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ABSTRACT

Anion exchange membrane fuel cells (AEMFCs) have attracted great interest as a low-cost fuel cell tech-
nology for clean energy conversion and utilization for the future. AEMFCs have been considered the most
promising succedaneum to proton exchange membrane fuel cells (PEMFCs) for addressing the cost issues
associated with PEMFCs due to utilizing non-platinum group metals as electrocatalysts under alkaline
conditions (such as Ag, Ni, and Co). Herein, we focus on a critical topic of AEMFCs—-anion-exchange
polyelectrolytes (AEPs)—which are essential materials for low-cost AEMFCs. Specifically, AEPs have been
used as anion-exchange membranes (AEMs) and binders (or ionomers) in AEMFCs. Years of study have al-
lowed AEMFCs to recently achieve unprecedented progress, specifically in terms of power density and
durability. These properties are comparable to or higher thanPEMFCs due to the recent development of
high performance AEPs. Currently, most AEPs focused on the application of AEMs, and the importance of
ionomer research has not been widely recognized. Moreover, a comprehensive review involving a system-
atic performance comparison of the state-of-the-art AEMs and ionomers is still lacking, making future re-
search on AEMFCs unclear. This review systematically and comprehensively summarizes the development
of AEPs and highlights the importance of cationic species and polymer backbone structures on durability
with an emphasis on the importance of ionomer research. We further describe the differences between
AEMs and ionomers by comparing the advantages and disadvantages of the state-of-the-art AEMs and
ionomers to accurately guide future research on AEMFCs. We cover synthetic methods, degradation mech-
anisms, strategies to enhance performance, water transport behaviors, structure design criteria, and new
challenges for AEMs and ionomers. This review is expected to expand further understanding of AEMs and

ionomers and provide a future direction for designing AEMs and ionomers for future AEMFCs.

© 2020 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Abbreviation: s: AEls, Anion exchange ionomers; AEMFCs, anion exchange
membrane fuel cells; AEMs, anion exchange membranes; AEPs, anion ex-
change polyelectrolytes; AFCs, alkaline fuel cells; ASR, area specific resistance;
ASU, 6-azaspiro[5.5]undecanium; BPN, poly(biphenyl); BTEA, benzyl triethylam-
monium; BTMA-ETFE, benzyltrimethylammonium-functionalized poly(ethylene-co-
tetrafluoroethylene); BTMA-HDPE, benzyltrimethylammonium-functionalized high-
density polyethylene; BTMA-LDPE, benzyltrimethylammonium-functionalized low-
density polyethylene; DFT, density functional theory; DHFC, direct hydrazine hy-
drate fuel cell; DMP, N,N-dimethyl piperidinium; DMSO, dimethyl sulfoxide; E2,
Hofmann degradation; FLNs, polyfluorene; GDL, gas diffusion layer; HOR, hydrogen
oxidation reaction; HTM, hexyltrimethylammonium; IEC, ion exchange capability;
IM, Imidazolium (IM); MEA, membrane electrode assemblies; n, osmotic drag coeffi-
cient; ORR, oxygen reduction reaction; PAP, poly (aryl piperidinium); PBI, polybenz-
imidazole; PEEK, poly(ether-ether ketone); PEM, proton exchange membrane; PEM-
FCs, proton exchange membrane fuel cells; PEO, poly(ethylene oxide); PFSA, perflu-
orosulfonic acid; PMFCs, polyelectrolyte membrane fuel cells; PNB, polynorbornene;
PPD, peak power density (PPD); PPO, poly(phenylene oxide); PS, polystyrene; PSF,
polysulfone; PTFE, polytetrafluoroethylene; QA, quaternary ammonium; ROMP, ring-
opening metathesis polymerization; SEBS, styrene-ethylene-butadiene-styrene; SN2,
nucleophilic substitution; TAA, tetraalkylammonium; TB, Troger's base; TFSA, triflu-
oromethanesulfonic acid; TMA, tetramethylammonium; TPB, three-phase boundary;
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1. Introduction

Development of renewable and clean energy sources and
energy-conversion technologies has become an urgent need for hu-
man society. Fuel cell technologies have been regarded as opti-
mal energy conversion devices for utilizing hydrogen energy, and
they have gained popularity in the past few decades since they
can directly and efficiently transform the chemical energy of fuels
(e.g., hydrogen,hydrazine, and methanol) intoelectricityin a com-
pletely eco-friendly way [1-3]. In the history of fuel cell develop-
ment, alkaline fuel cells (AFCs) have been employed as the first
fuel cell technology used in outer space. However, to explore the
applications of fuel cells on earth, polyelectrolyte membrane fuel
cells (PMFCs) have attracted the attention of the researchcom-
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munity due to the introduction of ion-exchange polyelectrolytes
(H*/OH™) as solid electrolytes, which address the issues associated
with liquid-electrolyte leakage and the instability of electrolytes in
AFCs [4-6]. PMFCs reached a milestone when the DuPont Com-
pany developed a perfluorosulfonic acid (PFSA) polymer, so-called
Nafion®, in the1970s. PFSA membranes possess excellent physi-
cal and electrochemical properties, such as high ion conductiv-
ity, mechanical properties and durability. Other commercial pro-
ton exchange membrane (PEMs) also have been developed, such
as Aquivion® and Forblue®. Therefore, the PFSA membrane and
ionomer provide excellent performance and durability for proton
exchange membrane fuel cells (PEMFCs), making PEMFCs popular
as a clean power generation technology in many fields, particu-
larly in transportation application. Specifically, hydrogen fuel cell
vehicles-Mirai and Nexo cars equipped with PEMFCs are currently
being produced by Toyota and Hyundai Automotive companies, re-
spectively. However, PEMFCs rely heavily on expensive platinum
catalysts and PFSA polyelectrolytes, making the high-cost issues
difficult to address, which limits the global applications [7-12].

1.1. Anion exchange membrane fuel cells

To address the cost issues associated with PEMFCs, anion ex-
change membrane fuel cells (AEMFCs) appeared on the scene in
2000 by operating under alkaline (or high pH) conditions [6-15].
AEMFCs have a distinguishable cost advantage due to the permis-
sion of utilizing non-noble metals (such asNi, Co, Mn, and Fe) as
electrocatalysts.AEMFCs pursue a parallel track to PEMFCs and in-
tend to replace the high-cost PEMFCs in the near future. Although
PEMEFCs still dominate in low temperature fuel cells, some AEMFC
prototypes have been currently seen, such as from Po-Celltech Ltd.
Among the anion exchange cationic species, hydroxide ion trans-
port membranes represent the majority of anion exchange mem-
branes (AEMs) in AEMFCs compared with chloride, carbonate ions
and many other larger cations than hydroxide ions. In this review,
we will mainly deal with AEMs, anion exchange ionomers (AEIs)
and AEMFCs to accommodate common recognition, although hy-
droxide ions are the major transporting species. By switching from
an acid medium to an alkaline one, AEMFCs also have been en-
dowed with a lot of valuable merits, such as higher oxygen reduc-
tion reaction (ORR) kinetics and the elimination of acid-corrosion
issues [16-22]. Unfortunately, the insufficient lifetime and power
efficiency of AEMFCs have severely hampered their commercial
success so far.

In general, AEMFC consists of membrane electrode assembly
(MEA), gas diffusion layers, flow field plates, and current collectors,
and the MEA is the central component of the AEMFC, as shown
in Fig. 1. MEA acts as a power generation device for the hydro-
gen oxidation reaction (HOR) and ORR, which consists of AEMs
and catalyst layer electrodes containing AEIs[23-25]. An ideal MEA
should possess high power density and long-term durability un-
der alkaline conditions with an acceptable cost [26-32]. The elec-
trochemical power density and durability of MEAs are primar-
ily determined by the nature of anion exchange polyelectrolytes
(AEPs)-based AEMs and AEls. Technically, the same structure of
AEPs can be utilized as both AEMs and AEls. However, except for
OH~transport, the roles of AEMs and AEIs are different in AEM-
FCs [33-35]. AEMs are installed in the middle of AEMFCs and act
as gas barriers to prevent hydrogen and oxygen cross-over. Never-
theless, AEIs are added in the anode and the cathode catalyst lay-
ers to bond well to AEMs and catalysts to decrease the interfacial
resistance of MEA [36-38]. More importantly, a qualified ionomer
can construct an effective three-phase boundary (TPB) between
catalysts (solid), water-containing ionomers (liquid), and reactants
(gas) in MEAs to boost the electrochemical performance of AEMFCs
[39-42].
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1.2. Challenges in anion exchange polyelectrolytes

Generally, AEPs are composed of polymer backbones with pen-
dant cationic groups that transport OH~and H,0 molecules, signi-
fying that these cationic groups govern the transport of ions and
the durability of the AEPs. On the other hand, the polymer back-
bone is used to house cationic groups and maintain the stability of
the morphology of AEPs [43-47]. Note that ideal AEPs should pos-
sess high OH~ conductivity and sufficient durability under alkaline
conditions. However, it is difficult to find ideal AEPs for AEMFCs
due to the following complex challenges.Overall, AEPs face three
main technical challenges in AEMFCs.

1.2.1. Insufficient ion conductivity

Compared to Ht (M=1, diffusion coefficient D=10+2 x 10>
cm?2/s) ions in PEMFCs, OH- has a higher molecular weight
and a lower mobility (M=17, D=6+1 x 10~ cm?/s) [6], making
OH~transport slow or difficult, which leads to the lower ionic con-
ductivity of AEPs. Nafion membranes typically display a high pro-
ton conductivity of up to 200 mS/cm at 80°C in water. Thus, a
good ion conductivity is one in which the OH~ conductivity of
AEMs is close to, or higher than this reference [48-52].

1.2.2. Insufficient durability

Unfortunately, AEPs suffer from an intrinsicdrawback under al-
kaline conditions since most AEPs are easily degraded by OH-,
especially at elevated temperatures [53-58]. Numerous cationic
species such as ammonium [59-62], phosphonium [63-65], sulfo-
nium [66], and organic-metal cations [67-70] have been employed
in AEPs, while only a few cationic species exhibit sufficient alka-
line stability under alkaline conditions [61,71]. Moreover, some aryl
ether-based polymer backbones such as poly(ether-ether ketone)
(PEEK) [72,73], polysulfone (PSF) [74,75], and poly(phenylene ox-
ide) (PPO) [76,77] could be attacked by OH~ ions as well, causing
polymer chain cleavage and degradation of the mechanical prop-
erties. Even worse, most AEPs possess inferioroxidation resistance,
making the durability situation more severe under the background
of inevitable H,0, generation during adverse ORR reactions in the
cathode [78,79].

1.2.3. Trade-off between some properties of AEPs

Many properties of AEPs are mutually restricted by each other.
In this case, it is a challenge to find an AEP having sufficient all-
around physical properties. As a simple example, the ion conduc-
tivity of AEPs is mainly controlled by ion-exchange capacity (IEC).
High IEC improves the ion conductivity of AEPs, while the water
uptake and swelling ratio simultaneously increase, reducing the di-
mensional stability and mechanical properties of the AEPs [80-83].

On the other hand, there are still other underlying challenges in
AEP applications. Most AEMFCs are operated under water-saturated
conditions that increase the cell resistance. Therefore, low water
permeability of AEMs and ionomers could be one of the critical
issues in AEMFCs as the cells need to supply water to the cathode
by water back diffusion. Moreover, the carbonation of AEMs and
ionomers also could be issues when AEMFCs are operated with H,-
air.

1.3. Recent developments and progress in AEPs

Researchers have proposed many strategies to boost the per-
formance of AEPs and AEMFCs, including (1) the development of
highly stable cationic groups and aryl ether-free polymer back-
bones [84-86], (2) the optimization of microphase morphologies
of AEPs [87-89], (3) the introduction of crosslinking strategies [90-
92| and composite methods [90,93-95], and (4) optimization of the
water management of AEMFCs [96-100].



N. Chen and Y.M. Lee

GDL

Flow field
Anode layer

Progress in Polymer Science 113 (2021) 101345

GDL

Flow field

".'..

e
4
[
>
K.}
[
T
[+
-
=
©
o

Fig. 1. Schematic representation of an AEMFC.

Years of study have revealed that AEMFCs have recently
seen unprecedented progress due to the development of high-
performance AEMs and ionomers, specifically in terms of power
densities (>3W/cm?)and long-term stability (>500h under 0.6
Ajcm? current density) [9,97]. The OH~ conductivity issues in AEPs
have been well addressed in recent years. AEMFCs with state-of-
the-art AEMs have comparable ohmic resistance to Nafion-based
acid fuel cells. As a consequence, the durability issues associated
with AEMs and ionomers have become a primary challenge in ac-
celerating the commercialization of AEMFCs. Therefore, researchers
have made efforts to find highly stable cationic groups and poly-
mer backbones for AEPs.

1.4. Ionomers

Compared to AEMs, the research on ionomers is fairly limited in
the literature. Up to 1st April 2020, there are only 45 publications
on AEIs or binders or so based on a Web of Science search. So far,
many researchers do not even know the importance of ionomers
or how to obtain an efficient ionomer. In PEMFCs, ionomers are
basically perfluorinated sulfonic acid polymers that have the same
polymer structure as the membrane. Obviously, the requirements
for the properties of AEMs and AEIls are not always the same due
to their different roles. For instance, AEMs require good gas bar-
rier properties and limited water contents and membrane swelling,
while AEIs need high water permeability, minimal interaction with
electrocatalysts, and sufficient electro-oxidative stability to improve
the electrode reactions. Therefore, using the same AEPs as mem-
branes and ionomers is not always a good choice for AEMFCs [101-
103].

For these grounds, one should understand that the structural
design for AEMs and AEls may be different as well. As Kim and
co-workers reported [104-106] that the phenyl groups and ammo-
nium groups in some polyaromatic AEIs had adverse adsorption ef-
fects on electrode catalytic reactions. On the other hand, the water
management of AEMFCs is more complicated compared to PEMFCs
[98]. Note that there are four water molecules generated at the an-
ode while two water molecules are consumed at the cathode for
every four electrons transferred, which makes a water imbalance
between the cathode and the anode (Fig. 2). Accordingly, the cath-
ode is inclined to dry-out, while the anode is prone to flooding
under high current density.

This review will comprehensively summarize the recent
progress of AEPs and highlight the state-of-the-art AEMs and
AEls. Comparisons of these AEPs will also be covered, includ-
ing synthetic methods, degradation mechanisms, strategies to en-
hance performance, and structure-property relationships. This re-
view thus addresses what was lacking in reviews of AEPs in recent
years. Moreover, this review will point out the right approaches
for the structural design of AEMs and AEls, highlightingthe differ-
ent structural-design criteria between AEMs and AEls, emphasizing
the importance of ionomer research and providing a comprehen-
sive understanding of AEMs and AEIs.

2. Highly stable AEPs: effect of cationic species and polymer
backbone

The majority of AEPs have been used as AEMs so far. There-
fore, AEPs are often referred to as AEMs, hydroxide exchange mem-
branes (HEMs), solid polymer electrolytes (SPEs), or alkaline poly-
mer electrolytes (APEs) in the literature. Actually, the concept of
SPEs was presented as early as the 1970s forelectrochemical de-
vice applications [107-110]. The most important example of SPEs
is Nafion polyelectrolyte. In 2001, Ageland Fauvarqueet et al.[111]
attempted to use KOH-doped poly(ethylene oxide) (KOH-PEO) and
anionic membranes to overcome the problem of liquid electrolyte
leakage and carbonate blocking in AFCs. Subsequently, numerous
cationic groups and polymer species have been employed to pre-
pare AEPs.

2.1. Ammonium-based AEPs

Ammonium groups have been most extensively investigated
in AEPsdue to the good nucleophilic activity and adjustability of
amine groups. There were 2500 publications on quaternary am-
monium (QA) and imidazolium (IM)-based AEPs in AEMFCs from
2000 to 2019 or so. However, most QA and IM groups are prone to
degradation under alkaline conditions via the Hofmann degrada-
tion (E;), nucleophilic substitution (SN,), or ring-opening reaction,
especially at elevated temperatures and high pH conditions [112-
115], as shown in Fig. 3(a) and (b).

2.1.1. Quaternary ammonium-based AEPs

Focusing on the degradation mechanism of QA groups, the Hof-
mann degradation is mainly triggered by the elimination of S-
hydrogen via an anti-coplanarintermediate. Thus, the degradation
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rate is mainly determined by the reactivity of dehydrogenation
and the rate of formation of the intermediate. On the other hand,
SN,degradation is conducted by a direct nucleophile attack from
behind. Therefore, the reaction kinetics are mainly determined by
the steric hindrance of QA groups. Hence, the synthesis of spe-
cific QA without a B-hydrogen is a typicalway to avoid the Hof-
mann degradation and improve the alkalinestability. Tetramethy-
lammonium (TMA) was considered to be the most stable QA early
on due to the absence of the B-hydrogens [71]. Nevertheless, it
is theoretically impossible to directly introduce the TMA in AEPs
because the cationic groups are grafted on the polymer back-
bone. Since most of the currently available AEPs contain phenyl-
groups, the most popular way to prepare AEPs is by functional-
izing halogenated polymers with different tertiary amines. There-
fore, benzyl trimethylammonium (BTMA)-based AEPs have been
extensively developed [116-118]. In 2002, Danks et al.[119] pre-
pared a series of BTMA-functionalized poly(vinylidene fluoride)
(PVDF) and poly(tetrafluoroethene-co-hexafluoropropylene) (FEP)
membranes for direct methanol fuel cells (DMFCs) via a radiation-
grafting method, where these AEMs exhibited ion conductivities of
~20 mS/cm at room temperature at that time. BTMA groups have
been regarded as more stable than other alkyl benzyl ammonium
(BA) such as benzyl triethylammonium (BTEA) under alkaline con-
ditions since the BTMA does not contain any B-hydrogens. How-
ever, because of the withdrawing effect of phenyl group on benzyl
hydrogen («-H), BTMA-based AEPs exhibit accelerated SN, degra-
dation at the benzyl position, especially at elevated temperatures
[120-123].

Zhang. et al.[124] developed a series of side-chain-type PEEK
membranes without BA structures, and these membranes showed
enhanced alkaline stability in 6 M NaOH at 60 °C for 40 days com-
pared to BA-type AEMs (Fig. 4(a)). Dang et al.[125] prepared a se-

ries of PPO membranes tethered with flexiblecationic alkyl side
chains.They found that placing QA groups on the flexible spacer
units tethered to the PPO backbone facilitated the alkaline stabil-
ity and ion conductivity (Fig. 4(a)). Kim’'s group [120] systemati-
cally investigated the alkaline stability of BTMA-functionalized pol-
yaromatic membranes by computational modeling and experimen-
tal methods. The computational modeling study suggests thatthe
aryl-ether backbone is easy to be cleaved under alkaline conditions
due to the electron-withdrawing effect of BTMA groups. Their ex-
perimental methods showed that aryl-ether groups degraded af-
ter only 2h of treatment in 0.5M NaOH at 80°C, while BTMA-
type poly(phenylene) membrane was much stable in some cases
(Fig. 4(b)).Based on these results, BTMA groups in aryl-ether back-
bones have been regarded as unstable for AEPs.

Hibbs [122] presented a series of poly(phenylene) (PP) AEMs
with five different cationic head-groups and evaluated their alka-
line stability in 4 M KOH at 90 °C. He found that BTMA-type PP ex-
hibited over 30% loss in ion conductivity, while side-chain-type PP
with six-carbon spacer showed only 5% ion conductivity loss. After
that, many side-chain-type AEPs have been developed. Park et al.
[27] also investigated the alkaline stability of side-chain-type PP
membranes under various stability testing conditions. They found
thatside-chain-type PP membranes exhibited a slight degradation
in 0.5M NaOH at 80 °C after 11,000 h.

Lee et al. [47] developed a series of side-chain-type
poly(terphenylene) (TPN) AEMs, and these membranes exhib-
ited excellent alkaline stability in 1M NaOH at 80 °C for 30 days.
Bae and coworkers [28] also presented a side-chain-type polyflu-
orene membrane that possessed an ion conductivity over 100
mS/cm and stable in 1M NaOH at 80 °C for 30 days (Fig. 4(c)).

Pivovar’s group [29] studied the degradation pathways of
tetraalkylammonium hydroxides and discussed their degrada-
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tion pathways by density functional theory (DFT) calculation.
Four degradation pathways (SN, substitution,Hofmann elimina-
tion, Stevens and Sommelet-Hauser rearrangements) can be found
in tetraalkylammonium hydroxides. The degradation pathways of
tetraalkylammonium hydroxides are summarized in Fig. 5. Nuflez
et al.[126] also studied on the alkaline stability of n-alkyl spacer
tetraalkylammonium cations in various AEMs and small molecule
analogues at 80°C and 120°C. They found that BA and benzyl
dimethylammonium analogues were more labile than an n-alkyl
interstitial spacer cation.

On the other hand, Pan et al.[127] presented a dual-ammonium
side-chain PSF (DQAPS) membrane to reduce the BA content in the
polymer backbone (Fig. 6(a)). They found that DQAPS membranes
possessed higher ion conductivity and alkaline stability than QAPS.
Hickner and co-workers [128] also prepared a series of multi-
cation side chain PPO membranes (Fig. 6(b)). They found that a
triple-ammonium based PPO (T25NC6NC5N) membrane simultane-

ously possessed higher ion conductivity, alkaline stability and di-
mensional stability compared to BA-type PPO. T25NC6NC5N dis-
played a high OH~ conductivity of 99 mS/cm at room temperature
along with 31% in-plane swelling. Overall, multi-cation side chain
AEMs cannot completely prevent the degradation of BA groups in
the polymer backbone, and more effective approaches are needed
to be developed.

Although alkyl spacers and multi-cation side chain strategies
have been revealed to have a positive effect on the comprehen-
sive properties of AEPs, the alkaline stability of the AEPs is still
a considerable challenge for AEMFC applications. In 2014, Kreuer
and co-workers [71] systematically investigated the alkaline stabil-
ity of 26 different QA groups in 6 M NaOH at 160 °C. The results
demonstrated that N-heterocyclic 6-azonia-spiro[5.5]undecanium
(ASU) and N,N-dimethyl piperidinium (DMP) exhibited higher al-
kaline stabilities among these QA groups. The half-lives of ASU
(110h) and DMP (87.3h) exceeded the TMA (61.9h) benchmark.
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Consequently, the appearance of ASU and DMP groups opened up
newly recognized QA research since there are fourf-hydrogens in
DMP andeight in ASU, as shown in Table 1. They pointed out that
the outstanding alkaline stability of ASU and DMP groups was at-
tributed to the geometry conformation of the ring that constrained
the transition state of SN, or E, reactions. On the other hand,
propyltrimethyl ammonium (PTM, 33.2h) and hexyltrimethylam-
monium (HTM, 31.9h) groups exhibited much higher alkaline sta-
bility than BA groups (1.38 to 16.6 h), and these results essentially
agreed with the previous reports.

However, the utilization of DMP and ASU in AEPs is not easy
to be realized due to the lack of effective grafting sites. Olsson
et al. [86] reported a series of PAP-based AEMSs via a super-acid
polycondensation, effectively incorporating DMP in aryl ether-free
polymer backbone, as shown in Fig. 7(a). Poly(terphenyl piperi-
dinium) (PTP) membranes were stable in2 M NaOH at 90°C for 15
d and exhibited a OH~ conductivity of 89 mS/cm at 80 °C. Subse-
quently, Peng et al.[129] also reported the same structure of PTP
membrane (QAPPT) that possessed the higher OH~ conductivity of
137 mS/cm at 80°C and were almost stable in 1M NaOH at 80°C
for 210 days, as shown in Fig. 7(b). QAPPT membrane (thickness:
3045 um)-based fuel cells reached a peak power density (PPD) of
1.5W/cm? at 80 °C under H,-0O, conditions. Recently, Wang et al.
[96] presented a series of PAP copolymers (PAP-TP-x) by intro-
ducing a 2,2,2-trifluoroacetophenone block to adjust IEC values, as
shown in Fig. 7(c). They pointed out that the inherent viscosity of
PAP-TP-X polymers was about 12 times higher than Olsson et al.’s
PTP (4.71 dL/g vs. 0.39 dL/g). These PAP-TP-x membranes (thick-
ness: 25um) showed a high OH~ conductivity of 193 mS/cm at
95°C, and were stable in 1M KOH at 100°C for 2000 h. PAP-TP-x
based fuel cells achieved a PPD of 0.92W/cm? with a Ag cathode
under Hjy-air conditions.

However, the production of these PAP-based AEMs highly rely
on an excess of trifloromethanesulfonic acid (TFSA) that is one of
the strongest acids known [pKa (TFSA): —14.6 vs. pKa(pure H,S04):
—11.93].

Compared to DMP-based AEPs, research work on ASU-based
AEPs is relatively less common in recent literature. Fig. 8 sum-
marizes current N-spirocyclic QA-based AEPs. Olsson et al.[83] re-
ported a series ofpoly(N,N-diallylazacycloalkane)s with different N-
spirocyclic QA groups. Poly(N,N-diallylpiperidinium) showed the

Table 1
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highest alkaline stability in 2M KOH at 120°C, while morpho-
line and azepane-based polyelectrolytes clearly degraded. Unfortu-
nately, these N-spirocyclic polyelectrolytes were dissolved in wa-
ter, which was detrimental to the application of AEPs. At the
same time, Jannasch and co-workers [130] reported a series ofN-
spirocyclic QA ionenes that were stable in 1M NaOH at 80°C
for 1800h. Similar to the poly(N,N-diallylazacycloalkane)s, these
spiroionene AEPs also faced water solubility issues.

Chen et al.[131] presented a side-chain-type ASU-PPO via anu-
cleophilic substitution. These ASU-PPO membranes exhibited anac-
ceptable OH~ conductivity of 92 mS/cm at 80°C and were stable in
1M NaOH at 80°C for 1500 h. Subsequently, Li et al.[132,133] also
reported a series of ASU and DMP-based polystyrene (PS) mem-
branes via a click reaction. PS-ASU membranes exhibited an 8% loss
in ion conductivity after alkaline treatment in 1M NaOH at 80°C
for 900 h. However, PPO-ASU and PPO-DMP membranes were un-
stable after alkaline treatment for 900 h.

Pham et al.[134] reported a series of poly(arylene alkylene)s
with pendant N-spirocyclic QA groups. The results demonstrated
that the ring directly attached to the biphenyl backbone degraded
significantly faster than the pendant ring in the spirocyclic cations.
ASU-based AEMs exhibited a maximum ion conductivity of 102
mS/cm at 80 °C. However, the alkaline stability of ASU-based mem-
branes was lower than that of DMP-based membranesin 2 M NaOH
for 720h at 90 °C. On the other hand, ASU-based AEMs are brittle
in these reports [131-134] due to the rigidity of the ASU ring, mak-
ing their applications difficult. Recently, Zhu et al.[135] presented
a physical crosslinking method to improve the film-forming prop-
erties of ASU-based AEMs. After crosslinking, the ion conductivity
and mechanical properties of ASU-based AEMs can be improved.

Recently, Pham et al.[136] presented four types of PTP mem-
branes with pendent DMP and ASU groups, as shown in Fig. 9.
They found that the alkaline stability of DMP-pendent PTP mem-
branes was higher than aforementioned PTP membranes. Besides,
DMP attached in different PTP backbones also exhibited large
difference in ion conductivity. Moreover, DMP-pendent PTP ex-
hibited higher ion conductivity and alkaline stability than ASU-
pendent PTP. Only 5% degradation of DMP groups was found in
DMP-pendent PTP after alkaline treatment in 2M NaOH at 90°C
for 2900 h. Notably, the alkaline stability of ASU and DMP-based
PAP membranes was inconsistent with Kreuer’s results [71] in

Summary of typical cationic groups with currently reported durability at different hydration number (A=number of water molecules per OH™).

Cationic groups Durability or Alkaline Cationic groups  Durability or half- Alkaline
(Abbreviation) half-life (¢, /) conditions (Abbreviation) life time (tq,,) conditions
Ammonium groups
(1) Stablefor 1 M NaOH (1) 6% deg 1 M KOH 80°C
2500 h [131 80°C (A=56 N,/ 720 h [61 A=56
@NMNH [131] (2=56) PN [61] (A=56)
(2) Stable for 5 M NaOH
P-ASU 2000 h[131] 80°C (\=11.2) TDTM (2) 11% deg 2 M KOH 80°C
720 h [61] (A=28)
(1) t1,=110h 6 M NaOH ®
[71] 160°C (A=9) Q/\'\ t1/,=16.6 h 6 M NaOH
2)ty,,=49.5h  A=4 atRT -0 71 160°C
CN<® > ) 1/2 a [71]
[182] MBTM 2=9)
ASU (3)t1,=0.9h A=0 at RT
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()

N
/N

DMP

=0

E-ASU

E-DMP

N\, /
AN~

PTM

N,/
/@ 4

HTM

[182]

t1/2:873 h
[71]

None
[132,133]

None
[132,133]

(1)t,,=61.9 h
[71]
(2)t;/,=2080 h
[154]

(3)t1/,>600 h
[154]

t1/2=371 h
[71]

t1/2:28.4 h
[71]

(1) 3% deg
720 h [61]

(2) 7% deg
720 h [61]

t1/2:332 h
[71]

t1/2=319 h
[71]

6 M NaOH
160°C (1=9)

None

None

6 M NaOH
160°C (A=9)

3 M NaOD/
D,0O/CD;0D at
80°C (A~=4.8)
A=1 at RT

6 M NaOH
160°C (A=9)

6 M NaOH
160°C (1=9)

1 M KOH
80°C (A=56)
2 M KOH

80°C (A=28)

6 M NaOH
160°C (A=9)

6 M NaOH
160°C (A=9)

I
MAABCO

N7
N
/@\/(")(‘\

OT™
g2
/

BDMP

e~
~

BAABCO

t1/2:135 h
[71]

t;,=7.26 h [71]

t1,=7.19 h [71]

(1)t;,=4.18 h
[71]

(2)t,/,>180 h

[154]

t,;=2.8 h [71]

(1)t;,=1.9h
[71]

(2)t;/,=1420 h
[154]

t;,=1.38 h [71]

6 M NaOH
160°C (3=9)

6 M NaOH
160°C (A=9)

6 M NaOH
160°C
(A=9)

6 M NaOH
160°C
(A=9)

6 M NaOH
160°C (A=9)

A=1 at RT

6 M NaOH
160°C
(A=9)

6 M NaOH
160°C (A=9)

3 M NaOD/
D-0/CD;OD at
80°C (L~4.8)

6 M NaOH
160°C (A=9)
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(continued)
\ / >
s t12=207h 6 M NaOH @/@N\:/ t12,=0.68h[71] 6 M NaOH
NTM [71] 160°C (A=9) 160°C (A=9)
BTEA
W/ / t1,=0.66 h [71] 6 M NaOH
/&’\k\"” t1,>1000h 1 M NaOH Q/BN\\ : 160°C (A=9)
HDMPA [150] 88°C (A=56) NO,
NBTM
Imidazolium groups
t,2>10000h 3 M NaOD/ Jo t1,=436 h 3M
:I %g [154] D;0/CD;0D at ©:~>_§i>’ [154] NaOD/D,0/
R 80°C (A~~4.8) \ CD;OD at 80°C
Bis-dRIm Mes-Blm (A=4.8)
O é@ (1) <1% deg 5MKOH at (1)15% deg 720 h 1 M KOH at
Q—%} 720 h [151] 80°C (2=11.2) )\@,L B [151] 80°C (A=56)
O j (2)t;,2,>10000 3 M NaOD/ Ly (2) 100% deg 720 5 M KOH at
h[154] D,0/CD;0D at IDMIm h[151] 80°C (\=11.2)
Mes-dBIm 80°C (A=4.8)
\g @J\ (1)28%deg720h 1 M KOH at
j[ff’—%} <1%degfor 5 M KOH at | ~~" NN [151] 80°C (A=56)
)) 720h[151]  80°C (\=11.2) BDMIm (2)100% deg 720 5 M KOH at
h[151] 80°C (A=11.2)
Mes-dIm
N,@ 3 M NaOD/ /\%J\N/ (1)32%deg 720 h 1 M KOH at
. ; t2=7790h  D,O/CD;0OD at \e=7 [151] 80°C (A=56)
' [154] 80°C (h~4.8) EDMIm  (2) 100%deg 720 5 M KOH at
Mes-Im h[151] 80°C (3=11.2)
®
"! NélN/ (1)65%deg720h 1 M KOH at
N‘ 3 M NaOD/ [151] 80°C (2=56)
t;2=3240h  D,O/CD;0OD at BDMIm (2)100% deg 720 5 M KOH at
TP-BIm [154] 80°C (A~4.8) hI51] 80°C (=11.2)
& ‘N A 3 M NaOD/ Jo
:EN\ @% t1/,=2330h Dz?/CDiOD at @:A?—@ t12<0.1h[154] 3 M
[154] 80°C (\~>4.8) NaOD/D,0/
Bis-Im BIm CD3OD at 80
°C
(A~4.8)
3 M NaOD/ Orn- (1) 100% deg 720 1 M KOH at
t12,=1370h  D,O/CD;0D at @ = h[151] 80°C (A=56)
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Table 1
(continued)
J@ [154] 80°C (L~4.8) BMIm (2) 100% deg 720 2 M KOH at
! ; h[151] 80°C (A=28)
\
TPIm
Phosphonium groups
(1) <1% deg 1MKOH 1 M KOD
Q F@ for 720 h [61]  80°C (A=56) neg 1w’ 80% deg 1000h  CD;OD/D,0O
N—' N H,CO- F® OCH;
- O % [159] (5:1 v/v) at
O (2) <1% deg 2MKOH 80°C (1=9.25)
[P(N(Me)Cy)s]*  for 720 h [61]  80°C (A=28) BTPP-(2,4,6-
MeO)
HiC 1 M KOD HyCO 1 M KOD
I‘?ﬁ?\ﬁ"@ 10% deg for CD;OD/ D,O (? 100% deg 170 h  CDsOD/D,O
2 ® &) H,CO p@ OCH;5
*‘JCQ—|’§3'CHJ 2000 h [159] (5:1 viv) at k@ [159] (5:1v/v)at
CH; Hj
oty 80°C (A=9.25) 20°C (1=9.25)
MTPP-(2,4,6-Me) BTPP-(p-MeO)
HiCQ 1 M KOD H;C 100% deg 20 h 1 M KOD
g N ot 73% deg for CD;OD/D,O . [159] CD;0D/D,0
#ieo ,|= ow, 1000 h [159]  (5:1 v/v) at b (5:1 v/v) at
O%Hs ¢ffsc0 80°C (A=9.25) 20°C (1=9.25)
MTPP-(2,4,6- BTPP-(p-Me)
MeO)
Sulfonium group
OCH,
CH,
NA NA
S
SN®
Organometallic-cation groups
CH, @COON«?
”;cc O 8.5%deg 1000 1M ¢ ~15% deg 1 M KOH/D,0
3 ® 3
s i; I N (] NaOD/D,0O Naooc@ after 48 h [69] 80°C (A=56)
Hjczrj\cyg 140°C (\=56)
CH;
tBu/@\tBu 8.2% deg after 5M
cd® 1025h[160]  KOH/CD;OH
‘“*@"B“ 80°C (\=11.2) NA [67] NA
HsC CH;
HaC’?\ CH:  19.5% deg for SM NA [70] NA
()
1025 h [160] KOH/CDs;OH

80°C (A=11.2)

10
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Table 1
(continued)
4?; wy 20.6% deg for 5M
cd® 1025h [160]  KOH/CD;OH NA
B, 80°C (A=11.2)
@1‘?7—0”3 (1)~10% deg 1 M KOH/D,O NA
co’ after 240 h 80°C (1=56)
H3C—@ [69] 5M
(2)37.8% deg  KOH/CD;OH
after 232 h 80°C (\=11.2)
[160]
ci ® ~15% deg for 1 M KOH/D,O
(]
<£ 240 h [69] 80°C (A=56)

(a)

® n

OH
PTPipQ1

OH
QAPPT 4

N.
/

N

n

N

OH~ conductivity: 89 mS/cm at 80°C,
intrinsic viscosity: 0.39 dL/g, water uptake: 139%.
No fuel cell data.

OH~ conductivity: 137 mS/cm at 80°C, intrinsic viscosity: not
given, water uptake: 52%, thickness: 305 um. Peak power
density: 1.5 W/ecm2 at H,-O,;

F, For AEMs, PAP-TP-85: OH- conductivity: ~168

c
O O O P O O O 70x MS/cm at 80°C, intrinsic viscosity: 4.71 dL/g,
Y _ O water uptake: 46%, thickness: 25 um. Peak
P O power density: 0.92 W/cm? at H,-air (CO, free).

(c)

PAP-TP-x

CF.
Ot~
ow O

PAP-BP-x

PAP-BP-70: OH~ conductivity: ~120 mS/cm at
80°C, water uptake: 56%

Fig. 7. (a) Olsson et al.’s PAP polymer along with basic physical performance [86]. Peng et al.’s PAP membrane with physical properties and fuel cell performance [129]. (c)

The performance of PAP-TP-x and PAP-BP-x membranes [96].

DMP and ASU monomers, suggesting that the alkaline stability
of AEPs is more complicated than small ammonium hydroxide
groups. A detailed comparison of the alkaline stability between
DMP and ASU groups with different substituents should be further
conducted.

2.1.2. Imidazolium-based AEPs

With regard to IM species, the investigation of IM-based AEMs
is still popular in current research. Lin et al. [137] prepared a se-
ries of cross-linked AEMs based on ionic liquids (ILs) in 2010. The
resulting cross-linked copolymer membranes exhibited a OH~ con-
ductivity of 55.8 mS/cm at 60°C. Guo et al.[138] reported a series
of IM-typed AEMs thatexhibited a OH~ conductivity of 48.4 mS/cm
at 60 °C. Subsequently, Thomas et al.[139] reported a poly(dialkyl
benzimidazolium) (PDMI) membrane based on meta-PBl. Actu-
ally, PBI-conducting membranes have been widely developed in
other fields [140-144], particularly in high temperature PEMFCs.
Henkensmeier et al.[145] also reported a meta-PBI-based AEMs, as
shown in Fig. 10(a). This meta-PBI membrane exhibited a OH~ con-
ductivity of 58 mS/cm at 60 °C, while the membrane quickly de-
graded under alkaline conditions. The expected degradation mech-

1

anisms of the PBI membrane were assumed to be nucleophilic
substitution and hydrolysis, which were triggered by hydroxide
attack at the methyl groups and at the C-2 position, respec-
tively. Later, Henkensmeier et al.[146] introduced an ether group
in the para-position of the 2-phenyl substituent to improve the
mesomeric stabilization of imidazolium cations (Fig. 10(b)). They
found O-PBI was more stable and flexible than meta-PBI under al-
kaline conditions. Unfortunately, the durability of these polyelec-
trolytes was still far away from applications due to the existence
of labile imidazolium rings. In 2012, Holdcroft et al.[147] indi-
cated that benzimidazolium salt can be stabilized by steric crowd-
ing around the labile benzimidazolium C-2 position (Fig. 10(c)).
They presented a stable poly[2,2’-(m-mesitylene)—5,5"-bis(N,N’-
dimethylbenzimidazolium)] (Mes-PDMBI) membrane by shielding
the C-2 position with a 2,4,6-trimethylphenyl group. The Mes-
PDMBI membrane was nearly stable in 2M KOH at 60 °C for 300 h.
However, the OH~ conductivity of the PDMBI (13.2 mS/cm at
21 °C) exhibited a decreasing trend with C-2 steric hindrance com-
pared to a meta-PBI membrane. The success in the steric-crowding
strategy to stabilize the C-2 position made PBI species attract
widespread attention in AEPs at that time.
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_ - OH- conductivity: OH~ conductivity:
OH" conductivity: 106 mS/cm at 80°C 116 mS/cm at 80°C

31.6 mS/cm at 20°C

Fig. 8. Summary of N-heterocyclic ammonium-based AEPs along with the comparison of OH~ conductivity [83,130-135].

O~
J OOO@

OH" OH"
N N
\ \
OH™ conductivity: 146 mS/cm at 80°C OH" conductivity: 103 mS/cm at 80°C
<5% degradation in 2 M NaOH at 90°C <5% degradation in 2 M NaOH at 90°C
after 720 h after 720 h. <
¢ <«
Q
<03
OH-
\

OH™ conductivity: 51 mS/cm at 80°C
10% degradation in 2 M NaOH at 90°C
after 720 h

OH™ conductivity: 107 mS/cm at 80°C
<5% degradation in 2 M NaOH at 90°C
after720 h

Fig. 9. DMP and ASU-pendent PTP membranes along withperformance comparison [136].

After that, Lin et al.[148] investigated the effect of C2- et al.[150] observed that the steric hindrance is the least effective
substituents on the alkaline stability of imidazolium salts and strategy to stabilize imidazolium cations. They proposed that the
AEMs, as shown in Fig. 11(a).Compared tothe C2-unsubstituted im- most important stabilizing factor for an imidazolium was the abil-
idazolium (EMIm), the alkaline stability of C2-substituted imida- ity to provide alternative and reversible deprotonation reactions
zolium salts was significantly enhanced at elevated temperatures with hydroxides. The following representsthe order of effectiveness
due to the steric hindrance of the substituents. The alkaline sta- of increasing alkaline stability of imidazolium cations: (1) com-
bility of C2-substituted imidazolium salts followed the order (ED- peting deprotonations, (2) electronic stabilization of the C-2 posi-

MIm) > (EIMIm)>(EMPhIm). Then, they [149] focused on the N-3 tion through resonance such as other aromatic substituents, and
position of imidazolium salts, and systematically investigated the (3) steric stabilization of the C-2 position.

effect of N3-substituents on the alkaline stability, as shown in To thoroughly understand the character of IM groups, Coates’
Fig. 11(b). They found that the isopropyl substituted imidazolium group [151] systematically evaluated the alkaline stability of IM
cation (DMIIm) showed the highest LUMO energy value and thus groups in 1, 2, or 5M KOH/CD3OH at 80°C, and they investigated
exhibited the highest alkaline stability in aqueous NaOH. Price the effect of C-2, N-1, N-3, C-4, and C-5 substituents on the al-

12
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Fig. 10. The structures and a comparison of conductivity and stability in PBI-based AEMs [145-147, 152-156].
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Fig. 11. (a) Alkaline stability comparison between C2-substituted imidazolium in 1M KOH at 80 °C [148]. (b) Alkaline stability comparison between N3-substituted imida-
zolium in 2M NaOH at 80 °C [149].
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Fig. 12. (a) The effect of different substituents on the alkaline stability of IM groups and (b) an alkaline stability comparison of IM groups in 1, 2, or 5M NaOH at 80 °C for
30 days. [151], Copyright 2015. Adopted with permission from American Chemical Society.

kaline stability of the IM groups, as shown in Fig. 12. They found
that the substituent identity at each position of the imidazolium
ring had a dramatic effect on the overall cation stability, including
C-4 and C-5 positions, which were previously unexplored. Subse-
quently, they noticed that 7a and 8a groups with substituted C-4
and C-5 were very stable in 5M KOH/CDsOH at 80°C for 30 days.

Nevertheless, the utilization of these large IM groups with steric
hindrance was still a challenge for researchers due to the com-
plicated and time-consuming synthesis process. Wright et al.[152]
prepared a poly[2,2~(2,2",4,4",6,6"-hexamethyl-p-terphenyl-3,3""-
diyl)—5,5’-bibenzimidazole] (HMT-PMBI) that exhibited enhancing
alkaline stability, as shown in Fig. 10(d). Then, Fan et al.[153]
described a step-growth polycondensation method to incorpo-
rate multi-substituted IM cations in AEPs (Fig. 10(e)). There-
sulting polyelectrolytes were stable in 10M KOH at 100°C for
168 h. Very recently, Fan et al.[154] renewed interest in these
PBI polymers, and presented a series of large-hindrance poly(bis-
arylimidazoliums) for AEPs (Fig. 10(h)). These AEMs exhibited ac-
ceptable ion conductivity and were stable in 10M NaOH at 80 °C
for 240h. They investigated the half-lives of different IM groups
in 3M NaOD/D,0/CD30D (hydration level: A=4.8), demonstrat-
ing that ethyl, propyl, or butyl-functionalized bis-arylimidazoliums
possessed long half-lives over 10,000 h.

Coates’ group [155] presented a series of macrocycle-
imidazolium AEMs based on polyethylene backbones by ring-
opening metathesis polymerization (ROMP), as shown in Fig. 10(f).
Using a bifunctional imidazole cross-linker, these AEMs exhibited
a OH~ conductivity of 59 mS/cm at 50°C but excellent alkaline
stability in 5M KOH at 80°C for 30 days. Subsequently, they
[156] further optimized these ROMP polyelectrolytes by the living
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polymerization of trans-cyclooctenes, as shown in Fig. 10(g). The
resulting random copolymers demonstrated a high OH~ conduc-
tivity of 134 mS/cm at 80°C and were stable in 2M KOH/CD3;0H
at 80°C for 30 days.

2.1.3. Outlook of QA and IM groups

With the development of AEPs, some of cationic groups exhib-
ited promising alkaline stability. Unfortunately, researchers have
not systematically compared the alkaline stability of QA and IM
groups under the same conditions. Therefore, based on TMA as
a benchmark, we summarize the half-life time of the promising
QA and IM groups at two different conditions as shown in Fig. 13.
Obviously, DMP and ASU groups exhibited an outstanding alkaline
stability in ammonium species (Fig. 13(a)). On the other hand, the
half-life time of some large hindrance IM groups can also exceed
TMA benchmark (Fig. 13(b)). However, the OH™ ion conductivity of
IM-based AEPs is relatively lower than QA-based AEPs.

2.2. Phosphonium and sulfonium-based AEPs

Compared to ammonium-based AEPs, there are relatively fewer
works on phosphonium-based AEPs up until now. As early as
1990, Bauer et al.[157] found that the QA groups possessed a
considerably higher thermal and chemical stability than quater-
nary phosphonium and tertiary sulfonium groups. However, sys-
tematic comparisons of the chemical stability of QA and phos-
phonium groups are still lacking to date. In 2009, Gu et al.
[63] reported a soluble tris(2,4,6-trimethoxyphenyl) quaternary
phosphonium-based polysulfone ionomer (TPQPOH), as shown in
Fig. 14(a). TPQPOH ionomers exhibited higher ion conductivity (27
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Fig. 14. (a), (b), and (c) the performance comparison of phosphonium-based AEPs and (d) sulfonium-based AEMs [63,64,66].

mS/cm at 20 °C) than a commercial FAA membrane (17 mS/cm at
20 °C, Fuma-Tech GmbH, Germany), A3Ver2 (2.6 mS/cm, Tokuyama
Corporation, Japan) and AS-4 (13 mS/cm, Tokuyama Corporation,
Japan) ionomers. Moreover, the TPQPOH membrane was stable
in 1M KOH for 30 days. ThenHan et al. [64] prepared a se-
ries of tetraphenylphosphonium functionalized polyphosphazene
(PPMPP) membranes (Fig. 14(b)) that exhibitedOH~ conductiv-
ities of 22.3 mS/cm at 80°C and 9.8% degradation after al-
kaline treatment in 1M KOH at 80°C for 240h. Hugar et al.
[65] introduced a new class of tetrakis(dialkylamino) phospho-
nium (P(NRy)4*) cations, and they prepared a P(N(Me)Cy)4*-based
polyethylene membrane (Fig. 14(c)). The P(N(Me)Cy),4*cation was
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stable in 1M NaOD/CD3;0D at 80°C for 20 days, and no signif-
icant loss of ion conductivity was found in P(N(Me)Cy),*-based
AEMs after exposure in 15M KOH at 20°C for 138 days or in
1M KOH at 80°C for 25 days. Compared to QA-functionalized
polyethylene AEMs [158] (69 mS/cm at 22 °C), these P(N(Me)Cy)4™*-
based AEMs exhibited lower ion conductivity (22 +1 mS/cm) and
[EC (0.67 mmol/g). After that, Zhang et al.[159] a ultra-stable
methyl tris(2,4,6-trimethylphenyl)phosphonium [MTPP-(2,4,6-Me)]
that exhibited only 20% degradation in 1M KOD/CD30D/D,0 at
80 °C for 5000 h. Unfortunately, MTPP-(2,4,6-Me) groups have not
been utilized in AEPs due to their complicated and low-efficiency
utilization process.
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Fig. 15. Summary of organometallic cation-based AEPs with performances comparison in current research [67-70, 160-166].

On the other hand,tertiary sulfonium-based PSF AEPs [66] have
been proposed, but exhibited a low ion conductivity of 15.4 mS/cm
and poor alkaline stability (Fig. 14(d)).

2.3. Organic metal cation-based AEPs

Tew et al. [67] proposed employing organometallic salts
as the cationic groups (Fig. 15(a)), and they presented
bis(terpyridine)ruthenium(Il)-based AEMs in 2011. Unfortunately,

these AEMs possessed very low ion conductivity (4.4 mS/cm at
30°C) and were unstable in 1M NaOH.

After that, Gu et al. [68]prepared apermethyl cobaltoce-
nium (Cp*,Co*)-based PSF (Cp*,Co™-PSf) membrane (Fig. 15(c)).
Cp*,Cotgroupswere found to be stable (8.5% degradation) in 1M
NaOD/D,0 at 140°C for 1000 h. The OH~ conductivity of Cp*,Co*-
PSf membranes reached 64 mS/cm at 80°C. Chen et al. [69]sys-
tematically investigated the effect of substitutions on the alka-
line stability of the cobaltocenium groups (Table 1). They found
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that 1,1’-dimethylcobaltocenium (DMCp,Co*) with an electron-
donating group could significantly improve the alkaline stability
of Cp,Co*, while 1,1’-dicarboxycobaltocenium (DCCp,Co*) with an
electron-withdrawing group dramatically decreased their alkaline
stability. They also prepared a series of cobaltocenium-containing
PBI membranes that exhibited ~20% degradation in 1M KOH at
60°C for 672 h (Fig. 15(d)).

Tang and co-workers [160,161]also reported a series of
cobaltocenium-containingpolyethylene membranes (H-AEMs5,-OH)
via ROMP reactions (Fig. 15(e) and 15(f)). These H-AEMs5y-OH
membranes exhibited an increase in ion conductivity (90 mS/cm at
90 °C) and were stable in 1M NaOH at 80°C for 30 days. Kwasny
et al. [70] prepared a series of crosslinked nickel cation-based
AEMs(Fig. 15(b)). However, similar to Ru?*-based AEMs, these
nickel-based AEMs exhibited very low ion conductivity (Cl-<2
mS/cm at 80 °C) and were very unstable under alkaline conditions.

Compared with these metal cation groups, cobaltocenium-based
AEPs possessed best alkaline stability and acceptable ion conduc-
tivity. However, most of the synthesis processes of these AEMs
were complicated, such as in the monomer synthesis of Tang and
Chen et al.’s work [69,160,161].

On the other hand, Zhuang and co-workers [162]|proposed the
use of K* or Nat-complexing Crown ether as the cationic groups
in 2009. Unlike traditional cationic groups, Crown ethers are ring
shaped heterocyclic compounds containing several ether groups.
They can strongly combine with certain metal cations to form
complexes. When metal atoms, such as sodium or potassium, pass
through the center of the ring, they can capture the specific metal
cations by the exposed oxygen atoms according to the cavity size
of the Crown ether [163], so that the metal cation-containing
Crown ether can transport OH~. For example,18-Crown-6 ether has
a high affinity for K*, 15-Crown-5 ether for Na*, and 12-Crown-
4 ether for Lit*, respectively. Zhu and co-workers [164] prepared
a series of cross-linked Na*—15-Crown-5 polyphosphazene mem-
branes. These Crown ether-based membranes were stable in 2M
NaOH for 1000 h along with ion conductivities over 75 mS/cm at
90 °C. Recently, Zheng et al. [165] and Yang et al.[166] also re-
ported on Crown ether-based AEMs. Unfortunately, the complex-
ation between metal cations and Crown ether was areversible re-
action. Therefore, K* or Nat-complexing Crown ethers were unsta-
ble in water or low basic concentrations due to the dissociation of
metal cations. Therefore, the metal cation-containing Crown ether
would be a great candidate for alkaline fuel cell applications when
one can find an ideal solution to maintain the basic concentration
during fuel cell operation.

2.4. Highly stable polymer backbones

Previously, industrially available poly(aromatic ether)s, such as
PEEK, PSF, and PPO [73-78], have been widely developed for
AEPs due to their low cost, easy modification, and good me-
chanical properties. Most of these polymers can be directlyob-
tained from industry, which is beneficial for realizing thenear-term
commercialization of AEPs. Generally, the popular way to prepare
these poly(aromatic ether)-based AEPs is the chloromethylation of
phenyl groups or the radical halogenation of benzyl groups in the
aryl-ether polymer backbone along with quaternarization. How-
ever, aryl ether cleavage reactions in aryl ether polymers were first
identified under alkaline conditions by Fujimoto et al. [22] and
Arges et al. [26].

In 2017, Bae and co-workers [123] investigated the chemi-
cal stability of different polymers. They found that withdrawing
groups (such as carbonyl groups and sulfuryl groups) in the poly-
mer backbones could decrease the chemical stability of the poly-
mer backbone, and aryl ether-free polymers such as SEBS and
poly(biphenyl alkylene)s exhibited much higher chemical stabil-
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ity than that of the aryl-ether polymers. This work highlighted
the importance of chemical stability of the polymer backbone.
Many polymerization methods have been employed to prepare aryl
ether-free polymers.

2.4.1. Polyolefins and fluoropolymers by radiation-grafting

Although BTMA-type AEPs have been previously demonstrated
to be unstable under alkaline conditions, while the BTMA-type
AEPs have currently received many attentions due to the emer-
gence of radiation-grafting AEPs. Typically, in 2014, Varcoe and
coworkers [167,168] reported the use of a BTMA-functionalized
ethylene-tetrafluoroethylene (BTMA-ETFE) as AEls by radiation
grafting, and the BTMA-ETFE ionomer displayed a remarkable
fuel cell performance. Subsequently, Wang et al.[33,169] devel-
oped a BTMA-functionalized low-density polyethylene (BTMA-
LDPE) membrane (40+5um) for AEMs. Combining with BTMA-
EFTE ionomer, BTMA- LDPE membrane-based fuel cells exhib-
ited distinguished PPD over 2W/cm2 at 80°C. Moreover, they
found thatswitching from LDPE to high-density polyethylene
(HDPE) could lead to remarkably enhanced fuel cell perfor-
mance (Fig. 16(a)). The PPD of H,-O, AEMFCs has been ad-
vanced to 2.55W/cm? with BTMA-HDPE membrane and BTMA-
ETFE ionomers. Both of BTMA-LDPE and BTMA-HDPE membranes
exhibited high OH~ conductivity up to 200 mS/cm at 80 °C along
with excellent mechanical properties. The key to the success of
these BTMA-type AEPs is that these membranes are modified from
commercial preforming HDPE (10 xm) and LDPE (15 wm) films that
endow them excellent performance. Although the chemical struc-
ture of BTMA-LDPE and BTMA-HDPE membranes is very similar,
the in-situ durability is totally different. HDPE-based cells oper-
ated stably at 0.6 A/cm? current density for 440h at 70 °C along
with stable area specific resistance (ASR), while LDPE-based cells
displayed a rapid degradation at initial 100 h with an increase in
ASR (38 to 52 mS cm?). The improved in-situ durability has been
hypothesized to be due to enhanced water transport characteris-
tics, caused by the change in the nanomorphology/microstructure
of the precursor HDPE film. On the other hand, the alkaline stabil-
ity issues associated with BTMA-ETFE ionomer still have not been
well addressed. BTMA-ETFE membrane became brittle and showed
severe breakage after being soaked in aqueous NaOH at 80 °C for
28 days accompanied by a color change from light to dark yellow
[33].

2.4.2. Polynorbornene by ring-opening metathesis polymerization

Clark et al.[170] proposed a ROMP method to fabricate aryl
ether-free polymers by constructing alkyl-alkyl bonds in 2009.
They reported a series of QA-based polynorbornene (PNB) mem-
branes via a facile ROMP reaction. These membranes exhibited
a high OH~ conductivity of 111 mS/cm at 50°C and acceptable
mechanical properties. Recently, PNB-based AEMs have attracted
wide attentions due to their incredible power density, as shown
in Fig. 16(b). Kohl and co-workers [15,38] have reported a series
of side-chain-type PNB copolymers for AEMs by ROMP. The OH~
conductivity of these PNB membranes reached to 198 mS/cm? at
80 °C. Subsequently, Huang et al. [97] prepared a series of compos-
ite PNB membranes with a PTFE reinforcement (GT64). The PPD of
H,-0, AEMFCs was dramatically improved to 3.37 W/cm? at 80 °C
along with a 545h in-situ durability under 0.6 A/cm? at 80°C.
They pointed out that high power density was associated with
lower water uptake and high mechanical properties. Meanwhile,
they [9] reduced the thickness of PTFE-reinforced PNB membranes
to 10 um, and the PPD further increased to 3.5W/cm? under 9.7
A/cm? current density, along with a lowestASR of 29 m cm? to
date.



N. Chen and Y.M. Lee

(a) Radiation-grafted AEPs

H\l/l\kr”\l*

ETFE

VBC
Radiation grafting

HDPE or LDPE

(b) PNB AEPs by ROMP reaction

R

(rP-ally)Pd(PrsP)CI ~"er

ILI[FABA]
toluene, rt

toluene

A knmelhylamme aq

o

Progress in Polymer Science 113 (2021) 101345

(o]
m
or m
o,
-N< )
ar cr =

Jp

Q:\l/ Im IQJZ\/
N\.

/\/NO 9
Br

the monomers

\Sequential addition of both ——

2 NaOH aq.
N— ,24h
\

et A\}p

OH

(c) D-A polymerization

Q

(1) KOH
EtOH/HZ0

®
e
and

0 0 :—<>—:
o o & )

TR

(2) Polymenzatlon 7(@

o
O@@

\ @O,
\2%H r‘q OH
n m o p

Ph,0 180 °C
—_—
(3) Bromination

(4) Quaternization

(5) lon exchange

Fig. 16. The general synthesis routines of (a) radiation-grafting AEPs, (b) PNB-based AEPs, (c) D-A polyphenylenes [15,38,97,122,167-169, 171].

2.4.3. Polyphenylene Diels-Alder polymerization

Diels-Alder (D-A) polymerizationhas been employed to con-
struct aryl-aryl polymers. Hibbs et al.[122,171]. presented a BTMA-
poly(phenylene) membrane (BTMA-PP) for AEMs by D-A polymer-
ization, as shown in Fig. 16(c).They indicated that the D-A poly-
merization is conducted by heating equimolar amounts of the
bis(cyclopentadienone)s and 1,4-diethynylbenzene with the loss of
one carbon monoxide molecule for each D-A reaction accompa-
nying with the formation of a highly stable aromatic ring that
makes the polymerization irreversible. Subsequently, aforemen-
tioned side-chain-type PP membranes have been widely developed
[27,47,172] and exhibited excellent alkaline stability. Kim and co-
workers [13] highlighted the advantages of D-A polymerization in-
cluding (i) metal-free conditions to avoid potential contamination
of metals of the resulting materials, (ii) irreversible high molec-
ular weight growth, and (iii) good solubility and thus good pro-
cessability of the resulting polymer for sequential quaternization.
However, the synthesis of these D-A polyphenylenes is complicated
and requires multiple reactions (6 steps) to fabricate hydroxide-
conducting polymers.

2.4.4. Polyfluorenes by metal-catalyzed coupling reactions
Metal-catalyzed coupling reactions have been also widely used
for constructing aryl-aryl polymers [173] (Fig. 17(a)). Recently,
Yamaguchi and co-workers[174] prepared a series of BTMA-
spirobifluorene ionomers for AEMFCs and water electrolysis by
Suzuki-Miyaura coupling reaction. They indicated that typical
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PPoften suffered from low solubility and processability because of
the strong ;-7 stacking interactions of the polymer backbone, and
that spirobifluorene polymers could improve the solubility and me-
chanical properties of AEMs due to the twisted polymer backbone-
and increased chain entanglement. These membranes exhibited a
OH~ conductivity of 86.2 mS/cm at 70°C, and were stable in 1M
NaOH at 80°C for one week and in Fenton’s solution (3 wt% H,0,
and 3 ppm FeSO,4) at 80°C for 8 h.

Nickel-catalyzed coupling reactions have been recognized as a
versatile and efficient methods to synthesize polyphenylene poly-
mers. Typically, Miyatake and co-workers [175,176] reported a se-
ries of PF-containing polyaromatics (QPAF-Cx, where x =2-6) using
a nickel-catalyzed coupling reaction. They found that QPAF-C3 ex-
hibited an optimum OH~ conductivity of 99 mS/cm at 80°C and
was stable 1 M KOH at 80 °C for 1000 h.

Compared with two metal-catalyzed coupling reactions, the
Suzuki-Miyaura coupling reaction is performed via two steps by
employing aromatic boronic acids/boronate esters and aromatic
bromide compounds in the presence of a palladium-complex,
while the nickel-catalyzed coupling reaction is carried out in one
step using aromatic chloride compounds. It seems the nickel-
catalyzed coupling reaction is easier and more effective for cou-
pling reactions than the Suzuki-Miyaura coupling reaction due to
low temperature and short time. However, polymer prepared by
nickel coupling reaction [175] showed a higher polydispersity in-
dex (10.2-17.4) than Suzuki coupling (2.1 to 3.3).
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2.4.5. Polyaromatics by acid-catalyzed polycondensation

Super acid-catalyzed polycondensation is another class of re-
actions to build aryl-alkyl polymers, and this reaction is primar-
ily based on aromatic compounds and specific ketones, as shown
in Fig. 17(b). Acid-catalyzed polycondensation provides several ad-
vantages such as oxygeninsensitivity, high molecular weight, metal
free reaction, and extensive species options. Typically, aforemen-
tioned PAPs and some of side-chain-type polyphenylenes were pro-
duced by this method. [86,96,128,134,136,177].

2.4.6. SEBS and Troger’s base polymers

SEBS-based AEPs have attracted attentions due to their aryl
ether-free backbone (Fig. 18(a)) since the SEBS is commercially
available. Gao et al. [59] prepared a BTMA-type SEBS (QASEBS) that
exhibited a OH~ conductivity of 100 mS/cm at 80°C and was sta-
ble in 1M KOH at 60°C for 1700 h. Subsequently, Mohanty et al.
[60] also prepared a series of BA-type SEBS membranes. They in-
dicated that BTMA-type SEBS membrane exhibited the higher ion
conductivity (over 100 mS/cm at 60°C) and water uptake than
other large volume BA-type SEBS. Jeon et al. [62] developed a
series of side-chain-type and crosslinked SEBS (SEBS-Cn-TMA-x)
membranes that displayed acceptable OH~ conductivities at 80°C
(50 to 92 mS/cm) and exhibited a PPD of 520 mW/cm? at 60 °C.

Similar to PBI polymers, Troger's base (TB) polymers with
inflexible bridged bicyclic units attracted attention when Carta
et al.[178] rediscovered TB chemistry and first reported on TB poly-
mer membranes for gas separation byacid-catalyzedpolymerization
via diamine monomers. Later, Yang et al.[179] proposed TB poly-
mers for AEM applications in 2016, as shown in Fig. 18(c). These
TB membranes possessed a OH~ conductivity of 164.4 mS/cm at
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) acid-catalyzed condensation [86,96,128,134,136,177].

low IEC of 0.82 mmol/g. They indicated that the high ion conduc-
tivity of TB polymers was attributed to their intrinsic microporos-
ity. Unfortunately, gas permeable TB membranes could cause gas
crossover issues in AEMFCs. Therefore, TB-based AEPs could be a
good candidate for AEIs because of their high gas permeability and
ion conductivity. Hu et al.[180] also prepared a series of multi-
cation crosslinked TB membranes to improve the film-forming abil-
ity and mechanical properties.

2.5. Outlook for highly stable AEPs

Recently, Pivovar and co-workers [12] have developed a stan-
dard method to evaluate the performance AEPs, and measured the
Cl~ conductivity, water uptake, IEC and alkaline stability (in 1M
NaOH at 80°C for 1000 h) of different type AEMs. The results in-
dicated that polyphenylene-type AEMs and some of BTMA-type
AEMs displayed an outstanding alkaline stability (ex-situ durability)
and a relatively higher conductivity. Fig. 19 summarizes the ex-situ
durability, OH™ conductivity, and water uptake of different types of
AEPs reported so far. However, ex-situ and in-situ durability have
been demonstrated to be mismatching. For instance, Li et al.[181]
compared the ex-situ and in-situ alkaline stability of different types
of PPO membranes. They found that BTMA- PPO with poor alkaline
stability showed acceptable in situ durability under 0.1 A/cm? cur-
rent density, while side-chain-type PPO exhibited significant volt-
age loss. Dekel et al.[46,182] investigated the alkaline stability of
different cationic groups at low A values by storing the cationic
groups in a K*/Crown/DMSO solution. They indicated that the ba-
sicity of AEMFCs could be very high in the cathode site, especially
in high current density. Their results showed that BTMA groups
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presented acceptable alkaline stability in low A conditions at room
temperature, while ASU and large steric hindrance IM groups ex-
hibited rapid degradation when A was lower than 4. However, the
relationship between A values and current density still has not
been revealed by experiments.

3. Strategies to enhance properties of AEPs: importance of
morphology and stability

Apart from durability, AEMs must simultaneously possess high
OH~ conductivity with qualified mechanical properties and dimen-
sional stability for AEMFCs. In addition, developing a thin AEM
(~30um) is indeed crucial for AEMFCs to realize high power den-
sity. Thin AEMs can endow corresponding MEAs with many mer-
its. For instance, thin AEMs possess a lower mass transfer resis-
tance and are preferable for water back diffusion. However, there
is still an underlying challenge between thin membrane and me-
chanical properties or gas permeability. When the membrane is
thin, the mechanical properties and gas tightness of the membrane
may dramatically decrease. Moreover, some interesting phenomena
also have been found in current research, such as thin membranes
exhibit a worse durability than thick membranes, and crosslinked
membranes always possess higher alkaline stability than pristine
membranes [184]. As a result, membrane reinforcing technology
and strategies should be developed to address these issues.

3.1. Microphase separation

Improving the microphase separation of AEPs has been previ-
ously considered as a feasible way to boost the physical proper-
ties of the AEPs. Typically, Zhuangand co-workers [14] proposed
to construct ionic highways in AEPs based on QAPS by optimiz-
ing the microphase morphology of the AEPs in 2014. They found
that QAPS membranes with enhanced hydrophilic/hydrophobic mi-
crophase separation could both effectively promote ion conductiv-
ity and improve the chemical stability of the QAPS due to the for-
mation of ionic channels that reduce the ion-transport distance
in the AEPs. After this report, a mass of aryl ether AEPs have
been designed to improve their microphase separation, including
cation remotely-grafted AEPs, ionic-cluster AEPs, and multi-cation
side chain AEPs (Fig. 20(a)).

3.1.1. Cation remotely-grafted AEPs

Cation remotely-grafted AEPs have been well discussed
in aforementioned side-chain-type AEPs. All of results
[9,105,124,125,173,175,185] revealed that side-chain-type AEMs
exhibited higher ion conductivity and alkaline stability than pris-
tine BTMA-type AEPs due to the absence of BTMA groups and the
improvement of microphase separation. Moreover, the number of
alkyl spacers also show significant effect on AEPs performance,
and five or six alkyl spacers have been demonstrated to be optimal
design for side-chain-type AEPs.

3.1.2. lonic-cluster AEPs

On the other hand, increasing the aggregation of ionic groups
is another way to construct the ion channels in AEPs. As early
as 2011, Watanabe and co-workers [186] reported a series of
multiblock poly(arylene ether)s membranes (QPE) and investigated
the microphase separation and ion-transporting channels in these
AEPs. These membranes exhibited much higher OH™conductivities
of 144 mS/cm at 80°C. Similarly, Lai et al.[187] and He et al.[188]
prepared a series of ion cluster-type polyaromatics to increase the
cation density, and intended to improve the microphase separa-
tion of these AEPs. However, although these ion-clustered AEMs
contributed to constructing ion channels and improving the ion
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conductivity, the substitution of BTMA groups and the electron-
withdrawing effect in local aryl ether bonds were dramatically in-
creased, resulting in the detrimental effect in alkaline stability.

3.1.3. Multi-cation side chain AEPs

Multi-cation side chain AEMs have been widely developed
in aryl ether polymers, which is another way to improve the
microphase separation of AEMs and reduce the BTMA con-
tents [127,128,189,190]. The merits of these AEMs are that well-
organized QA groups in the side chain could effectively adjust the
physical properties of AEPs. For instance, compared to BTMA-type
AEPs, multi-cation side chain AEPs showed lower water uptake and
swelling ratio, but higher ion conductivity in same IEC values, in-
dicating that multi-cation side chain AEPs possessed higher ion-
conducting efficient.

3.1.4. Covalent assembly AEPs

Very recently,Kim et al. [37] developed a series of covalent as-
sembly AEMs and proposed a new concept in ion transport, as
shown in Fig. 20(a). These AEMs, containing charge-delocalized
pyrazolium cations and homoconjugated triptycenes, exhibited a
high conductivity of 111.6 mS/cm at 80°C with low water uptake
(7.9%) and IEC (0.91 mmol/g). They indicated the covalent assembly
of repeating ionic segments served as ionic highways that could
result in higher conductivity by lowering the activation barriers
for ion transport. Importantly, H,-O, AEMFCs based on covalent
assembly AEMs reached a PPD of 0.73W/cm? at 80°C and also
achieved a 400h in-situ durability under 0.4 A/cm? current den-
sity.

3.2. Crosslinking

3.2.1. Conventional crosslinked membranes

The crosslinking method has been regarded as a simple and ef-
fective way to enhance the dimensional stability of AEMs. In par-
ticular, when AEMs were fabricated into very thin films, the AEMs
require high mechanical stability. Since a majority of AEMs were
based on halogenated or aminated polymers, the simplest way to
prepare a crosslinked membrane was by directly reacting it with
diamine or dibromo cross-linkers, such as 1,6-hexanediamine and
1,5-dibromopetane [191]. However, ordinary crosslinked AEMs pre-
pared by hydrophobic crosslinkers possess a lower swelling ratio,
higher tensile strength, but restricted ion conductivity compared
with pristine membranes due to the reticular crosslinked structure.

3.2.2. Multi-cation crosslinked membranes

Enlightened by the multi-cation side chain strategy, researchers
developed a series of multi-cation crosslinked membranes for fur-
ther optimizing the properties of AEMs. Chen et al. [184] pre-
pared a series of multi-cation crosslinked poly(arylene piperi-
dinium) membranes with5 alkyl spacers. They found that the OH~
conductivity (155 mS/cm at 80°C) and dimensional stability of
these crosslinked membranes were superior to pristine PAP mem-
branes (102 mS/cm at 80 °C). Moreover, the alkaline stability of
these crosslinked membranes also exhibited a slight improvement
in 2M NaOH at 80°C.

3.2.3. Thiol-ene crosslinked membranes

UV-initiated thiol-ene click chemistry has been considered as a
facile and effective method to obtain robust membranes due to the
availability of metal catalysts and the solution-free casting method.
Hickner and co-workers [192] have reported a series of crosslinked
comb-shaped PPO membranes via thiol-ene click chemistry. They
indicated that the thiol-ene crosslinking method improved the di-
mensional stability and alkaline stability. The crosslinked mem-
branes retained a higher ion conductivity and alkaline stability in
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Fig. 20. (a) Covalent assembly AEMs along with in-situ durability. [37],Copyright 2020. Adopted with permission from American Chemical Society. (b) End-group crosslinked
AEMs along with in-situ durability testing at 0.2 A/cm? at 60 °C. [193],Copyright 2017. Adopted with permission from Royal Society of Chemistry.

both 1M and 4M NaOH at 80°C after 500 h than those of BTMA-
PPO membrane.

3.2.4. End-group crosslinked membranes

Lee’s group [193] prepared a series of end-group crosslinked
PSF membranes by introducing a benzyne group at the end of
the PSF polymer chain (Fig. 20(b)). The ion conductivity (107
mS/cm at 80 °C) and dimensional stability of these PSF membranes
have been improved after end-group crosslinking. Importantly, af-
ter end-group crosslinking, in-situ durability of Hy-O, AEMFCs has
been significantly improved, and the cells were operated under 0.2
Alcm? at 60 °C for 800h.

3.3. Organic-inorganic composite strategy

Similar to the crosslinking method, the organic-inorganic com-
posite strategy has also been regarded as an efficient and simple
way to improve the comprehensive performance of AEMs. Many in-
organic materials such as SiO, [194], TiO, [195], ZrO, [196], Al;03
[197], montmorillonite [198], nanotubes [199], and layered double
hydroxide (LDH) [200] have been employed as fillers for AEMs.

3.3.1. Traditional composite membranes

The simplest way to prepare a composite membrane is to di-
rectly dope inorganic materials into the polymer solution. Li et al.
[196], Wu et al. [194], and Chen et al.[201] prepared a series of
aryl ether composite membranes for AEMs (Fig. 21(a)). Basically,
these results showed similar phenomenon that composite AEMs
possessed higher mechanical properties and ion conductivity than
pristine AEMs. However, most of inorganic materials were not able
to transport OH~ ions, and most composite AEMs employed a
direct-doping method, resulting in a limited ion conductivity and
a poor dispersion of inorganic materials.

3.3.2. New types of composite membranes
(a) Porous-sandwich structure composite membranes. To address
the dispersion and utilization issues of inorganic materi-
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als, Chen et al.[202] designed a series of LDH/PPO compos-
ite membranes with a porous sandwich structure by spray-
ing QA-functionalized LDH (QA-LDH) on the surface of triple-
ammonium side chain PPO membranes, as shown in Fig. 21(b).
They found that porous QA-LDH layers had a high ion conduc-
tivity of 122 mS/cm at 80°C, which could effectively improve
comprehensive performance of PPO membranes.

Aligned composite membranes:Fan et al.[203]| designed a se-
ries of electric-field oriented LDH/polyphosphazene compos-
ite membranes, as shown in Fig. 21(c). They found that
LDH nanoplatelets possessed ion-transporting capability in
LDH interlayers, and orientated LDH nanoplatelets could
take full advantage of the bulk conductivity of the LDH
nanoplatelets. Interestingly, the ion conductivity of aligned
LDH/polyphosphazene composite membranes showed a 39%
improvement compared to normal LDH/polyphosphazene com-
posite membranes.

—
g

However, the electrorheological effect of LDH nanoplatelets was
still weak under an applied electric field due to the inadequate
ionic groups on the LDH. Chen et al.[204] presented a series
of magnetic field-orientedferroferric oxide (Fe304)/PPO composite
membranes (Fig. 21(d)). Based on the surface modification tech-
nology, spherical Fe;04 was modified with QA groups, giving QA-
Fe;04 composites good ion-transporting capability. After magnetic-
field orientation, magnetic QA-Fe;04 nanoparticles were consecu-
tively aligned in PPO membrane and constructed magnetic-field-
induced ion channels (MICs). Alignedcomposite membranes dis-
played a further 55% increase in ion conductivity compared to nor-
mal composite membranes.

3.4. Outlook for performance-enhancing strategies

Many strategies have been introduced to enhance the compre-
hensive performance of AEPs and to tackle the adverse trade-offs
in their properties. Microphase separation of AEPs contributes to
improving the ion-conducting efficiency and adjusting dimensional
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(b) Porous-sandwich structure composite membrane

Surface
e modification ‘ g
e

LDH QA-LDH 7
sirieture, A

fonomer
ultrasound f‘
w\

Electrostatic
spraying

e e e

cupe s
HCod-Cly

QA-LDH/TC-QAPPO

Porous QA-LDH
layer

HCn-Cly

TC-QAPPO

e,
-t

(d) Magnetic-field-oriented AEM

@ ™ Magnetic-field < .
90y G,G. R i 4 i g : i
<Coil.e g | s
R T I
——t —

Unordered QA-Fe,0, in TA-PPO Successive and effect QA-Fe,0, ion channels

Fig. 21. (a) Directly-doping composite AEMs. [201], Copyright 2017. Adopted with permission from Elsevier Science Ltd. (b) Porous-sandwich structure composite AEMs.
[202], Copyright 2018. Adopted with permission from Elsevier Science Ltd. (c) Electric-field-oriented composite AEMs. [203], Copyright 2014. Adopted with permission from
Royal Society of Chemistry. (d) Magnetic-field-oriented composite AEMs. [204], Copyright 2019. Adopted with permission from Royal Society of Chemistry.

stability, while crosslinking and inorganic-organic composite meth-
ods are mainly employed to enhance the mechanical properties.
The majority of the reported AEMs with microphase separation
to date are aryl ether polymers or multiblock copolymers. How-
ever, many aryl ether-free AEPs, such as PAP and BTMA-HDPE ho-
mopolymers, possessed poor microphase separation, but exhibited
excellent fuel cell performance. That is, there has been no clear
evidence that microphase separation of AEMs is beneficial for the
power density and in-situ durability of AEMFCs to date.

On the other hand, many crosslinked AEMs cannot be re-
dissolved, thus the AEMs are usually prepared during mem-
brane casting process. Therefore, the thickness of crosslinked AEMs
could be increased after adding crosslinkers, such as multi-cation
crosslinked AEMs and end-group crosslinked AEMs. In this case,
the thickness of crosslinked AEMs should be taken into account
when used for AEMFCs. As composite AEMs, they have not at-
tracted research interest so far due to limited fuel cell perfor-
mance.Nevertheless, PTFE-reinforced composite AEMs recently re-
ceived many attentions due to the success of PTFE-reinforced PNB
membranes in fuel cell performance [9,97].

There has been another underlying methods to enhance the
fuel cell performance of AEMs. In 2016, nanocrack-regulated self-
humidifying PEMs [3] have proved to be effective to improve the
power density and in-situ stability of PEMFCs, especially at high
temperature and low RH condition. Our recent research demon-
strated that the nanocrack-regulated AEMs contributed to en-
hancing the in-situ durability and water retention, particularly in
high temperature and low humidity condition, and the details of
nanocrack-regulated AEMs will be presented in our future research.
Recently, Guiver’s group [4,5] presented a series of magnetic-
field-oriented PEMs that exhibited higher power density and in-
situ durability than Nafion® 212 membranes. This magnetic-field-
oriented strategy is expected to be promising for AEMs.

4. Recent progress in ionomers

So far, most of researches on AEPs are based on AEM applica-
tions. Obviously, AEMs are indeed the most important materials for
AEMFCs. Without a qualified membrane, AEMFCs are impossible to
reach the same level as PEMFCs. However, ionomer research is still
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lacking to date and only a few studies have specifically researched
on AEIs, despite that ionomers have already been considered as a
crucial material in AEMFCs.

4.1. Importance of ionomer research

4.1.1. Ionomer effects and water transport behavior

TPBs are the important reaction sites for hydrogen oxidation
and oxygen reduction in catalyst layers. Here, AEIs act as a binder
to mechanically anchor the catalyst particles in the electrode, and
to conduct OH~ ions between catalysts and AEMs. Therefore, AEI is
a key material to construct effective TPBs. In this case, AEI requires
high ion conductivity along with qualified bindingcapability that is
truly related with their chemistry and molecular weight.

Basically, the electrode was fabricated by coating an ionomer-
containing catalyst ink solution (so called catalyst slurry) onto AEM
or a gas diffusion layer (GDL). The key point related to the con-
struction of effective TPBs is that the catalyst slurry should have a
good dispersion and fast solidification during coating. Hence, a sol-
vent selected to dissolve ionomers should possess a high dielectric
constant and low boiling point at the same time [23]. Typically,
isopropanol/deionized water (IPA/DI water) has been well docu-
mented to be a good solvent system for catalyst slurries. Gener-
ally, AEI requires good solubility in IPA/DI water, while BTMA-ETFE
is a special case. BTMA-ETFE with poor solubility can be directly
used as AEI after grinding the polymer powder to a small size. Al-
though this grinding method has not been widely applied in other
AEls, this method provides a feasible way for those AEIs with poor
solubility.

Compared to PEMFCs, AEMFCs face more complicated water
management issues. In PEMFCs, water is only generated at the
cathode as a product and not electrochemically consumed.Water is
moved to the cathode from the anode by electro-osmotic drag as
H* is produced by HOR. Thus, removing water from the cathode
is the primary concern in the PEMFC to avoid catastrophic elec-
trode flooding. In AEMFCs, two water molecules are consumed in
the cathode while four water molecules are generated in the an-
ode, and therefore the speed of water generation is two time faster
than the water consumption. That is, the water management be-
tween the anode and cathode is important in AEMFCs since the
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Table 2
Comparison of performance requirements between AEMs and AEIs.
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Properties AEMs

AEls

Ion conductivity (o)
Ex-situ/in-situ stability
Water behavior

High IEC and high o
Highly stable

Suitable water uptake with low free water

Suitable IEC and high o
Highly stable
High water permeability

to control dimensional stability

Swelling ratio (SR) Low SR
Mechanical properties

Gas permeability

Anchoring capability

Solubility

Phenyl or ammonium adsorption effect

Low gas permeability
No limitation
No limitation
No limitation

Good mechanical properties

Low-intermediate SR

No limitation

Good gas permeability

Good anchoring capability

Good solubility or good dispersion

Minimal phenyl and ammonium adsorption effects

ion conduction is actually based on water transport. Omasta et al.
[10] indicated the importance of water balancing in the anode and
the cathode based on BTMA-ETFE ionomers, and the moderate RH
responded positively to address the anode flooding issues. Impor-
tantly, the high rate of water back diffusion from the anode to-
ward cathode can naturally prevent from the anode flooding and
the cathode dry-out issues.

Currently, the water transport behavior in AEMFCs can be re-
ferred to as water flux, water diffusion, or water diffusivity, all of
these can be described as water permeability. Recently, Eriksson
et al. [35] investigated the water transport behavior in liquid wa-
ter and water vapor based on commercial Tokuyama A201 mem-
brane. They demonstrated that the water fluxes of liquid water
were approximately three times larger than those of water vapor.
Besides, water fluxes increased with current density in both an-
ode and cathode, while water in the anode increased quickly in
high current density compared to the cathode. Based on modeling
of commercial A201 membrane, they calculated the mass transport
coefficients for vaporous water (K), liquid water (Kaq), and the os-
motic drag coefficient (g). They indicated that n can be used to de-
termine the speed of water back diffusion, and when the y is lower
than -0.5, it is good for water back diffusion. Therefore, insuffi-
cient water vapor permeability of AEIs could be an underlying is-
sue for AEMFCs operating in low RH. The water has different states
in AEPs, such as free water (bulk water) and bound water that can
be detected by differential scanning calorimetry (DSC). The suit-
able contents of free water and bound water have considered to
be beneficial for fuel cell performance [9].

On the other hand, water transport not only relates with the
ion conductivity, but also affects the alkaline stability of AEIs and
AEMs. Very recently, Dekel et al. [36] indicated that water diffusiv-
ity in AEMs has a strong impact on cell durability as well.Superior
water diffusivity, which is imperative for increasing water trans-
port from the anode towards the cathode, provides improved levels
of hydration.

4.1.2. Difference between AEls and AEMs

Nowadays, many researchers are prone to use similar AEPs both
as AEMs and AEls for AEMFCs [175,176].Indeed, it is a simple and-
timesaving way to address the compatibility issues between the
AEMs and AEls. However, the requirements for the properties of
AEMs and AEIs are not consistent due to their different roles, as
shown in Table 2. There are three points that need to be em-
phasized. (1) Certainly, both AEMs and AEIs require high ion con-
ductivity and alkaline stability to reduce the internal resistance
and ensure the long-term in-situ stability. AEMs require low wa-
ter uptake and swelling ratio to maintain dimensional stability and
to prevent fuel cross-over. Meanwhile, AEIs need high water and
gaspermeability to reduce the mass transport resistance. Notably,
the anode and the cathode may require AEls with different water
contents due to the importance of water balancing in two elec-
trodes [10]. To address the anode flooding issues and to control the
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water balancing, many parameters have been employed in AEMFCs,
such as thin membrane, low RH condition, and high fuel gas flow
rate. However, low water contents in the anode and the cathode
signify a higher alkalinity (lower A values) that could be a big chal-
lenge for the alkaline stability of AEIs, particularly in BTMA-based
AEPs. (2) The solubilities of AEMs and AEls are different. Desirable
AEls should have good solubility or good dispersion in low-boiling
pointsolvents to improve their dispersion in catalyst slurry. Asmall
amount of DI water is necessary to prepare a catalyst slurry since it
can prevent from catalyst burning or sparking. On the other hand,
AEMs need a restricted solubility to maintain dimensional stabil-
ity during fuel cell operation. (3) As Kim et al. reported [104-106],
AEIs should possess minimal interactions (such as phenyl and am-
monium adsorptions) with electrocatalysts, particularly in polyaro-
matics, while AEMs have no limitations in terms of the adsorption
effect. Moreover, the state-of-the-art AEMs employed high IEC val-
ues over 2 mmol/g or even 3 mmol/g to improve the ion conductiv-
ity. However, the high IEC of AEls may cause the anode flooding at
high RH and more cation adsorption of aromatic polymer AEIs on
catalysts can occur.

4.2. Development of ionomers

4.2.1. Preliminary ionomers

In earlier research, most AEPs displayed poor solubility with
limited ion conductivity and were difficult to dissolve in low-
boiling point solvents. Therefore, it was difficult to obtain an
ionomer as a binder at that time. In this context, aqueous KOH
and NaOH [111] have been added to the electrodes to increase the
ion conductivity. After that, PTFE and Nafion polyelectrolytes were
utilized as binders for alkaline membrane fuel cells, even though
it is well-known that these two binders are not able to trans-
port OH™ ions or even hinder the transport of OH~ ions. Typically,
Scott et al.[205] used a PTFE binder and a cross-linked fluorinated
membrane (MORGANE®-ADP, thickness: 150-160 pm,resistance in
OH~ form: 0.6 2) for DMFCs. The PPD of the cells only reached
10 mW/cm?2. Subsequently, Coutanceau et al. [206]. applied Nafion
binder for solid alkaline fuel cells using Ag or Pt-Pd as electrode
catalysts, and reached a PPD of 18-20 mW/cm? with methanol or
ethylene-glycol at 20 °C. Similarly, Scott et al.[207] investigated the
effect of temperature, oxidant (air oroxygen), and methanol con-
centration on DMFC performance using PtRu/C anode and Pt/C
cathode with a Nafion binder. However, the PPD of the cells only
reached 16 mW/cm? at 60°C.

Considering the success of PFSA ionomers in PEMFCs, Miyazaki
et al.[208] proposed to use Nafion polyelectrolyte incorporated
with ammonium counterions as binders, and they found that am-
monium counterions had a positive effect on the formation of
TPBs in MEA. All these preliminary attempts to use PTFE or Nafion
binders in the early 2000s displayed relatively poor fuel cell per-
formance since these binders were not able to transport OH~.
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4.2.2. Cationic ionomers

As a result, the development of available cationic ionomers
for binders became an urgent demand at that time.To achieve
this goal, Varcoe et al.[209] proposed to directly add an insol-
uble crosslinked-polystyrene AEP to catalyst electrodes. ThePPD
of H,/O, fuel cells was substantially increased from 1.6 to
55mW/cm? at 50°C after simply adding cationic ionomers. Un-
fortunately, these crosslinked ionomers could not be dissolved
in solvents. After that, Park et al. [191] prepared a series of
crosslinked PSF membranes and utilized TMA/TMHDA-aminated
PSF as binders. MEA prepared from these aminated PSF polyelec-
trolytes reached a PPD of 30mW/cm? under H,/air conditions.
Subsequently, Zhang and co-workers [210] synthesized a PVDF-
based cationic ionomer using an atom transfer radical polymer-
ization (ATRP) method, realizing a PPD of 55mW/cm?2in adirect
hydrazine hydrate fuel cell (DHFC). However, PVDF-based poly-
electrolytes were easily de-fluorinated under alkaline conditions.
Then, Luet al.[211] prepared a methanol-soluble QPSF for AEMs and
ionomers, and a H,-0O, AEMFC containing Cr-decorated Ni (CDN)
anode and Ag cathode showed a PPD of 50 mW/cm? at 60 °C.

In 2008,semi-commercial AEMs and ionomers appeared on
the market. The TokuyamaCorporation reported two types of
cationic ionomers (product code: A3Ver2 and AS-4), and Fumat-
ech Corporation also reported a FAA membrane and a Fumion
ionomer. Subsequently, Bunazawa and Yamazaki [212] first in-
vestigated the effect of the different contents of commercial A3
ionomers on fuel cell performance. They found that the MEA with
45.4% mass ionomer showed the best fuel cell performance with
aPPD of 58.9 mW/cm?.Before 2008, the PPD of AEMFCs rarely ex-
ceeded 60 mW/cm? due to the poor performance of AEMs and
ionomers. Nevertheless, thissituation changed in 2009. Gu et al.
[63] developed a soluble TPQPOH ionomer and realized a PPD of
196 mW/cm? at 80 °C based on a FAA commercial membrane.

Although these preliminary efforts displayed the feasibility and
importance of cationic ionomers, the PPD of these reported MEAs
was still far away from applications.Due to the development of
radiation-grafting techniques, the PPD of AEMFCs was significantly
improved around 2012. Scott and co-workers [213] investigated
the effect of various parameters, such as catalyst and ionomer
loadings, the thickness of the catalyst layer, and fabrication tech-
niques on the fuel cell performance by employing a BTMA-LDPE
membrane and TMHDA-functionalized PS ionomers. Hy/air cells
showed a PPD of 135mW/cm? at 60 °C. Subsequently, Mamlouk
and Scott [214] developed a series of LDPE membranes and PS
ionomers with different QA groups. a H,/O, fuel cell showed a
PPD of 478 mW/cm? with a current density of 722 mA/cm?, indica-
tive of a further breakthrough in the AEMFCs performance at that
time.After that, they emphasized the water management of AEM-
FCs [215]. They indicated thatthe main source of performance loss
of AEMFCs was caused by the restrictedmass transport of water
from the anode to the cathode sites. After optimizing the water
management, MEA prepared from BTMA-PS ionomers and BTMA-
LDPE membrane achieved a PPD of 823 mW/cm?2 at 60°C under
H,/0, conditions.

These new advances provided deeper insight into the funda-
mental issues in AEMFCs such as the water management. How-
ever, the in-situ stability of AEMFCs was still a big challenge
for AEMFCs. On the other hand, PPO-based AEls have also re-
ceived attention for AEIs due to their relatively higher chemi-
cal stability compared to PEEK and PSF-based AEPs. BTMA-PPO
was frequently used as AEls for PPO-based AEMs due to their ac-
ceptable solubility. Zhu et al. [128] presented a series of multi-
cation side chain PPO ionomers-D30NC6NC6 (IEC=2.47 mmol/g)
and T20NC6NC5N (IEC=2.52 mmol/g). H,-O, AEMFCs employing
T20NC6NC5N jonomers and AEMs exhibited a PPD of 364 mW/cm?
at 60 °C. Subsequently, some N-heterocyclic PPOs also have been
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developed as AEls. Chen et al.[131] presented a stable ASU-PPO
ionomer with a PPD of 178 mW/cm? at 60 °C. Li. et al.[132,133] also
prepared a series of ASU and DMP-functionalized PPO. PPO-ASU
ionomer exhibited a PPD of 138 mW/cm? by employing a commer-
cial LAM membrane (80 um, YiChen Technology, China).

4.2.3. Aryl ether-free ionomers

Fig. 22 summarizes current AEIs and Table 3 list the develop-
ment of current AEMFCs based on different type AEMs and AEIs
along with detailed testing conditions. In 2017, Gao et al. [216]re-
ported a QASEBS ionomer for AEMFCs. H,-O, AEMFCs based on
QASEBS ionomer reached a PPD of 375 mW/cm? at 50 °C, and the
cells operated almost stably at a current density of 0.1 Ajcm? for
500 h. Subsequently, they [59] optimized the dew point of elec-
trodes, and the PPD of fuel cells was improved to 721.7 mW/cm?
at 60°C.

Kim and co-workers investigated the phenyl absorption effect
of side-chain-type poly(biphenyl) (BPN) and polyfluorene (FLNs)
ionomers [105] on Pt/C and Pt-Ru/C. Rotating disk electrode ex-
periments and DFT calculation study indicated that when phenyl
groups have an orientation parallel to the catalyst surface, the
activity of alkaline HOR and ORR decreased significantly. Specifi-
cally, FLN ionomers with non-rotatable backbone exhibited lower
phenyl absorption and higher PPD (1.46W/cm?2) than BPN and
TPN ionomers with rotatable backbone. FLN-based fuel cells ex-
hibited a 550h in-situ durability under 0.6 A/cm? at 80 °C. Sub-
sequently, Kim’s group [106] found that ammonium groups also
have a cation-hydroxide-water co-adsorption on catalysts. They de-
signed two different BPN ionomers: (1) introducing symmetric
dimethyl groups in the BPN backbone to increase polymer frac-
tional free volume (0-BPN), (2) replacing the alkyl TMA side chain
with alkyl triethylammonium (TEA-0-BPN). They found that TEA-
0-BPN exhibited the highest PPD over 1.5W/cm? at 80°C due to
lower cation adsorption effects. TEA-o-BPN-based fuel cells also ex-
hibited a 100 h in-situ durability under 0.6 A/cm?2.

On the other hand, DMP-type PAP exhibited outstanding fuel
cell performance. However, PAP-type AEls are scare to date. Only
two types of PAP ionomers-poly(biphenyl piperidinium) (PBP) and
PTP-have been currently developed. Typically, Li et al. achieved
a PPD over 2W/cm? based PTP ionomers and AEMs under H,-
0, conditions [183]. On the other hand, PBP ionomers have been
employed for high-performance PAP-TP-x membrane and reached
a PPD to 0.92W/cm? with a Ag cathode [96] and 1.31W/cm?
with Pt/C [99] cathode under H,-air conditions at 95 °C, respec-
tively, and the cell operated stably at a constant current den-
sity of 0.5A/cm? for 300 h. However, PTP and PBP ionomers have
been demonstrated to possess high phenyl adsorption on catalysts
in Kim and co-workers’ reports [105-109]. As a consequence, the
power density of these PAP-based cells could be further improved
after seeking a preferable ionomer.

On the other hand, BTMA-ETFE ionomers have achieved a lot
of progress so far, and exhibited a good compatibility with BTMA-
ETFE, BTMA-LDPE and BTMA-HDPE membranes. Typically, in 2018,
Omasta et al. [98] presented a PPD of 1.9W/cm? at 60°C under
H,-0, based on BTMA-ETFE membrane and ionomers. They em-
phasized the importance of water management in AEMFCs by a
water-visualizing fuel cell system. Furthermore, replacing BTMA-
ETFE ionomers to Gen-2 perfluorinated (PF) ionomers, H,-0O, AEM-
FCs reached a PPD to 1.4 W/cm?. Similarly, Pivovar and co-workers
[217-218] worked on Gen-2 PF ionomers, and investigated the ef-
fect of using ionomer dispersions and ionomer solutions on fuel
cell performance. They indicated that MEA using an ionomer dis-
persion exhibited a higher PPD (>300mW/cm?) than using an
ionomer solution.

Subsequently, BTMA-ETFE ionomers have been combined with
high-performance BTMA-HDPE membrane [169]. H,-O, fuel cells
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Table 3
Summary of state-of-the-art AEPs and AEMFC performance.

AEMs [thickness (pum)/o oy~

A/C DP A/C BP

A/C FR (L/min)

In-situ durability (Voltage

(mS/cm) at 80 °C] AEIs (IEC-mmol/g, cationic type) A/C catalysts (°C) (kPa) active area PPD (W/cm?2) loss) Ref

Aryl ether-free AEMs and AEIs

GT82-15/PTFE (10/14) BTMA-ETFE (NG, BTMA) PtRu/C, 0.7 mg/cm?; 66/75 50/100  1/1(5cm?) 3.5 (Hy-05), ~1.2 (Hp-Air) at  Stable (100 h, H,/CO, free [9]
Pt/C, 0.6 mg/cm?. 80°C air, 0.6 A/cm?, 80 °C)

GT64-15/PTFE (<20/NG) BTMA-ETFE (NG, BTMA) PtRu/C, 0.7 mg/cm?; 67/74 0/0 NG (5cm?) 3.4 (H,/0,) at 80 °C Stable (545 h, H,/CO, free [97]
Pt/C, 0.6 mg/cm?. air, 0.6 Ajcm?, 80 °C)

HDPE (29+2/214) BTMA-ETFE (1.9, BTMA) PtRu/C, 0.7 mg/cm?; 78/78 0/0 1/1 (5cm?) 2.55 (H,/0,) at 80°C 7% loss (440 h, H,/CO, [169]
Pt/C, 0.6 mg/cm?. free air, 0.6 Ajcm?, 70 °C)

LDPE (284:6/208) BTMA-ETFE (1.9, BTMA) PtRu/C, 0.7 mg/cm?; 78/78 0/0 1/1 (5cm?) 2.01 (H,/0,) at 80°C Rapid loss (100h, Hy/ CO,  [169]
Pt/C, 0.6 mg/cm?. free air, 0.6 A/cm?, 70 °C)

QAPPT (30+5/137) PTP (2.65, DMP) PtRu/C, 0.27mgPt/cm?; 80/80 200/200  1/1 (4cm?) 2.08/1.5 (H,/05) at 80 °C Stable (125h, H,/CO, free [129,183]
Pt/C, 0.4 mgPt/cm? air, 0.2A/cm?, 80 °C)

PAP-TP-85 (25+5/193 at 95°C)  PBP (3.52, DMP) PtRu/C, 0.15 mgPt/cm?; Ag, 1 94/95 250/130  0.15/0.95 0.92 (H,/CO,-free air) at 95°C 11.5% (300h, H,/CO, free  [96]
mgAg/cm? (5cm?) air, 0.5 Ajcm?, 95 °C)

PAP-TP-85 (25+5/193 at 95°C)  PBP(3.52, DMP) PtRu/C, 0.15 mgPt/cm?; 88/97 125/250  1/2 (5cm?) 1.89 (H,/0,) and 1.31 NG [99]
Pt/C, 0.4 mgPt/cm? (H;/CO,-free air) at 95 °C

BTMA-ETFE (>25/132) BTMA-ETFE (2.01, BTMA) PtRu/C, 0.48 mgPt/cm?; 45/46  0/0 1/1 (5cm?) 1.9 (H,/0,) at 60°C 40% (400 h, [98]
Pt/C, 0.53 mgPt/cm? H,/0,,0.6A/cm?2,60 °C)

TPN (30/100) FLN-55 (2.5, alkyl ammonium) PtRu/C, 0.5 mgPt/cm?; 80/80 285/285  2/1 (5cm?) 1.45 (H,/0,) and 0.685 Slight loss (550 h, Hy/0,, [105]
Pt/C, 0.6 mgPt/cm? (H2/CO,-free air) at 80 °C. 0.6 Ajcm?, 80°C)

TPN (35/100) TEA-0-BPN (2.2, alkyl ammonium) PtRu/C, 0.5 mgPt/cm?; 80/80 285/285 2/1 (5cm?2) >1.5 (H,/0;) at 80°C Stable (120 h, H,/0,, 0.6 [106]
Pt/C, 0.6 mgPt/cm? Alcm?, 80 °C)

TPN (30/100) BPN (2.6, alkyl ammonium) PtRu/C, 0.5mgPt/cm?; 80/80 285/285  2/1 (5cm?) 1.2 (H2/0;) at 80°C. NG [105]
Pt/C, 0.6 mgPt/cm?

Gen 2 PFAEM (45/122) BTMA-ETFE (2.01, BTMA) PtRu/C, 0.48 mgPt/cm?; 50/53 15/15 1/1 (5cm?) 1.4 (H,/0,) at 60 °C. NG [98]
Pt/C, 0.53 mgPt/cm?

Gen 2 PFAEM (29/55) BTMA-ETFE (2.01, BTMA) Pt/Vu, 0.5mg/em® Ag/Vu,  50/53 121/121  1/1 (5cm?) 0.62 (H,/0,) at 60 °C. NG [217] [218]
1.0 mg/cm?

M20CONENC5N (NG/115) BTMA-ETFE (2.01, BTMA) PtRu/C, 0.6 mgPt/cm?; NG  0/0 1/1 (5cm?) 0.94 (H,/0,) at 760 °C. NG [49]

Pt/C, 0.6 mgPt/cm?

(continued on next page)
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Table 3 (continued)

AEMs [thickness (pum)/o oy~ AEIs (IEC-mmol/g, cationic type) A/C catalysts A/C DP A/C BP A/C FR (L/min)  PPD (W/cm?) In-situ durability (Voltage  Ref

(mS/cm) at 80 °C] (°C) (kPa) active area loss)

QASEBS (20/100) QASEBS (1.36, BMTA) PtRu/C, 0.3 mgPt/cm?; 60/50 100/100  1/1 (5cm?) 0.721(H,/05) at 60 °C. NG [216]
Pt/C, 0.3 mgPt/cm?

XL100-SEBS-C5-TMA-0.8 (60/65) FLN-55 (2.5, alkyl ammonium) PtRu/C, 0.5 mgPt/cm?; 60/60 0/0 2/1 (5cm?) 0.52(H,/0,) at 60 °C. NG [62]
Pt/C, 0.6 mgPt/cm?

AEH9620 (22/35 at 30 °C) QASEBS (0.21, alkyl ammonium) Pt/C, 0.5 mgPt/cm?; 50/50 200/200  0.1/0.2(NG) 0.375 (H,/0,) at 50 °C. 0.22mV/h deg (500h, [59]
Pt/C, 0.5 mgPt/cm? H,/0,, 0.1A/cm?, 50 °C)

89% HMT-PMBI (34+2/23) 89% HMT-PMBI (2.5, IM) Pt/C, 0.4 mgPt/cm?; 60/60 200/200 NG (5cm?) 0.37 (H2/0,) at 60 °C. Stable (8 h, H,/0y, 0.1 [152]
Pt/C, 0.4 mgPt/cm? Alcm?, 60 °C)

PAImBB (20/82) BTMA-ETFE (NG, BTMA) PtRu/C, 0.5 mgPt/cm?; 70/70 0/0 1/1 (5cm?) 0.25 (H,/0,) at 70 °C. NG [154]
Pt/C, 0.5 mgPt/cm?

Aryl ether AEMs and AEIs

TMImPPO (NG/NG) CBQPPO (NG, alkyl ammonium) PtRu/C, 0.5 mgPt/cm?; 70/70 100/100  1/1 (5cm?) 1.37 (H»/0,) at 70 °C. 0.6/cm? 70°C<60 h [41]
Pt/C, 0.5 mgPt/cm?

aQAPS-Sg (50+5/108) aQAPS-Sy, (1, BTMA) PtRu/C, 0.4 mgPt/cm?; 60/60 100/100  0.4/0.4 (4cm2) 1.0 (Hy/O,) at 60 °C. NG [14]
Pt/C, 0.4 mgPt/cm?

PX75-T50 (NG/~110) Crosslinked PS (NG, BTMA) PtRu/C, 0.5 mgPt/cm?; 80/80 0/0 1/1 (5cm?) 0.73 (H,/0,) at 80 °C 0.4 A/cm? 80°C 400 h [37]
Pt/C, 0.5 mgPt/cm?

T20NC6NC5N (34+2/180) T20NC6NC5N (2.52, alkyl ammonium) Pt/C, 0.4mgPt/cm?; 60/60 100/100  0.25/0.25 (4cm?) 0.36 (H,/O,) at 60 °C NG [128]
Pt/C, 0.4 mgPt/cm?

XE-Im d60 (NG/~80) Tokuyama AS-4 (NG) Pt/C, 0.5mgPt/cm?; 80/80 0/0 0.2/0.2 (5cm2)  0.15 (H,/0,) at 80 °C 0.2 Aj/cm? 60 °C 800h, [193]
Pt/C, 0.5 mgPt/cm? 33% loss/

Commercial FAA (70/17 at RT)  TPQPOH (1.09, P*) Pt/C, 0.5mgPt/cm?; 80/80 250/250  0.2/0.2 (5cm?)  0.19 (H,/O,) at 80°C NG [63]
Pt/C, 0.5 mgPt/cm?

ASU-TC-PPO (100/96) ASU-PPO (2.24, ASU) Pt/C, 0.5mgPt/cm?; 60/60 100/100  0.3/0.3 (5cm2) 0.178 (H,/O,) at 60 °C. NG [131]
Pt/C, 0.5 mgPt/cm?

Commercial AEMs and AEIs

Tokuyama A901 (10/38) Tokuyama AS-4 (NG) Pt/C, 0.4 mgPt/cm?; 85/85 250/250  0.2/0.2 0.737 (H,/0,) at 80 °C. NG [212]
Pt/C, 0.4 mgPt/cm?

Commercial FAA-(20/40 at 30°C) Fumion (NG) Pt/C, 0.4mgPt/cm?; 60/60 100/100  0.4/0.4 0.52 (H,/0,) at 80°C. NG [T]
Pt/C, 0.4 mgPt/cm?

AEH9620 (22/35 at 30 °C) Acta 12 (NG) Pt/C, 0.5mgPt/cm?; 50/50 200/200  0.1/0.2 0.125 (H,/0,) at 50 °C. NG [59]

Pt/C, 0.5 mgPt/cm?

A/C: anode/cathode; DP: dew point; BP: backpressure; FR: flow rate; T: this work; NG: not given.
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Fig. 22. Summary of AEIs and binders in current research, and these structures are collected from references [14,59,63,96,98,105,106,111,128,131-133, 169,181,191,205-219].

with Ag/C cathode reached a PPD of 1.72Wj/cm? at 80°C. Peng
et al. [11] also reported a precious metal free cathode (nitrogen-
doped carbon-CoOx nanohybrids), and the cell reached a PPD over
1W/cm? along with a 100 h in-situ durability based on BTMA-ETFE
ionomers and BTMA-LDPE membrane. Meanwhile, the BTMA-ETFE
ionomers have been employed for other AEMs. Typically, H,-O,
fuel cells based on BTMA-ETFE ionomers and a PTFE-reinforced
PNB membrane (GT64-15) reached a PPD over 3W/cm? at 80°C,
and operated stably under 0.6 A/cm? current density for 545h [97].
BTMA-ETFE ionomers exhibited excellent compatibility with PTFE-
reinforced PNB membranes.

28

Recently, Fan et al. [154]utilized BTMA-ETFE ionomer for large-
hindrance PBI (PAImEE) AEMs. However, H,-O, AEMEFCs only
reached a PPD of 0.25W/cm? at 70°C. Although PAIMEE mem-
brane (20pum) exhibited excellent mechanical properties (tensile
strength: 75 MPa and elongation at break: 17%) and acceptable ion
conductivity, the fuel cell performance is somehow poor based on
current fuel cell technology. Therefore, the compatibility issues be-
tween AEIs and AEMs should be noticed and further confirmed.
BTMA-ETFE ionomer seems to possess excellent compatibility with
flexible polymers (such as PE and PNB), but to mismatch with rigid
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polymers (PBI). Therefore, different type AEMs may require match-
ing ionomers, which should be further investigated.

4.3. Outlook for AEPs and fuel cell performance

4.3.1. Structure design of AEMs and AEIls
AEMs and AEls play different roles in AEMFCs in some ways,
therefore, the structure of AEMs and AEls should be differentiated.

4.3.1.1. For AEMs. Reviewing on Nafion® polyelectrolytes, the flex-
ible and polar perfluorinated side chain (C-C and C-F bonds) in-
creases the entanglement of polymers, resulting in Nafion mem-
branes with excellent mechanical and film-forming properties. Un-
fortunately, perfluorinated AEMs have not received many atten-
tions because of difficulties with fluorine chemistry and contam-
ination issues in fluorine industry. Definitely, aryl ether-free AEMs
are a current mainstream in AEMFCs, that can be briefly di-
vided into two series of backbones: alkyl-alkyl backbones (poly-
olefin, PNB, polystyrene, or SEBS) and aryl-aryl backbones (PAP,
polyphenylene, PBI, or TB). In fact, the-state-of-the-art alkyl-alkyl
AEMs show higher PPD than aryl-aryl AEMs. However, it is inter-
esting to note that most alkyl-alkyl AEMs are based on commercial
pre-formed membranes or reinforced with thin PTFE films, which
endow outstanding film-forming and mechanical properties with
these AEMs. However, every coin has two sides. Most of alkyl-
alkyl AEMs possess poor solubility in many organic solvents. There-
fore, the room for modification and optimization of these AEMs is
very limited, especially to replace the BTMA groups. A majority of
polystyrene or SEBS membranes [132,133] has been demonstrated
to possess week mechanical strength (~10MPa) and high elonga-
tion at break (>200%) due tononpolar and flexible alkyl-alkyl back-
bones, causing a poor dimensional stability. Similarly, without PTFE
reinforcement, crosslinked PNB membranes also exhibited a lim-
ited fuel cell performance [38]. On the other hand, aryl-aryl AEMs
without reinforcement show excellent mechanical properties. No-
tice that AEMs require rotatable polymer backbones along with
sufficient mechanical strengths. The merits of aryl-aryl AEMs are
that the aromatic backbones have strong interactions between each
other by m-m stacking. Some rotatable aryl-aryl polymers, such as
PAP and PP, can simultaneously possess high tensile strength over
60MPa along with reasonable elongation at break (10 to 117%).
Therefore, the membrane-reinforcing strategies should be consid-
ered in the future AEMs.

4.3.1.2. For AEIs. Aforementioned reviews reveal that AEls should
possess minimal interaction with electrocatalysts, meaning that
the AEIs require non-rotatable or low phenyl-containing backbones
along with suitable IECs, exemplified with BTMA-ETFE and FLN
ionomers. Moreover, Matanovic et al. [101] found that polypheny-
lene ionomers are likely to suffer from the electrochemical oxida-
tion and to produce phenol groups that limited the ORR activity,
while FLN ionomers with substituents could alleviate this oxida-
tion. Therefore, the polymer backbone of AEIs needs to be care-
fully designed to fulfill all these requirements. Regarding IEC val-
ues, AEIs require high ion conductivity and water permeability, but
low ammonium adsorption. Current state-of-the-art AEIs, such as
BTMA-ETFE, FLN, PTP, and PBP ionomers, employ high IEC values
over 2mmol/g along with high water uptake. Therefore, the IECs
of AEIs should be kept in balance between the water permeability
and ammonium adsorption.

On the other hand, Pt-Ru/C anode catalyst has been demon-
strated to possess the least phenyl adsorption with AEIs [101],
and many high-performance AEMFCs are based on the Pt-Ru/C
anode, as listed in Table 3. Therefore, different types of cationic
groups may also display diverse adsorption behavior on catalysts,
while systematical study still has not been performed. Actually, in

29

Progress in Polymer Science 113 (2021) 101345

our unpublished work, we found that AEIs still require reasonable
molecular weight to anchor catalysts in the electrode very well,
and this property is a fundamental requirement for AEIs, which
should not be overlooked in AElIs.

4.3.2. Comparison of state-of-the art AEIs and AEMs

Table 3 and Fig. 23 summarize the current progress in AEMFCs.
Nowadays, BTMA-type, DMP-type, and side chain type (five or six
alkyl spacers) AEPs have seen a great progress in current research.
Although some other cationic groups also possessed high alka-
line stability, the corresponding AEPs, such as ASU, large-hindrance
IM and cobaltocenium groups, exhibited a limited ion conductiv-
ity and fuel cell performance. Besides, most of high-performance
AEls are based on BTMA and alkyl ammonium groups, while other
cationic functional groups in the AEIs are rare. Therefore, QA group
is so far the best cationic group. Overall, DMP-type and side-chain-
type AEPs show higher ex-situ durability than BTMA-type AEMs.
Meanwhile, the alkaline stability of BTMA-type AEMs shows a big
difference depending on the commercial pre-forming films. Typi-
cally, BTMA-HDPE membrane is more stable than BTMA-ETFE and
BTMA-LDPE membranes.

Moreover, the ex-situ durability and in-situ durability of AEPs
have been demonstrated to be mismatching. Some of AEPs exhib-
ited excellent ex-situ durability over 5000 h, while no cells to date
have been reported to show sufficient in-situ durability (~2000 h)
at DOE-relevant current densities (0.6 A/cm?) [25], particularly at
high temperature and in low humidity condition. Although DMP-
type AEPs exhibited outstanding ex-situ durability, their long-term
in-situ durability have reached below 300h at 0.6 A/cm? so far. On
the contrary, BTMA-HDPE membrane and BTMA-ETFE ionomers-
based AEMFCs achieved a 440h in-situ durability under 0.6 A/cm?.
As side-chain-type AEPs, the in-situ durability is also limited with-
out reinforcement, while it is dramatically improved to 545h (un-
der 0.6 A/cm?) after PTFE-reinforcement. Therefore, the mechani-
cal degradation of AEMs should be elaborately investigated during
in-situ durability testing, and the mechanical properties of AEMs
should be seriously taken into account when the AEMs are used for
in-situ durability testing, particularly in OH~ form and at 100% RH.
Since the PPD of AEMFCs has reached to an equal level to PEMFCs,
the in-situ durability should be emphasized in the future research
to promote the commercialization of AEMFCs.

5. New challenge of AEMFCs and perspective of AEPs
5.1. Unrealistic testing conditions

Although AEMFCs have advanced rapidly in recent years, how-
ever, it is interesting to note that current reported large jumps in
AEMFC performance have been based on at least somewhat unre-
alistic testing conditions, such as high gas flow rates, high purity
0,, and employing Pt-based catalysts rather than non-platinum
group catalysts. Moreover, the carbonation of AEPs is a lingering
issue in AEMFCs, while that have been mostly overlooked in pre-
vious research. It is well known that OH~-conducting AEPs can
react with CO, to produce COs;2~ and/or HCO;~ anions thatin-
crease the area-specific resistance since CO32~ and/or HCO;~ has
a lower intrinsic mobility than OH~. The carbonation of AEPs has
been demonstrated to have a severe reduction in the operating
cell voltage as high as 400 mV [219]. Researchers have hypothe-
sized that the carbonation of AEPs increased the internal resistance
and could be self-purging during operation at a current density
higher than 1 A/cm?2. However, in 2019, Mustain et al. [220] inves-
tigated the CO, effects on fuel cell performance, and demonstrated
that both of two assertions are not correct. They found that the
concentrations of CO32~in the anode is higher than in the cath-
ode and AEMs.The resulting CO32~concentration gradient makes
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C052~accumulate within the anode, which decreases the local pH,
leading to an increase in the anode potential. Besides, CO32~ in
the anode effectively shuts off catalyst sites, causing an increase
in charge transfer resistance due to a lack of availability of react-
ing OH™ anions. They indicated that even at 5ppm CO, showed a
significant loss in fuel cell performance.

5.2. Potential applications of AEPs

Because of the significant progress in AEMFCs, AEPs can be
applied in other fields, such as water electrolysis, CO, electrore-
duction and vanadium redox flow batteries (VRFBs). Nevertheless,
the performance requirements of AEPs used in different fields are
slightly different depending on the operating conditions, as shown
in Fig. 24.

5.2.1. Water electrolysis

AEPs are very promising for hydrogen production in electricity-
driven water splitting, so called water electrolysis. Actually, wa-
ter electrolysis is a reverse reaction relative to that of AEMFCs,
and the structure of the water electrolysis device is very similar
to AEMFCs. Consequently, the function and challenge of AEMs and
AEIs used in water electrolysis are similar to AEMFCs, especially
in terms of alkaline stability and ion conductivity. Very recently,
Kim and coworkers [221] reported a stable and non-adsorbing
ionomer for an AEM electrolyser that operated without the sup-
porting NaOH/KOH electrolyte and used inexpensive catalysts. They
pointed out that AEIs were easy to oxidation in the anode due
to high potential, and phenolic compounds would be produced in
some aromatic AEIs after oxidation. These phenolic compounds can
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be detrimental to AEM electrolyser performance because they neu-
tralize the alkaline charge carriers in the polymer [222].

5.2.2. CO, electrolysis

Actually, AEPs can be used for CO, electrolysis. Wang et al.[223]
prepared a series of AEMs based on composite poly(vinyl alco-
hol) for CO, electroreduction to formate. They indicated that these
AEMs produced higher CO, electroreduction efficiencies (67.6% to
68.6%) than Nafion 212 membrane (57.6%), implying that the use
of AEMs in CO, electroreduction is feasible.

5.2.3. Vanadium redox flow battery

On the other hand, AEPs have potential applications in vana-
dium redox flow batteries (VRFBs). Here, a reduction in vanadium
permeability through the membrane is very important to minimize
self-discharge and to obtain a high Coulombic efficiency (CE). Chen
et al.[224-226] prepared a series of TMA-based poly(fluorenyl
ether) AEMs to prevent vanadium crossover and capacity fade in
VRFBs. Moreover, they remarked that VRFBs employing an AEM ex-
hibited 100% CE under various current densities for VRFB applica-
tions.

6. Conclusion and future perspective

In summary, AEPs have been recognized with unprecedented
achievements in AEMFCs in the past three years, especially in OH™
conductivity, ex-situ durability, and fuel cell performance, making
low-cost AEMFCs practical in the near future. This review sys-
tematically and comprehensively summarized the development of
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AEPs and highlighted the importance of durability, ionomer re-
search, and the difference between AEMs and ionomers by compar-
ing the advantages and disadvantages of the state-of-the-art AEMs
and ionomers to accurately guide the direction of the future re-
search on AEMFCs.

The major conclusions are as follows:

Years of study have developed a lot of cationic species and poly-
mer backbones to address durability issues. Among them, QA is
so far the most-studied cationic group due to their high ion con-
ductivity and ex-situ durability. For the polymer backbone, aryl
ether-free AEPs have been demonstrated to be superior for AEM-
FCs than aryl ether AEPs. Typically, BTMA-type, side-chain-type,
and DMP-type AEPs have seen great progress in ion conductivity
(~200 mS/cm) and power density (PPD to 3.5Wj/cm?2). Some of
these AEPs will probably realize the commercial stage in the near
future.

Many different strategies have been employed to enhance the
comprehensive properties and performance of AEPs, such as mi-
crophase separation, crosslinking, inorganic-organic strategies, and
commercial substrates. All these methods seem promising for fur-
ther improvement of the performance of AEPs. Additionally, the
durability issue of AEPs is still severe. Although a few AEPs ex-
hibited high PPD, in-situ durability (~500h) is still far from fu-
ture requirements (2020 DOE: 0.6 A/cm? for 2000 h). Moreover, ex-
situ durability does not match with in-situ durability. Therefore, it
is important that ex-situ and in-situ durability evaluation systems
should be further exploited and an effective method of evaluating
durability should be developed in the near future.

Currently, most AEPs are used for AEMs, and AEls research is
still lacking to date. This review comprehensively introduces the
development of AEls, and emphasizes the deferent structural de-
sign between AEIs and AEMs. The property requirements of AEMs
and AEls are different in several aspects. BTMA-ETEF and FLN
ionomers have proved to be good candidates for AEIs. Importantly,
the compatibility issues between AEMs and AEIs should be noticed,
and the mismatch between AEMs and ionomers may causeunde-
tectable performance loss in AEMFCs.

Nowadays, some new challenges should be noticed in current
research, which could hinder the future development of AEMFCs,
such as electrochemical oxidation of AEIs and the mechanical fail-
ure of AEMs during fuel cell operation, the carbonation of AEMFCs,
and unrealistic testing conditions.

This review is expected to give a better understanding of AEMs
and AEIs, and provides an insight into the design of AEMs and AEIs
to reveal the limitations and challenges of AEMFCs. With these
design strategies in mind, it is recommended to seek satisfactory
AEMs and AEls in other applications, such as water electrolysis,
CO, reduction, and flow batteries. We believe that the present re-
view timely contributes to promoting the realization of AEMFCs in
the near future.
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