learning. With auto-transcribed scripts, support vector machine (area under 
the receiver operating characteristic curve [AUROC], 0.86; 95% confidence interval [CI], 
0.81–0.9), KNN (AUROC, 0.89; 95% CI, 0.85–0.93), RF (AUROC, 0.86; 95% CI, 0.82–0.9) 
and BERT (AUROC, 0.82; 95% CI, 0.75–0.87) achieved excellent classification performance. 
Based on SHAP, we found “stress”, “pain score point”, “fever”, “breath”, “head” and “chest” were the 
important vocabularies for determining KTAS and symptoms.
Conclusion: We demonstrated the potential of an automatic KTAS classification system using 
speech recognition models, machine learning and BERT-based classifiers.
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INTRODUCTION

The number of patients visiting emergency departments (ED) reached 10 million per year in 
South Korea as of 2019.1 If the ED is overcrowded, many critical patients cannot be examined 
and treated by the best and quickest method in the right place and with sufficient medical 
resources.2,3 To solve this problem, the Korean Triage and Acuity Scale (KTAS) has been 
mandatorily applied at the ED in South Korea since 2016. The KTAS, which is based on the 
Canadian Triage and Acuity Scale (CTAS), consists of the following processes: 1) Check 
the ‘critical first look’ as soon as a patient arrives at the ED, 2) Screen for infectious disease, 
3) Conduct triage assessment, 4) Select and document the presenting complaint of the 
patient, 5) Consider modifiers (e.g., consciousness, vital sign, pain, and other histories), 
and 6) Assign the triage level. In the KTAS decision process, there are 17 major classes, 
167 main symptoms, and if we also consider modifiers, there are approximately 2,700 
cases for the 5-level assignment decision tree. The goal is to triage a patient within 10 to 
15 minutes of arrival.4,5 The 5-level triage tool, KTAS, is the most considerable predictor 
affecting the disposition of ED patients. The KTAS is associated with the average length of 
stay and mortality rate.5,6 The KTAS is a reliable triage tool, and KTAS scores determined by 
emergency nurses and experts are consistent in most cases.7,8 Also, the KTAS is preferred 
over triaging patients by Emergency Severity Index.9

This study was conducted to determine whether artificial intelligence can accurately classify 
KTAS levels and symptoms by extracting multivariate information from conversations 
between clinicians and emergency patients. Artificial intelligence has already been widely 
used and has shown remarkable performance in diverse areas such as medical imaging 
and diagnosis. The collaborative process of clinical science and data science is essential 
for accurate medical decision-making.10 Recent studies applied machine learning (ML) 
to predict the severity and hospitalization of patients at ED based on electronic health 
record (EHR). The machine learning approaches achieved high performance in predicting 
hospitalization for adult, children, and pediatric asthma patients.11-13 Although multivariate 
logistic regression has been predominant in the field of medical statistics, in predicting 
the disposition of emergency patients, non-linear ML models, such as tree-based ensemble 
models, and deep neural networks, performed better than the logistic regression model.14 
In addition, if natural language data is analyzed along with EHR, machine learning could 
more accurately predict the emergency patients' severity.15,16 Although this machine 
learning approach showed high classification performance, it was challenging to interpret 
the decision of ML classifiers as in other areas. Several studies measured the feature 
importance for interpreting ML models. The mean impurity difference (MID) of complete 
RF nodes could be used to identify important features.17,18 However, MID overestimates high 
cardinality features and cannot expand model interpretation to the test dataset. Other studies 
interpreted the model with the post-hoc analysis, permutation feature importance (PFI).19-21 
PFI is a model-agnostic methodology that can be used for interpretation regardless of the 
model type, and it allows model interpretation on both training data and test data. However, 
PFI always yields different results due to the random shuffling of the data. Recently, Shapley 
Additive exPlanations (SHAP) has been used to overcome this weakness and quantify the 
contribution of each feature in ML classification.22,23 SHAP is an advanced algorithm that 
mathematically demonstrates the consistency and fairness of feature significance.

This preliminary study aimed to develop an automatic triage system using speech recognition 
and natural language processing (NLP) for the Korean language to save clinicians' precious time 
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at ED. This study did not use EHR data as inputs of models, and the KTAS and symptoms were 
classified by analyzing bilateral conversations between clinicians and patients. This study used 
speech recognition models to transcribe the conversation and developed ML and deep learning-
based classifiers that predict the KTAS and symptoms. This study also identified important 
words for the classification by measuring the game-theoretic feature importance, SHAP.

METHODS

Study design
We conveniently selected 762 retrospective cases among conscious patients who visited the 
ED of Hanyang University Hospital between September and December 2019. We simulated 
the triage situation of each case based on the clinical records and recorded dialog during 
simulation. Each dialog represents a case between an emergency patient and a medical 
clinician. These data include necessary information for KTAS classification, such as signs 
of infectious diseases, symptoms, vital signs, pain scores, and other histories. This study's 
primary outcomes were based on three KTAS levels (2, 3, and 4) and six main symptoms 
(chest pain, dyspnea, fever, stroke, abdominal pain, and headache) that human clinicians 
have classified correctly. The six main symptoms accounted for 54.5% of internal medicine 
patients in the emergency medical center.24 For the speech recognition and classification 
task, we randomly split the overall dataset into a training dataset (80%) and a test dataset 
(20%). Fig. 1 shows our experimental system consists of four steps: 1) Voice data collection, 
2) Automatic speech recognition, 3) Deep learning and ML-based classification, and 4) 
Analysis of word importance.

Collection of voice data and human-transcribed scripts
We recruited twenty volunteers consisting of four emergency medical technicians, each 
having a certification of a KTAS classifier, and sixteen students from a university located in 
the capital area of South Korea and a university hospital in Seoul. The volunteers were older 
than 18 years of age and in good health status. Volunteers were excluded if they have a vocal 
cord or pulmonary/heart disease. The volunteers performed the given roles as if they were in 
a real case. Two commercial recorders (VTR6600; Philips, Amsterdam, Netherlands) were 
used to record the simulated dialogues, and each device was placed in front of the medical 
clinician or patient. After the voice data were collected, we recruited four undergraduate 
students from the Division of Electrical Engineering at Hanyang University, and they 
manually transcribed the simulated dialogues to generate human-transcribed scripts.

Automatic transcription: speech-to-text process
To automatically transcribe the dialogs, we trained speech recognition models (IBM-Custom-
Speech and Microsoft-Custom-Speech) through a transfer learning algorithm. We converted a 
test set of dialogs into text documents and calculated the character error rate (CER), a general 
metric used to evaluate a Korean speech recognition model. The performance of a speech 
recognition model is better as the CER value decreases. The CER is a function defined as follows:

	 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  
𝑆𝑆𝑆𝑆 +  𝐷𝐷𝐷𝐷 +  𝐼𝐼𝐼𝐼

𝑁𝑁𝑁𝑁
 (1) 

N is the total number of words in the ground-truth script, S, D, and I are substituted, deleted, 
and inserted characters in a speech recognition result to obtain the ground-truth script. 
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Then, we statistically compared the error of speech recognition models using the McNemar's 
test.25 We calculated significant probabilities with a 2-tailed test. P values < 0.05 were 
considered statistically significant.

Training of the Bidirectional Encoder Representations from Transformers 
(BERT) model
The BERT is a deep learning-based NLP technique developed by Google, which showed superior 
performance in many NLP tasks.26 BERT consists of layers called bidirectional transformers 
that enable a classifier to grasp the context of the input sentences.26 As the original BERT 
model mainly focuses on English documents, we used the Korean Language Model (KorBERT) 
provided by ETRI (No. 2013-2-00131, Development of Knowledge Evolutionary WiseQA Platform 
Technology for Human Knowledge Augmented Services), which pre-trained a large number of 
Korean texts. Based on the KorBERT transformer layer, we developed a deep learning classifier 
called BERT-KTAS that simultaneously predicts KTAS and symptoms using text. We tokenized 
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Fig. 1. Overall flow of the classification system in this study. 
KTAS = Korean Triage and Acuity Scale, CER = character error rate, BERT = Bidirectional Encoder Representations 
from Transformers, SVM = support vector machine, KNN = k-nearest neighbors, RF = random forest, AUROC = 
area under the receiver operating characteristic curve, SHAP = Shapley Additive exPlanations.



the whole transcripts as morphemes and used them as inputs of BERT-KTAS. BERT-KTAS 
refines the input tokens with its built-in embedding layer and then extracts information from 
inputs using transformer layers, finally performs classification by fully connected layers. We 
placed two fully connected layers behind the KorBERT transformers, one for KTAS classification 
and another for symptom classification. Each fully connected layer receives the encoded 
information from transformer layers and performs multi-class classification (three categories for 
KTAS levels and six categories for symptoms). In the training process, we tuned BERT-KTAS's 
hyperparameters (e.g., learning rate schedule, batch size, and train epochs) to maximize the area 
under the receiver operating characteristic curve (AUROC) using Grid Search and Warmup Learning 
Rate Control.27 Further details of the structure and training processes of BERT-KTAS are provided 
in Supplementary Method 1.

Training of machine learning models
To compare with the BERT-KTAS, we also developed ML classifiers. ML is a high-level 
concept that includes deep learning, but in this study, ML refers to traditional ML models: 
support vector machine (SVM), k-nearest neighbors (KNN), and random forest (RF), which 
have been widely used in classification tasks. To enable these ML models to classify natural 
language, the pre-processing such as Feature selection and Word feature weighting had been 
preceded. First, we selected outcome-relevant words from the training dataset by maximal 
χ2 statistics.28 In our study, the domain of outcome was the set of all KTAS and symptom 
labels, ℒ , and the domain of inputs was the set of words in transcripts, 𝒲𝒲𝒲𝒲 . χ2 quantifies the 
difference of a word W∈𝒲𝒲𝒲𝒲  distribution for each label L∈ℒ . We chose the first 100 words 
(noun, verb, adjective, and adverb) in the order of the magnitude of the χ2 statistic.

	 𝜒𝜒𝜒𝜒2(𝑊𝑊𝑊𝑊, 𝐿𝐿𝐿𝐿) =  
𝑁𝑁𝑁𝑁 ×  (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 −  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)2

(𝐴𝐴𝐴𝐴 +  𝐶𝐶𝐶𝐶) ×  (𝐶𝐶𝐶𝐶 +  𝐴𝐴𝐴𝐴) × (𝐴𝐴𝐴𝐴 +  𝐶𝐶𝐶𝐶) ×  (𝐶𝐶𝐶𝐶 +  𝐴𝐴𝐴𝐴) (2) 

N is the number of all documents in the training dataset, A is the number of documents that 
include word W and belong to label L, B is the number of documents that include word W 
and do not belong to label L, C is the number of documents that do not include word W and 
belong to label L, and D is the number of documents that do not include word W and do not 
belong to label L.

Next, we converted the selected words to numeric vectors using Okapi BM25. Okapi BM25 
showed better performance than other frequency-based word weighting techniques in the 
document clustering and categorization experiment.29,30 In the BM25 equation, TF(qi) 
represents the frequency of the word (qi) in the text file (dj) and IDF(qi) calculates the weight 
of the word (qi)'s sparsity in the entire text.
	

IDF(𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖)  =  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁𝑁𝑁 −  𝑛𝑛𝑛𝑛(𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖)  +  0.5
𝑛𝑛𝑛𝑛(𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖)  +  0.5

 (3) 

	
TF(𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖)  =  

3 ×  𝑓𝑓𝑓𝑓�𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗�

1 +  𝑓𝑓𝑓𝑓�𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖, 𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗� + 
�𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗�
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎

 (4) 

	 BM25(dj,qi) = IDF(qi) × TF(qi) (5)

N is the number of documents in the dataset, qi is the i-th word in the set of selected words by 
χ2 statistics, n(qi) is the number of documents containing qi, f(qij,d) is the qi's term frequency in 
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document dj, |dj| is the length of document dj in words, and avgdl is the average document length 
in the dataset. We fitted the χ2 statistics and BM25 on the training dataset and transformed 
the test dataset using fitted expression. As a result, each document was converted to a 
100-dimensional numerical vector and SVM, KNN, and RF classified these vectors. Unlike the 
BERT model, since ML cannot perform multi-output classification, KTAS levels and symptoms 
cannot be predicted simultaneously with one model. Thus, models for KTAS and symptoms were 
separately developed and evaluated. Also, since SVM is only capable of binary classification, we 
developed three SVMs for KTAS levels and six SVMs for symptoms. To derive predictions from 
SVMs, we selected the class with the highest prediction confidence among SVMs. We tuned the 
hyperparameters of each classifier to maximize the AUROC using 5-fold cross-validation and grid 
search. Further details of ML training process are explained in Supplementary Method 2.

Statistical analysis
We trained the classification models on the human-transcribed data and evaluated the 
models on the human-transcribed data and auto-transcribed data. We calculated the macro 
average of Recall (True positive/[True positive + False positive]), Precision (True Positive/
[True positive + False negative]), F1-score (2 * Recall * Precision/[Recall + Precision]) and 
the AUROC to quantify the classification performance.31 Macro averaging is a method of 
averaging the evaluation metric results over an entire class. The 95% confidence interval 
(CI) was calculated using bootstrapping.32 To statistically compare the receiver operating 
characteristic (ROC) curves between BERT and other machine learning models, we 
conducted the DeLong's test.33 We calculated significant probabilities with a 2-tailed test. P 
values < 0.05 were considered statistically significant.

The models we used, such as SVM, RF, and BERT-KTAS, perform nonlinear operations, and 
this property complicates the models, making them difficult to be interpreted. Thus, we 
interpreted our classifiers using a game theory-based analysis method called SHAP, which 
is mathematically based on Shapely value, which is very consistent in the result and fair to 
identify feature importance. The Shapely is a function defined as follows:

	
Shapely value(𝑖𝑖𝑖𝑖)  =  �

|𝑆𝑆𝑆𝑆|! (𝑛𝑛𝑛𝑛 −  |𝑆𝑆𝑆𝑆|  −  1)!
𝑛𝑛𝑛𝑛!

[𝑣𝑣𝑣𝑣(𝑆𝑆𝑆𝑆 ∪ {𝑖𝑖𝑖𝑖})  −  𝑣𝑣𝑣𝑣(𝑆𝑆𝑆𝑆)]
𝑆𝑆𝑆𝑆∈𝑁𝑁𝑁𝑁{𝑖𝑖𝑖𝑖}

 (6) 

N is the set of features (words), n is the total number of features, S is a set (coalition) of 
features, and the function v(S) is the classifier's output when the coalition includes the 
features in S. The Shapley value is a game-theoretic metric that calculates the contribution 
of each participant for cooperation outcomes.34 SHAP interprets a machine learning model 
by approximating the shapely value of input variables.35 We approximated the Shapely value ​​
using coefficients of a linear model for ML and the permutationally distorted input word to 
approximate the Shapely value for BERT-KTAS. We conducted this study using NumPy,36 
Scikit-learn,37 PyTorch in Python language.38

Ethics statement
This study was approved by the Institutional Review Board at Hanyang University Hospital 
(HYUH 2020-02-008-003). We designed a prospective and preliminary simulation study with 
scenarios developed from retrospective medical chart reviews. The study was carried out 
at the simulation room of Hanyang University Hospital (Seoul, Republic of Korea) in April 
2020. The simulation participants were well informed of this study before the experiment 
and provided written consent.
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RESULTS

The baseline characteristics of participants who provided these cases are shown in Table 1. Of 
the 762 patients, KTAS level 2, level 3, and level 4 were 205, 353, and 204, respectively. There 
was no case of stroke in level 4 of KTAS.

Speech recognition CER
The CERs of speech recognition models are shown in Table 2. IBM-Custom-Speech and 
Microsoft-Custom-Speech provide the transfer learning function, enabling us to further train 
the model based on the human-transcribed scripts. Through transfer learning, IBM, and 
Microsoft's CER were 25.21% and 30.8%, respectively. The results of McNemar's test show that 
the error rates between the two speech recognition models are significantly different (P < 0.05).

Classification over human-transcribed scripts
This result showed the classifiers' performance on human-transcribed test datasets. This 
experiment was the same as the experiment with an ideal speech recognition model with 
zero CER. Table 3 shows the result of classification on the human-transcribed documents. 
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Table 1. The demographic characteristics of study population
Variables KTAS

Level 2 (n = 205) Level 3 (n = 353) Level 4 (n = 204) Total (n = 762)
Age, yr 56.32 ± 22.8 53.69 ± 20.53 33.92 ± 16.57 49.13 ± 22.17
Women 100 (48.78) 185 (52.41) 130 (63.73) 415 (54.46)
Symptom

Chest pain 55 (26.83) 49 (13.88) 8 (3.92) 112 (14.70)
Dyspnea 35 (17.07) 60 (17.00) 27 (13.24) 122 (16.01)
Fever 14 (6.83) 68 (19.26) 31 (15.20) 113 (14.83)
Stroke 20 (9.76) 64 (18.13) 0 (0.00) 84 (11.02)
Abdominal pain 38 (18.54) 54 (15.30) 68 (33.33) 160 (21.00)
Headache 43 (20.98) 58 (16.43) 70 (34.31) 171 (22.44)

Values are presented as mean ± standard deviation or number (%).
KTAS = Korean triage and acuity system.

Table 2. The comparison of speech recognition models
Model IBM-Custom-Speech Microsoft-Custom-Speech P valuea

CER (%) 25.21% 30.80% < 0.001
CER = character error rate.
aP value < 0.05 were considered statistically significant and derived from the McNemar's test.

Table 3. Model performance with human-transcribed test dataseta

Model Recall Precision F1-score AUROC P valueb

KTAS classifier
BERT-KTAS 0.72 (0.65–0.80) 0.73 (0.66–0.80) 0.73 (0.66–0.80) 0.85 (0.79–0.90)
SVM 0.78 (0.71–0.85) 0.78 (0.70–0.85) 0.78 (0.70–0.85) 0.90 (0.86–0.94) 0.022
K-NN 0.74 (0.67–0.81) 0.76 (0.69–0.83) 0.75 (0.68–0.82) 0.90 (0.85–0.94) 0.014
RF 0.74 (0.67–0.81) 0.75 (0.68–0.82) 0.75 (0.68–0.81) 0.90 (0.85–0.93) 0.016

Symptom classifier
BERT-KTAS 0.95 (0.91–0.98) 0.93 (0.89–0.97) 0.94 (0.90–0.98) 0.99 (0.97–1.00)
SVM 0.93 (0.88–0.97) 0.93 (0.87–0.97) 0.93 (0.88–0.97) 1.00 (0.99–1.00) 0.162
K-NN 0.94 (0.90–0.98) 0.94 (0.89–0.98) 0.94 (0.90–0.98) 0.99 (0.98–1.00) 0.148
RF 0.94 (0.89–0.98) 0.95 (0.90–0.98) 0.94 (0.90–0.98) 1.00 (1.00–1.00) 0.110

BERT = Bidirectional Encoder Representations from Transformers, KTAS = Korean Triage and Acuity System, SVM = support vector machine, K-NN = k-nearest 
neighbors, RF = random forest, AUROC = area under the receiver operating characteristic curve.
aAll performances are shown as mean (95% confidence interval); bP value < 0.05 were considered statistically significant and derived from the Delong's test.



For the KTAS level, the SVM (AUROC, 0.9; 95% CI, 0.86–0.94), KNN (AUROC, 0.9; 95% 
CI, 0.85–0.94) and RF (AUROC, 0.9; 95% CI, 0.86–0.94) achieved higher performance than 
BERT-KTAS (AUROC, 0.85; 95% CI, 0.79–0.9) and P values of difference between the BERT-
KTAS and the other models' AUROC (SVM, KNN, and RF) were 0.022, 0.014, and 0.016, 
respectively. However, for the symptom class, all performances were over 0.99 in AUROC and 
there is no statistically significant difference between them (all P > 0.05).

Classification over auto-transcribed scripts from speech recognition models
We also conducted the same experiment using the auto-transcribed scripts from speech 
recognition models. In this experiment, we could see the effect of CER of speech recognition 
models on the classification tasks. The performance of the overall classifiers decreased as 
CER increased. Table 4 shows the result of classification on the transcription of the IBM 
speech recognition model. In KTAS classification, the KNN achieved the highest AUROC 
(0.89; 95% CI, 0.85–0.93). In symptom classification, performance of all classifiers was 
similar, with AUROC greater than 0.98, but SVM was the highest in F1-score (AUROC, 0.9; 
95% CI, 0.83–0.94). With the IBM speech recognition model, all P values of difference 
between BERT-KTAS and other models' AUROC were less than 0.05 in both KTAS and 
symptom classification. The list of classification performance with Microsoft speech 
recognition models is provided in Supplementary Table 1.

SHAP importance of models
Table 5 shows the top 5 medicine or symptom related nouns, verbs, adjectives, adverbs, and 
numbers for each model. The output of SHAP comes out as Korean morpheme stems, but 
we expressed it in words with appropriate endings. These are roughly the most important 
words of each classification model in each classification task, in descending order. BERT-
KTAS mainly considered “hurt like it bursts,” “onset,” “hands are numb,” “symptom,” and “time” as 
important features for KTAS classification and considered “cold,” “hurt like it breaks,” “stomach,” 
“respiration,” and “very” for symptoms classification. Although BERT can capture the context, 
the vocabulary mainly used is less related to the actual KTAS and Symptom. The list of 
important words for ML was different from BERT-KTAS's result. When ML performed KTAS 
classification, “stress,” “chest,” “pain score point,” and “allergy” were important. In the symptom 
classification, words directly related to symptom classes such as “fever,” “breath,” “head,” 
“chest,” and “stomach” were important for ML.
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Table 4. Model performance with IBM's auto-transcribed test dataseta

Model Recall Precision F1-score AUROC P valueb

KTAS classifier
BERT-KTAS 0.62 (0.54–0.70) 0.68 (0.59–0.77) 0.65 (0.57–0.73) 0.82 (0.75–0.87)
SVM 0.73 (0.66–0.79) 0.73 (0.66–0.80) 0.73 (0.66–0.79) 0.86 (0.81–0.90) < 0.001
K-NN 0.73 (0.65–0.80) 0.72 (0.64–0.79) 0.72 (0.65–0.79) 0.89 (0.85–0.93) < 0.001
RF 0.63 (0.55–0.71) 0.67 (0.58–0.75) 0.65 (0.57–0.73) 0.86 (0.82–0.9) < 0.001

Symptom classifier
BERT-KTAS 0.87 (0.82–0.92) 0.88 (0.83–0.92) 0.87 (0.82–0.92) 0.98 (0.96–0.99)
SVM 0.90 (0.83–0.94) 0.90 (0.84–0.95) 0.90 (0.83–0.94) 0.99 (0.98–1.0) < 0.001
K-NN 0.85 (0.78–0.91) 0.85 (0.79–0.91) 0.85 (0.78–0.91) 0.99 (0.98–1.0) < 0.001
RF 0.86 (0.84–0.95) 0.87 (0.80–0.94) 0.87 (0.81–0.93) 0.99 (0.99–1.0) < 0.001

BERT = Bidirectional Encoder Representations from Transformers, KTAS = Korean Triage and Acuity System, SVM = support vector machine, K-NN = k-nearest 
neighbors, RF = random forest, AUROC = area under the receiver operating characteristic curve.
aAll performances are shown as mean (95% confidence interval); bP value < 0.05 were considered statistically significant and derived from the Delong's test.



DISCUSSION

This preliminary study focused on the automatic KTAS classification using speech 
recognition, NLP, and artificial intelligence. Recent studies of the ML-based triage system 
showed high performance with text and numerical data in EHR.15,16 Compared to these 
studies, we used voice data to triage emergency patients. We collected voice data from 
triage simulation and evaluated transfer-learned speech recognition models. According to 
a study, the error rate of the commercial Korean speech recognition models ranges from 
16.29% to 61.43%.39 We obtained relatively low CER using transfer-learning. We developed 
a deep learning-based BERT-KTAS to classify the KTAS and main symptoms. This model 
automatically extracts useful information for the KTAS and symptom classification from 
input texts. Over auto-transcribed documents, BERT-KTAS achieved the AUROC 0.82 for 
KTAS classification. For the comparison with BERT-KTAS, we also developed ML-based 
classifiers with maximal χ2 statistics and BM25. With these processes, useful information for 
classification could be extracted before ML training. All the ML-based classifiers achieved 
AUROC greater than 0.86 with the auto-transcribed documents. In general, the performance 
with AUROC greater than 0.8 is evaluated as excellent discrimination.40

Deep learning is a neural network that includes multiple hidden layers and has the capacity 
to learn a complex pattern through the hierarchical nonlinear operation of sequential layers. 
However, the high complexity of the model tends to make itself overfit the training data, 
resulting in poor generalization ability in the test data.41 We improved the generalization 
performance of BERT-KTAS by applying the network dropout technique and a pre-trained 
model.42 Nevertheless, the prediction performances of BERT-KTAS were slightly lower than 
that of ML models on the auto transcribed data. The BERT pre-trained corpus contained 
4.7 billion morphemes extracted from newspaper articles and encyclopedias. However, the 
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Table 5. Ranking of important words of classification models
Model BERT-KTAS SVM KNN RF
KTAS 터질 것 같다 스트레스 스트레스 앓다

(hurt like it bursts) (stress) (stress) (suffer)
발생 가슴 가슴 2

(onset) (chest) (chest) (pain score 2 point)
손이 저리다 어깨 어깨 내원

(hands are numb) (shoulder) (shoulder) (visit to hospital)
증상 목 어지럼증 4

(symptom) (neck) (dizziness) (pain score 4 point)
시간 4 토하다 알레르기

(time) (pain score 4 point) (vomit) (allergy)
Symptom 춥다 열이 나다 열이 나다 머리

(cold) (have a fever) (have a fever) (head)
깨질 것 같다 숨 가슴 배

(hurt like it breaks) (breath) (chest) (stomach)
배 머리 숨이차다 통증

(stomach) (head) (breathless) (pain)
호흡 가슴 숨 가슴

(respiration) (chest) (breath) (chest)
너무 가래 열 기침

(very) (phlegm) (fever) (cough)
KTAS = Korean Triage and Acuity System, SVM = support vector machine, KNN = k-nearest neighbors, RF = random 
forest, BERT = Bidirectional Encoder Representations from Transformers, SHAP = Shapley Additive exPlanations.
aThe words are in descending order of the mean of the absolute values of the SHAP; bEach word is represented in 
Korean, and the translated vocabulary is represented in parentheses.



corpus analyzed in the dialogue files of this study is from medical conversations between the 
patients and the clinicians, which is a specific and different domain from general articles and 
encyclopedias, and the vocabulary dictionary of BERT focused on general vocabularies rather 
than medical vocabularies. Therefore, the advantages of the pre-trained model were not fully 
exerted in KTAS prediction. On the other hand, ML models generally work better than deep 
learning on small datasets, with the help of curated features.43 Besides, the proposed ML 
models established word selection criteria directly from the prepared dataset through pre-
processing. Therefore, the ML models were able to achieve better classification performance 
than BERT-KTAS in our study with relatively small datasets. Although BERT-KTAS achieved 
slightly lower AUROC than ML-based classifiers, BERT-KTAS does not require pre-processing 
necessary for ML-based classifiers because BERT has an embedding process built into the 
model. We expect that the generalization performance of BERT-KTAS will surpass ML in 
future large-scale problems with more classes and datasets.

The purpose of SHAP was to measure the contribution of word to KTAS or symptom 
classification by calculating the effect of each word on the model's prediction probability. The 
mathematical characteristics of SHAP (local accuracy, missingness, and consistency) support 
that this is a fair way to interpret the classification models using feature importance.35 
According to the SHAP results, for the symptom classification, the vocabulary meaning the 
patient's symptom, such as “fever,” “breath,” “head,” “chest,” and “stomach,” were the important 
vocabulary. These words are directly related to the primary symptom outcomes of our study. 
However, the important vocabularies for the KTAS classification were different from the 
factors considered in actual human-aided KTAS. As mentioned above, since dictionary and 
pre-trained BERT were not targeted for medical domains, many medical vocabularies were 
split into sub-word tokens and could not be appropriately used for KTAS classification.44

There are several limitations to our study. First, although we have improved the performance 
of the speech recognition models through transfer learning, the CER of actual patients' 
voices could be higher. Therefore, future studies should collect more voice data and reduce 
the CER of speech recognition models through transfer learning. Second, our data contained 
only six main symptoms categories and three KTAS levels, so it is still insufficient to 
introduce this system to actual emergency departments. As our small-scale study was limited 
to simulated data as the first study, in the future, we will study our classification process to a 
large-scale dataset with actual patients and diverse KTAS levels and main symptoms to show 
the practicality of our classification process. We will also collect side information of patients 
(e.g., postures or moods) and analyze how the accuracies of classifiers can be increased by 
using these data as additional input features. Lastly, many factors considered in human-
aided KTAS, such as patient first looks, respiration status, hemodynamic status, neurological 
status, were not identified as important words for classification in the SHAP results. To 
further improve the classification performance and model interpretation, studies on pre-
processing technology to extract the actual KTAS related factors is needed.

In conclusion, this preliminary study showed the potential of developing an automatic 
classification system that directly classifies the KTAS level and symptoms from the 
conversation between patients and clinicians. This concept study will be helpful to reduce 
clinicians' workload at the ED. In a future study, we will first extract the factors related 
to KTAS from dialogues by developing a deep learning algorithm and then conduct 
classification based on these extracted factors.

10/13https://jkms.org https://doi.org/10.3346/jkms.2021.36.e175

Automatic Transcription and KTAS Classification



SUPPLEMENTARY MATERIALS

Supplementary Method 1
Training process of Bidirectional Encoder Representations from Transformers (BERT)-
Korean Triage and Acuity Scale (KTAS)

Click here to view

Supplementary Method 2
Training process of benchmark machine learning (ML)

Click here to view

Supplementary Table 1
Model performance with Microsoft's auto-transcribed test dataset

Click here to view

REFERENCES

	 1.	 National Emergency Medical Center (Korea). 2019 Annual report of Korean emergency medicine. https://
www.e-gen.or.kr/nemc/statistics_annual_report.do. Updated 2020. Accessed January 13, 2021.

	 2.	 Bernstein SL, Aronsky D, Duseja R, Epstein S, Handel D, Hwang U, et al. The effect of emergency 
department crowding on clinically oriented outcomes. Acad Emerg Med 2009;16(1):1-10. 
PUBMED | CROSSREF

	 3.	 Stang AS, Crotts J, Johnson DW, Hartling L, Guttmann A. Crowding measures associated with the quality 
of emergency department care: a systematic review. Acad Emerg Med 2015;22(6):643-56. 
PUBMED | CROSSREF

	 4.	 Park J, Lim T. Korean Triage and Acuity Scale (KTAS). J Korean Soc Emerg Med 2017;28(6):547-51.

	 5.	 Ryu JH, Min MK, Lee DS, Yeom SR, Lee SH, Wang IJ, et al. Changes in relative importance of the 5-level 
triage system, Korean Triage and Acuity Scale, for the disposition of emergency patients induced by 
forced reduction in its level number: a multi-center registry based retrospective cohort study. J Korean Med 
Sci 2019;34(14):e114. 
PUBMED | CROSSREF

	 6.	 Kwon H, Kim YJ, Jo YH, Lee JH, Lee JH, Kim J, et al. The Korean Triage and Acuity Scale: associations 
with admission, disposition, mortality and length of stay in the emergency department. Int J Qual Health 
Care 2019;31(6):449-55. 
PUBMED | CROSSREF

	 7.	 Park JB, Lee J, Kim YJ, Lee JH, Lim TH. Reliability of Korean Triage and Acuity Scale: interrater agreement 
between two experienced nurses by real-time triage and analysis of influencing factors to disagreement of 
triage levels. J Korean Med Sci 2019;34(28):e189. 
PUBMED | CROSSREF

	 8.	 Moon SH, Shim JL, Park KS, Park CS. Triage accuracy and causes of mistriage using the Korean Triage and 
Acuity Scale. PLoS One 2019;14(9):e0216972. 
PUBMED | CROSSREF

	 9.	 Kim JH, Kim JW, Kim SY, Hong DY, Park SO, Baek KJ, et al. Validation of the Korean Triage and Acuity 
Scale compare to triage by emergency severity index for emergency adult patient: preliminary study in a 
tertiary hospital emergency medical center. J Korean Soc Emerg Med 2016;27(5):436-41.

	10.	 Kim JH, Hong JS, Park HJ. Prospects of deep learning for medical imaging. Precis Future Med 2018;2(2):37-52. 
CROSSREF

	11.	 Hong WS, Haimovich AD, Taylor RA. Predicting hospital admission at emergency department triage 
using machine learning. PLoS One 2018;13(7):e0201016. 
PUBMED | CROSSREF

11/13https://jkms.org https://doi.org/10.3346/jkms.2021.36.e175

Automatic Transcription and KTAS Classification

https://jkms.org/DownloadSupplMaterial.php?id=10.3346/jkms.2021.36.e175&fn=jkms-36-e175-s001.doc
https://jkms.org/DownloadSupplMaterial.php?id=10.3346/jkms.2021.36.e175&fn=jkms-36-e175-s002.doc
https://jkms.org/DownloadSupplMaterial.php?id=10.3346/jkms.2021.36.e175&fn=jkms-36-e175-s003.doc
http://www.ncbi.nlm.nih.gov/pubmed/19007346
https://doi.org/10.1111/j.1553-2712.2008.00295.x
http://www.ncbi.nlm.nih.gov/pubmed/25996053
https://doi.org/10.1111/acem.12682
http://www.ncbi.nlm.nih.gov/pubmed/30977315
https://doi.org/10.3346/jkms.2019.34.e114
http://www.ncbi.nlm.nih.gov/pubmed/30165654
https://doi.org/10.1093/intqhc/mzy184
http://www.ncbi.nlm.nih.gov/pubmed/31327176
https://doi.org/10.3346/jkms.2019.34.e189
http://www.ncbi.nlm.nih.gov/pubmed/31490937
https://doi.org/10.1371/journal.pone.0216972
https://doi.org/10.23838/pfm.2018.00030
http://www.ncbi.nlm.nih.gov/pubmed/30028888
https://doi.org/10.1371/journal.pone.0201016


	12.	 Raita Y, Goto T, Faridi MK, Brown DF, Camargo CA Jr, Hasegawa K. Emergency department triage 
prediction of clinical outcomes using machine learning models. Crit Care 2019;23(1):64. 
PUBMED | CROSSREF

	13.	 Goto T, Camargo CA Jr, Faridi MK, Freishtat RJ, Hasegawa K. Machine learning based prediction of 
clinical outcomes for children during emergency department triage. JAMA Netw Open 2019;2(1):e186937. 
PUBMED | CROSSREF

	14.	 Patel SJ, Chamberlain DB, Chamberlain JM. A machine learning approach to predicting need for 
hospitalization for pediatric asthma exacerbation at the time of emergency department triage. Acad Emerg 
Med 2018;25(12):1463-70. 
PUBMED | CROSSREF

	15.	 Choi SW, Ko T, Hong KJ, Kim KH. Machine learning-based prediction of Korean Triage and Acuity Scale 
level in emergency department patients. Healthc Inform Res 2019;25(4):305-12. 
PUBMED | CROSSREF

	16.	 Horng S, Sontag DA, Halpern Y, Jernite Y, Shapiro NI, Nathanson LA. Creating an automated trigger 
for sepsis clinical decision support at emergency department triage using machine learning. PLoS One 
2017;12(4):e0174708. 
PUBMED | CROSSREF

	17.	 Lee KS, Song IS, Kim ES, Ahn KH. Determinants of spontaneous preterm labor and birth including 
gastroesophageal reflux disease and periodontitis. J Korean Med Sci 2020;35(14):e105. 
PUBMED | CROSSREF

	18.	 Lee KS, Ahn KH. Artificial neural network analysis of spontaneous preterm labor and birth and its major 
determinants. J Korean Med Sci 2019;34(16):e128. 
PUBMED | CROSSREF

	19.	 Fisher A, Rudin C, Dominici F. All models are wrong, but many are useful: learning a variable's 
importance by studying an entire class of prediction models simultaneously. J Mach Learn Res 
2019;20(177):1-81.

	20.	 Alabi RO, Elmusrati M, Sawazaki-Calone I, Kowalski LP, Haglund C, Coletta RD, et al. Comparison of 
supervised machine learning classification techniques in prediction of locoregional recurrences in early 
oral tongue cancer. Int J Med Inform 2020;136:104068. 
PUBMED | CROSSREF

	21.	 Shew M, New J, Bur AM. Machine learning to predict delays in adjuvant radiation following surgery for 
head and neck cancer. Otolaryngol Head Neck Surg 2019;160(6):1058-64. 
PUBMED | CROSSREF

	22.	 Karadaghy OA, Shew M, New J, Bur AM. Development and assessment of a machine learning model to 
help predict survival among patients with oral squamous cell carcinoma. JAMA Otolaryngol Head Neck Surg 
2019;145(12):1115-20. 
PUBMED | CROSSREF

	23.	 Rajpurkar P, Yang J, Dass N, Vale V, Keller AS, Irvin J, et al. Evaluation of a machine learning model based 
on pretreatment symptoms and electroencephalographic features to predict outcomes of antidepressant 
treatment in adults with depression: a prespecified secondary analysis of a randomized clinical trial. JAMA 
Netw Open 2020;3(6):e206653. 
PUBMED | CROSSREF

	24.	 Lee KS. Research about chief complaint and principal diagnosis of patients who visited the university 
hospital emergency room. J Digit Converg 2012;10(10):347-52. 
CROSSREF

	25.	 Dietterich TG. Approximate statistical tests for comparing supervised classification learning algorithms. 
Neural Comput 1998;10(7):1895-923. 
PUBMED | CROSSREF

	26.	 Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for 
language understanding. In: Proceedings of the 17th Annual Conference of the North American Chapter of the 
Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics; 
2019, 4171-86.

	27.	 Vaswani A, Noam S, Niki P, Uszkoreit J, Jone L, Gomez AN, et al. Ateention is all you need. In: Proceedings 
of the 31st International Conference on Neural Information Processing System. 2017, 6000-10.

	28.	 Moh'd A, Mesleh A. Chi square feature extraction based svms arabic language text categorization system. 
J Comput Sci 2007;3(6):430-5. 
CROSSREF

	29.	 Whissell JS, Clarke CL. Improving document clustering using Okapi BM25 feature weighting. Inf Retr 
Boston 2011;14(5):466-87. 
CROSSREF

12/13https://jkms.org https://doi.org/10.3346/jkms.2021.36.e175

Automatic Transcription and KTAS Classification

http://www.ncbi.nlm.nih.gov/pubmed/30795786
https://doi.org/10.1186/s13054-019-2351-7
http://www.ncbi.nlm.nih.gov/pubmed/30646206
https://doi.org/10.1001/jamanetworkopen.2018.6937
http://www.ncbi.nlm.nih.gov/pubmed/30382605
https://doi.org/10.1111/acem.13655
http://www.ncbi.nlm.nih.gov/pubmed/31777674
https://doi.org/10.4258/hir.2019.25.4.305
http://www.ncbi.nlm.nih.gov/pubmed/28384212
https://doi.org/10.1371/journal.pone.0174708
http://www.ncbi.nlm.nih.gov/pubmed/32281316
https://doi.org/10.3346/jkms.2020.35.e105
http://www.ncbi.nlm.nih.gov/pubmed/31020816
https://doi.org/10.3346/jkms.2019.34.e128
http://www.ncbi.nlm.nih.gov/pubmed/31923822
https://doi.org/10.1016/j.ijmedinf.2019.104068
https://pubmed.ncbi.nlm.nih.gov/30691352
https://doi.org/10.1177%2F0194599818823200
https://pubmed.ncbi.nlm.nih.gov/31045212
https://doi.org/10.1001%2Fjamaoto.2019.0981
http://www.ncbi.nlm.nih.gov/pubmed/32568399
https://doi.org/10.1001/jamanetworkopen.2020.6653
https://doi.org/10.14400/JDPM.2012.10.10.347
http://www.ncbi.nlm.nih.gov/pubmed/9744903
https://doi.org/10.1162/089976698300017197
https://doi.org/10.3844/jcssp.2007.430.435
https://doi.org/10.1007/s10791-011-9163-y


	30.	 Lee YH, Lee SB. A research on enhancement of text categorization performance by using okapi BM25 
word weight method. J Korea Acad Ind Coop Soc 2010;11(12):5089-96. 
CROSSREF

	31.	 Powers DMW. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & 
correlation. J Mach Learn Technol 2011;2(1):37-63.

	32.	 Cortes C, Mohri M. Confidence intervals for the area under the ROC curve. In: Saul L, Weiss Y, Bottou L, 
editors. Advances in Neural Information Processing Systems 17 (NIPS 2004). Cambridge, MA, USA: MIT Press; 
2005, 305-12.

	33.	 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver 
operating characteristic curves: a nonparametric approach. Biometrics 1988;44(3):837-45. 
PUBMED | CROSSREF

	34.	 Shapley LS. A Value for n-Person Games. Contributions to the Theory of Games. Princeton, NJ, USA: Princeton 
University Press; 1953.

	35.	 Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In: Guyon I, Luxburg UV, 
Bengio S, Wallach H, Fergus R, Vishwanathan S, et al., editors. Advances in Neural Information Processing 
Systems 30 (NIPS 2017). Cambridge, MA, USA: MIT Press; 2017, 4765-74.

	36.	 Van Der Walt S, Colbert SC, Varoquaux G. The NumPy array: a structure for efficient numerical 
computation. Comput Sci Eng 2011;13(2):22-30. 
CROSSREF

	37.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning 
in Python. J Mach Learn Res 2011;12:2825-30.

	38.	 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: an imperative style, high-
performance deep learning library. arXiv. Forthcoming 2019. https://arxiv.org/abs/1912.01703

	39.	 Yoo HJ, Seo S, Im SW, Gim GY. The performance evaluation of continuous speech recognition based 
on Korean phonological rules of cloud-based speech recognition open API. Int J Networked Distrib Comput 
2021;9(1):10-8. 
CROSSREF

	40.	 Hosmer JR, David W, Lemeshow S, Sturdivant RX. Applied Logistic Regression. 2nd ed. Hoboken, NJ, USA: 
John Wiley & Sons; 2013.

	41.	 Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput 
2006;18(7):1527-54. 
PUBMED | CROSSREF

	42.	 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent 
neural networks from overfitting. J Mach Learn Res 2014;15(1):1929-58.

	43.	 Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, et al. A state-of-the-art survey on deep 
learning theory and architectures. Electronics (Basel) 2019;8(3):292. 
CROSSREF

	44.	  Sennrich R, Haddow B, Birch A. Neural machine translation of rare words with subword units. In: 
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: 
Association for Computational Linguistics; 2016, 1715-25.

13/13https://jkms.org https://doi.org/10.3346/jkms.2021.36.e175

Automatic Transcription and KTAS Classification

https://doi.org/10.5762/KAIS.2010.11.12.5089
http://www.ncbi.nlm.nih.gov/pubmed/3203132
https://doi.org/10.2307/2531595
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.2991/ijndc.k.201218.005
http://www.ncbi.nlm.nih.gov/pubmed/16764513
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.3390/electronics8030292

	Automatic Classification of the Korean Triage Acuity Scale in Simulated Emergency Rooms Using Speech Recognition and Natural Language Processing: a Proof of Concept Study
	INTRODUCTION
	METHODS
	Collection of voice data and human-transcribed scripts
	Automatic transcription: speech-to-text process
	Training of the Bidirectional Encoder Representations from Transformers (BERT) model
	Training of machine learning models
	Statistical analysis
	Ethics statement

	RESULTS
	Speech recognition CER
	Classification over human-transcribed scripts
	Classification over auto-transcribed scripts from speech recognition models
	SHAP importance of models

	DISCUSSION
	SUPPLEMENTARY MATERIALS
	Supplementary Method 1
	Supplementary Method 2
	Supplementary Table 1

	REFERENCES


