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Abstract— Millimeter wave (mmWave) signals are useful for
simultaneous localization and mapping (SLAM), due to their
inherent geometric connection to the propagation environment
and the propagation channel. To solve the SLAM problem,
existing approaches rely on sigma-point or particle-based approx-
imations, leading to high computational complexity, precluding
real-time execution. We propose a novel low-complexity SLAM
filter, based on the Poisson multi-Bernoulli mixture (PMBM)
filter. It utilizes the extended Kalman (EK) first-order Taylor
series based Gaussian approximation of the filtering distribution,
and applies the track-oriented marginal multi-Bernoulli/Poisson
(TOMB/P) algorithm to approximate the resulting PMBM as a
Poisson multi-Bernoulli (PMB). The filter can account for differ-
ent landmark types in radio SLAM and multiple data association
hypotheses. Hence, it has an adjustable complexity/performance
trade-off. Simulation results show that the developed SLAM filter
can greatly reduce the computational cost, while it keeps the good
performance of mapping and user state estimation.

Index Terms— Bistatic sensing, extended Kalman filter,
mmWave sensing, poisson multi-Bernoulli mixture filter, simul-
taneous localization and mapping.

I. INTRODUCTION

5G AND Beyond 5G systems can provide high-resolution
measurements of delays and angles, which make them

attractive for localization and sensing applications [1]–[4].
Localization of connected devices is important for autonomous
vehicles [5], Vehicle-to-Everything (V2X) [6], [7], and spa-
tial signal design [8]. Sensing of passive objects and con-
nected users is an important part of integrated sensing and
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communication (ISAC) [9]–[11], e.g., to support predictive
beam tracking, beam alignment, and communication resource
allocation. Sensing in ISAC relies on standard communication
waveforms, such as orthogonal frequency division multiplex-
ing (OFDM) and can be monostatic or bistatic. In mono-
static sensing, the transmitter and receiver are co-located,
which brings the advantage of a common clock and perfect
knowledge of the transmitted data signal [12], thus allow-
ing a common radio signal for communication and sensing.
In bistatic sensing, the transmitter and receiver are spatially
separated [3]. Hence, the data symbols are unknown to the
receiver, and the transmitter and receiver are not synchronized.
The former issue can be resolved by sending predetermined
pilot signals within the OFDM frame structure, while the latter
issue has the serious implication that only delay-differences
among propagation paths bring information. Even in a bistatic
setting, there are several benefits and challenges to the inte-
gration of sensing and communication, beyond the use of the
same waveform type and the aforementioned improvement of
communication. In particular, the sensing and communication
resources must be multiplexed, which leads to interesting
trade-offs at the transmit signal level [13]. At the receiver
side, the channel estimation routines used as part of commu-
nication can be largely reused for sensing, leading to chip
area savings. When the transmitter and receiver have known
locations (e.g., base stations (BSs)), the problem is referred to
as passive localization or mapping. When the transmitter or
the receiver has an unknown location (e.g., a user equipment
(UE)), this location must be determined jointly with the map
(this also applies to the monostatic case with a UE radar),
referred to as radio simultaneous localization and mapping
(SLAM) [14], [15]. Here, the UE acts as a sensor with an
unknown and time-varying state, while the static objects in
the propagation environment act as landmarks with unknown
states and cardinality.

Solving the radio SLAM problem is challenging because
i) channel estimation errors, or noise peaks may result in
false detections, ii) landmarks in the field-of-view (FoV) of
the sensor can be undetected, due to the imperfect detection
performance at the sensor, iii) the number of landmarks in
the FoV is primarily unknown, as the map is unknown, iv)
the source (landmark) of each measurement is unknown at the
sensor, so there is an inherent data association problem [16],
and v) the signal processing complexity due to accounting for
the challenges i)–iv) within a mathematically coherent method-
ology. Several approaches have been proposed to address
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the above-mentioned challenges, including methods based on
geometry [17], [18], on belief-propagation (BP) [19]–[21],
and on random-finite-set (RFS) theory [22], [23]. Geometry-
based methods [17], [18] have low complexity, but cannot
inherently deal with the unknown number of targets or the data
association problem. BP-SLAM methods [19]–[21] model the
landmark state as a vector instead of an RFS, which requires
ad-hoc modifications to deal with appearing and disappearing
landmarks. Finally, RFS-based methods are particularly attrac-
tive for the SLAM problem, because the set of landmarks are
modeled as an RFS, where uncertainties on both cardinality
and the state of each landmark are considered, and there is no
ordering of landmarks [24]. However, they come with a signifi-
cant computational cost. Among RFS-based methods, the Pois-
son multi-Bernoulli mixture (PMBM) density is known to be a
conjugate prior for most common measurement and dynamic
models [25]. The key to the optimality of the PMBM filter lies
in keeping track of all possible data association hypotheses
over time, conditioned on the unknown sensor state, which
renders the PMBM computationally demanding. To reduce
the complexity, its simplified version, the Poisson multi-
Bernoulli (PMB) filter, can be used, which reduces the number
of hypotheses to one after each update. Several methods
exist for this reduction, including the track-oriented marginal
multi-Bernoulli/Poisson (TOMB/P), the measurement-oriented
marginal multi-Bernoulli/Poisson (MOMB/P) [26], and the
Kullback-Leibler divergence minimization [27] algorithms.
To account for unknown sensor states, a low-complexity
PMBM filter for joint target and sensor tracking is proposed
in [28] by approximating the joint density with the product of
marginal densities and performing separate updates per target.

Several RFS-based methods have been proposed for
mmWave radio SLAM [29]–[34], which must account for
the specific properties of mmWave sensing, including the
highly nonlinear measurement models, time-varying detec-
tion probabilities, and the presence of multiple measurement
models, due to different landmark types. These approaches
mainly differ in terms of the representation of the RFS density
and the required approximations. Among those RFS-based
SLAM methods, [29] developed a Rao-Blackwellized particle
(RBP) probability hypothesis density (PHD) filter. However,
the complexity increases exponentially with the state dimen-
sion. To reduce the complexity, [30] introduced a cubature
Kalman PHD (CK-PHD) filter for radio-SLAM. Although the
CK-PHD exhibits a lower computational cost than the RBP-
PHD, it relies on the sigma-point approximation, and thus the
computational cost can be further reduced by the extended
Kalman PHD (EK-PHD) in [33]. These three methods are
based on the PHD filter, which considers the data association
problem, but there is no explicit enumeration of different data
associations. To explicitly consider all possible data associa-
tions, the RBP-PMBM SLAM filter is considered in [31], [32].
The PMBM filter has better mapping performance than the
PHD filter [34], through exhibiting high computational cost.

In this paper, we address the high complexity of the
RBP-PMBM filter by proposing a novel approach that com-
bines the elegant PMBM representation with a low-complexity
joint update of the sensor and landmark states. For this
update we have selected the extended Kalman (EK) filter,

though other filters such as the cubature or unscented Kalman
would also be appropriate. Compared to the RBP-SLAM
filters from [29], [31], [32], the resulting filter has very
low complexity and can thus be applied to real-time UE
localization and environment mapping in bistatic mmWave
sensing with a single BS. Compared to the EK-PHD [33] filter,
which accounts only for the most likely data association and
landmark type, we show how to explicitly account for sev-
eral data associations and multi-model (MM) implementation.
In contrast to [28], the proposed filter can cope with multiple
nonlinear measurement models, and applies a joint update to
all landmarks and the sensor state. Our main contributions are
summarized as follows:

• The derivation of the EK-PMBM SLAM filter, which uses
a new and theoretically sound method to jointly update
the UE state and landmark states;

• The derivation of a novel algorithm to approximate the
resulting PMBM to a PMB, which is based on the TOMB
algorithm with a limited number of data associations and
can be used to modify the EK-PMBM SLAM filter into
the EK-PMB SLAM filter;

• The extension of the EK-PMBM and EK-PMB SLAM
filters to the case of multiple landmark types, resulting in
a multi-model (MM) implementation with hybrid discrete
and continuous landmark states;

• The validation of the proposed SLAM filters, show-
ing it exhibits very low complexity compared to the
RBP-PMBM filter, while maintaining comparable SLAM
performance.

The remainder of this article is structured as follows. The
system models are described in Section II. The PMBM density
and the Bayesian recursion of RFS-joint SLAM density are
then introduced in Section III. The novel EK-PMBM SLAM
filter is derived in Section IV, and its PMB counterpart in
Section V. The extension to multiple measurement models
is covered in Section VI. Simulation results are presented in
Section VII, followed by our conclusions in Section VIII.

Notations: Scalars (e.g., x) are denoted in italic, vectors
(e.g., x) in bold, matrices (e.g., X) in bold capital letters,
sets (e.g., X ) in calligraphic, and its cardinality is denoted as
|X |. Transpose is denoted by (·)T. A Gaussian density with
mean u and covariance C, evaluated in value x is denoted by
N (x; u,C). The union of mutually disjoint sets is denoted by
�, and the Kronecker product is denoted by ⊗.

II. SYSTEM MODELS IN MMWAVE BISTATIC SENSING

In this section, we introduce the models for the mobile UE
state and the state of the landmarks in the propagation environ-
ment of mmWave, as shown in Fig. 1. Then, we provide the
measurement model for the mmWave bistatic sensing scenario.

A. State Models

We consider a multi-antenna BS with known location xBS ∈
R3 and a multi-antenna UE, with sensor state at time step k
denoted by sk (containing at least the 3D position and clock
bias). The user dynamics are given by

f(sk+1|sk) = N (sk+1; v(sk),Qk+1), (1)
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Fig. 1. Bistatic mmWave sensing scenario, where the UE tracks its own state and constructs a map of the environment, by incorporating bistatic measurements
from received downlink signals sent by the BS. The downlink measurements per subcarrier and per beam are used to estimate a set of channel parameters
Zk , which depend on the underlying geometry. Due to missed detections and false alarms, the cardinality of Zk (i.e., 2 in the example) may be less or more
than the number of landmarks (3 in this case). The landmarks can be of three types: the BS, virtual anchors, or scatter points.

where v(·) denotes a known transition function and Qk+1

is the process noise covariance. The environment comprises
three different types of landmarks, the BS, scattering points
(SPs), which could correspond to street lamps, traffic signs,
or others types of small objects, and reflecting surfaces, which
could correspond to walls, building facades, or other types
of large surfaces. Each SP is parameterized by an unknown
3D location xSP ∈ R3, while each reflecting surface is
parameterized by a fixed virtual anchor (VA) with location
xVA ∈ R3. The VA is the reflection of the BS with respect
to the reflecting surface [35], [36]

xVA = (I − 2ννT)xBS + 2μTνν, (2)

where μ is an arbitrary point on the surface, and ν is the
normal to the reflecting surface. The VA is surface-specific;
although the incidence point of the downlink signal on the
reflecting surface is moving while the UE is moving, the VA
remains static.

B. Measurement Models

The measurement process is initiated by the BS every
Δ seconds and requires a pilot transmission of duration
Tmeas � Δ. The remaining temporal resources (i.e.,
Δ − Tmeas) are used for communication services. Every time
step k (with period Δ), the BS sends downlink signals, which
reach the UE via the line-of-sight (LOS) path as well as non-
line-of-sight (NLOS) paths, via SPs or reflecting surfaces. We
consider the transmission of NOFDM OFDM symbols with
S subcarriers. The received signal for OFDM symbol n,
at subcarrier s and time step k can be expressed as [37]

ys,n,k = W H
n,k

Ik−1�
i=0

gi
kaR(θi

k)aT
T(φi

k)e−j2πsΔfρ i
kfn,k

+ W H
n,kns,n,k, (3)

where fn,k is a precoder (including pilot symbols), ys,n,k is
the received signal; W n,k is a combining matrix for OFDM
symbol n, where the number of columns corresponds to the

number of UE radio frequency chains. The number of visible
landmarks is denoted as Ik, while index i = 0 corresponds
to the BS. We further assume that there is only one path
per visible landmark. Moreover, aR(·) and aT(·) are the
steering vectors of the receiver and transmitter antenna arrays,
respectively, Δf is the subcarrier spacing, and ns,n,k is the
noise across the UE array. Each path i can be described by
a complex gain gi

k, a time of arrival (TOA) τ i
k, an angle

of arrival (AOA) pair θi
k in azimuth and elevation, and an

angle of departure (AOD) pair φi
k in azimuth and elevation.

The relations between the channel parameters and the sensor
and landmark states can be found, e.g., in [32, Appendix
A].1 These parameters are estimated by a parametric channel
estimation algorithm, such as [38]–[42]. We note that the total
duration of the pilot transmission is approximately Tmeas ≈
N/Δf , ignoring the cyclic prefix overhead.

The channel estimator provides a set of channel parameter
estimates Zk at time k, with Zk = {z1

k, . . . , z
Îk

k } and Îk
representing the number of estimated paths, which we use
directly as the measurements in the rest of the paper. Each
element zi

k ∈ Zk is a 5-dimensional tuple of the form zi
k =

[τ̂ i
k, (θ̂

i

k)T, (φ̂
i

k)T]T. In general, Îk �= Ik, since measurements
may originate from clutter (e.g., due to transient objects or
noise peaks during channel estimation) and landmarks may
be misdetected. The clutter can be modeled as a Poisson point
process (PPP) with clutter intensity c(z). To account for mis-
detections, we introduce the detection probability pD(xi, sk) ∈
[0, 1] that landmark xi is detected with a measurement when
the sensor has state sk. The measurement originating from a
landmark is characterized by a likelihood function

f(zi
k|xi, sk) = N (zi

k; h(xi, sk),Ri
k), (4)

1The TOA is equal to the path distance over the speed of light, up to
the unknown UE clock bias. The AOA is a function of the unknown UE
orientation and position, and the locations of the landmarks. Finally, the AOD
is a function of the unknown UE and landmark positions, and the known BS
orientation.

Authorized licensed use limited to: Hanyang University. Downloaded on June 22,2022 at 04:13:11 UTC from IEEE Xplore.  Restrictions apply. 



2182 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 7, JULY 2022

where h(xi, sk) = [τ i
k, (θ

i
k)T, (φi

k)T]T and Ri
k is the mea-

surement covariance. We also introduce the state variable
s̃i

k = [sT
k ,x

T
i ]T, allowing us to write h(s̃i

k).

III. BASICS OF THE PMBM SLAM FILTER

In this section, we briefly describe basics of the PMBM and
PMB SLAM filters, which will be the benchmark and starting
point for the EK-PMB(M) filters in the subsequent sections.

A. PMBM and PMB Densities

An RFS is denoted by X = {x1, . . . ,xn}, where the
element xi (indexed by i) denotes a random vector, and
|X | = n is the random cardinality, with a set density f(X ). As
the cardinality and element states are all unknown, the RFS can
inherently model the uncertainties of the number of landmarks
and the landmark states in an unknown map. When XU and
XD are two independent RFSs, following a PPP and a MBM
processes, respectively, we can say that X = XU�XD follows
a PMBM density [26], [43], [44]. The PPP RFS XU is used
to model the set of undetected landmarks, which have never
been detected before. The MBM RFS XD is used to model the
set of detected landmarks, which have been detected at least
once before. Then, the density of the PMBM RFS is given by

fPMBM(X ) =
�

XU�XD=X
fPPP(XU)fMBM(XD), (5)

where fPPP(·) is a PPP density, and fMBM(·) is an MBM
density.2 The PPP density is given by

fPPP(XU) = e−
�

Du(x�)dx� �
x∈XU

Du(x), (6)

where Du(·) is the intensity function, and the MBM density
follows

fMBM(XD) =
�
j∈I

wj
�

�i∈Ij X i=XD

n�
i=1

f j,i
B (X i), (7)

where I is the index set of the global hypotheses, which in
SLAM corresponds to the data associations [26], wj is the
weight for global hypothesis j, satisfying

�
j∈I

wj = 1, n is
the number of potentially detected landmarks (for convenience
set to the same value for all global hypotheses), Ij is the index
set of landmarks (i.e., the Bernoulli components) under global
hypothesis j, and f j,i

B (·) is the Bernoulli density of landmark
i under global hypothesis j. Each Bernoulli density follows

f j,i
B (X i) =

⎧⎪⎨
⎪⎩

1 − rj,i X i = ∅,
rj,if j,i(x) X i = {x},
0 otherwise,

(8)

where rj,i ∈ [0, 1] is the existence probability of the landmark,
and f j,i(x) is the probability density function of the vector
x. A larger existence probability means there is more likely
a landmark exist. A falsely detected landmark will usually
have a low existence probability as time progresses, while a

2To understand the � notation, consider the example where X = {x1, x2}.
Then the summation in (5) has four terms: (i) XU = ∅ and XD = {x1, x2};
(ii) XU = {x1} and XD = {x2}; (iii) XU = {x2} and XD = {x1}; and
(iv) XU = {x1, x2} and XD = ∅.

Fig. 2. An example for a PMBM density with 2 mixture components, each
comprising a MB and a PPP.

real detected landmark will keep a relatively high existence
probability. Moreover, if a landmark is misdetected at some
time, the corresponding Bernoulli density can still be kept,
with a modified existence probability, based on the associated
detection probability (i.e., the misdetected landmark with
small detection probability will maintain a high existence
probability).

Example 1: Consider a PMBM with |I| = 2 components,
each MB contains a single Bernoulli (i.e., |I1| = |I2| =
n = 1). Suppose we evaluate the PMBM in X = {x} (i.e.,
containing a single element). Then,

fPMBM({x}) = fP({x})(w1(1 − r1,1) + w2(1 − r2,1))
+ fP(∅)(w1r1,1f1,1(x) + w2r2,1f2,1(x))

where w2 = 1−w1. Similarly, for X = ∅ (i.e., containing no
elements), we find that

fPMBM(∅) = fP(∅)(w1(1 − r1,1) + w2(1 − r2,1)).

Fig. 2 provides a visualization of the PMBM density.
In conclusion, a PMBM is described by a PPP from (6)

and a MBM from (7), which is parameterized by Du(x)
and {wj , {rj,i, f j,i(x)}i∈Ij}j∈I. If there is only one mixture
component in the MBM (i.e., |I| = 1), then (5) reduces to a
PMB.

B. Bayesian Recursion of RFS SLAM

An RFS SLAM filter follows the prediction and update steps
of the Bayesian filtering recursion with RFSs. We denote a
sensor trajectory at time k by s0:k and denote a set of land-
marks by X . The joint posterior density of sensor trajectory
and set of landmarks can be factorized as

f(s0:k,X|Z1:k) = f(s0:k|Z1:k)f(X|s0:k,Z1:k), (9)

where f(s0:k|Z1:k) is the density of sensor trajectory, and
f(X|s0:k,Z1:k) is the set density of landmarks conditioned
on the sensor trajectory.

The sensor prediction step is given by

f(s0:k+1|Z1:k) = f(s0:k|Z1:k)f(sk+1|sk), (10)

where f(sk+1|sk) is the transition density of the dynamics
in (1). We assume landmarks are static and never appear or
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disappear, and thus there is no prediction for landmarks. Then,
f(X|s0:k+1,Z1:k) = f(X|s0:k,Z1:k).

The joint posterior is updated as

f(s0:k+1,X|Z1:k+1)

=
g(Zk+1|sk+1,X )f(s0:k+1|Z1:k)f(X|s0:k+1,Z1:k)

f(Zk+1|Z1:k)
(11)

where f(Zk+1|Z1:k) is the normalizing factor, and
g(Zk+1|sk+1,X ) is the RFS likelihood function, given
by [43, eqs. (5)–(6)]

g(Zk+1|sk+1, {x1, . . . ,xn})

= e−
�

c(z)dz
�

Zc�Z1...�Zn=Zk+1

�
z∈Zc

c(z)
n�

l=1

�(Zi|sk+1,xi),

(12)

where Zc is the clutter measurement set, and �(·) follows

�(Zi|sk+1,xi) =

⎧⎪⎨
⎪⎩

1 − pD(xi, sk+1) Zi = ∅,
pD(xi, sk+1)f(z|xi, sk+1) Zi = {z},
0 otherwise.

(13)

C. Overview of PMBM and PMB SLAM Filters

If the PMBM density is the conjugate prior for the transition
density and the measurement model, then all subsequent
predicted and updated distributions by the Bayesian recursion
(see, Section III-B) will preserve the PMBM form with
parameters [26]: Du(x) and {wj , {rj,i, f j,i(x)}i∈Ij}j∈I. The
landmark is conditioned on the sensor state trajectory, and
the set densities f(X|s0:k,Z1:k) and f(X|s0:k,Z1:k−1) are
PMBM.

The PMBM SLAM filter can be implemented using a
RBP filter (RBPF), where the sensor trajectory density is
represented by particle samples [32]: f(s0:k+1|Z1:k+1) ≈�N

n s
(n)
0:k+1w

(n)
k+1, where n is the particle index; N is the

number of particle samples; s
(n)
0:k+1 is the particle sample; and

w
(n)
k+1 is the particle weight such that

�
n w

(n)
k+1 = 1. The pre-

diction step (10) then follows the standard particle generation
of s

(n)
0:k+1, while the update step (11) requires computation of

f(X|s(n)
0:k+1,Z1:k+1) and w(n)

k+1 for each particle.
In the PMB SLAM filter, under a RBPF implementation,

f(X|s(n)
0:k ,Z1:k) is given by a PMB density. After the update

step, f(X|s(n)
0:k+1,Z1:k+1) is possibly a PMBM since the filter

tracks possible association hypotheses to the measurements.
We adopt the method of marginal association distribution [26],
which enables us to approximate the PMBM to a PMB at the
end of time step by marginalizing over the data association.

Complexity: At the end of every time step, each previous
global hypothesis considers all possible data associations,
which generates a variety of new global hypotheses, and
the number of global hypotheses rapidly increases in com-
binatorial explosion. In particular, the number of global
hypotheses per each particle at time step k + 1 is
given by |Ik+1| =

�
j∈Ik

�|Zk+1|
α=0 Cα

|Zk+1|P
|Zk+1|−α

|Ij
k|

, which

grows over time [32, Appendix B]. Here, C and P

denote the combination and permutation operations, respec-
tively. The complexity, at time step k + 1, scales as
O(N

�
j∈Ik

|Ij
k|

�|Zk+1|
α=0 Cα

|Zk+1|P
|Zk+1|−α

|Ij
k|

), where number

of particles N can be in the order of 1000−10000, depending
on the state dimension.

In the PMB filter, the number of global hypotheses, at
time step k + 1, is

�|Zk+1|
α=0 Cα

|Zk+1|P
|Zk+1|−α

|I1k|
, which is

much smaller than the number of global hypotheses in the
PMBM SLAM filter. Then, the marginal association dis-
tribution is used to keep f(X|s(n)

0:k+1,Z1:k+1) as a PMB
density. The complexity, at time step k + 1, scales as
O(N |I1k|

�|Zk+1|
α=0 Cα

|Zk+1|P
|Zk+1|−α

|I1k|
).

In summary, both the PMB and PMBM suffer from high
complexity, due to both the large number of hypotheses and
the number of particles in the RBPF implementation.

IV. PROPOSED EK-PMBM SLAM FILTER

To reduce the computational cost, we motivate the joint
sensor and landmark update using the EK filter [45, Ch.
5.2] instead of the RBPF. We will introduce the marginal
posterior densities for SLAM and their Bayesian recursion.
Then, we describe a novel algorithm of PMBM SLAM filter
with the joint update step and its EK filter implementation.3

A. Form of the EK-PMBM Filter

We suppose that at time step k, the sensor state density is
a Gaussian distribution N (sk; mk|k,P k|k), where mk|k and
P k|k are the mean and the covariance matrix, respectively; the
PPP parameter λk|k(x), which can be modeled as a ηk|kU(x)
with U(x) representing a uniform distribution over the space,
and MBM parameters {wj

k, {rj,i
k|k, f

j,i
k|k(x)}i∈I

j
k
}j∈Ik

for the

map are also given, where each f j,i
k|k(x) is a Gaussian distri-

bution N (xj,i; uj,i
k|k,C

j,i
k|k). Therefore, the MBM parameters

can be written as {wj
k, {rj,i

k|k,u
j,i
k|k,C

j,i
k|k}i∈I

j
k
}j∈Ik

.

B. Marginalization of PMBM SLAM Density

At each time step, rather than keeping the entire state
trajectory, we keep track of marginal posteriors f(X|Z1:k) and
f(sk|Z1:k) [28], [47]. This implies that this posterior no longer
carries the correlation between the sensor state trajectory and
the map state, which constitutes an inherent loss of information
and is the price to pay for reducing complexity. The prediction
step then simplifies to

f(sk+1|Z1:k) =
	
f(sk|Z1:k)f(sk+1|sk)dsk. (14)

The update step for the sensor state becomes

f(sk+1|Z1:k+1)

=
	
f(sk+1,X|Z1:k+1)δX (15)

∝
	
f(X|Z1:k)f(sk+1|Z1:k)g(Zk+1|sk+1,X )δX , (16)

3In our EK filter implementation, linearization is performed around the
predicted mean. Alternative linearizations (e.g., [46]) can also be considered
but are out of the scope of the current work.
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whereas for the map state we find that

f(X|Z1:k+1)

=
	
f(sk+1,X|Z1:k+1)dsk+1 (17)

∝
	
f(X|Z1:k)f(sk+1|Z1:k)g(Zk+1|sk+1,X )dsk+1. (18)

In (15),


g�(X )δX refers to the set integral [26, eq. (4)].

C. EK-PMBM SLAM Prediction

Following (14), the predicted UE state at the time step k+
1 can be acquired via first-order EK filter [45, Ch. 5.2]

mk+1|k = v(mk|k) (19)

P k+1|k = F k|kP k|kF T
k|k + Qk+1, (20)

where F k|k represents the Jacobian

F k|k =
∂v(sk)
∂sk

����
sk=mk|k

. (21)

In terms of the map, since the landmarks are assumed to
be static, there is no prediction for the landmark states and
covariances. Thus, we have ηk+1|k = ηk|k , rj,i

k+1|k = rj,i
k|k,

uj,i
k+1|k = uj,i

k|k, Cj,i
k+1|k = Cj,i

k|k .

D. EK-PMBM SLAM Update

The update is more involved and comprises the following
steps. First, the data association cost metrics are computed
per MBM mixture component j (i.e., per global hypothesis).
Second, the top γ ≥ 1 best data associations per global
hypothesis are determined from the cost metrics, followed
by combining of all best data associations across the global
hypotheses. Third, the EK filter joint update is performed for
each of the best data associations, and each data association
will result in a new global hypothesis in the updated MBM.
Finally, the sensor state density is computed, marginalizing out
the best data associations. These four steps are now explained
in detail.

1) Computation of Data Association Metric: The data asso-
ciation cost metric depends on the local hypothesis weights,
which are computed from measurements and previously seen
landmarks [26]. We distinguish three cases4:
(a) A previously detected landmark i under global hypothesis

j is detected again with measurement zp
k+1. The local

association weight is

lj,i,pk+1 = rj,i
k+1|kρ

j,i,p
k+1|k+1, (22)

where ρj,i,p
k+1|k+1 is computed as described in Appendix A-

A. The first factor is the existence probability of the
Bernoulli, and the second factor accounts for the spatial
density and the measurement likelihood.

(b) A previously detected landmark i under global hypothesis
j is not detected at time k + 1. The local association
weight is

lj,i,0k+1 = (1 − rj,i
k+1|k) + (1 − pj,i

D,k+1)r
j,i
k+1|k, (23)

4The fourth case of an undetected landmark remaining undetected does not
affect the cost metric.

where the first term accounts for the landmark not exist-
ing in the first place, while the second term accounts for
the landmark existing, but leading to a miss-detection.
Here, the detection probability is computed per landmark,
as detailed in Appendix A-A.

(c) A previously undetected landmark is detected for the
first time with measurement zp

k+1. The local association
weight is

lpB,k+1 = c(zp
k+1) + ρp

B,k+1|k+1 (24)

where ρp
B,k+1|k+1 is computed, as described in Appen-

dix A-B. The first term accounts for the fact that the
measurement may be due to clutter, while the second
term accounts for the fact that the measurement may be
due to a new landmark from the PPP.

2) Computation of Best γ Data Associations: We construct
a cost matrix Lj

k+1 ∈ R|Zk+1|×(|Zk+1|+|Ij
k|), using the local

association weights [43]

Lj
k+1

= − ln

⎡
⎢⎢⎣

l̃j,1,1
k+1 . . . l̃

j,|Ij
k|,1

k+1
...

. . .
...

l̃
j,1,|Zk+1|
k+1 . . . l̃

j,|Ij
k|,|Zk+1|

k+1

�������
l1B,k+1 . . . 0

...
. . .

...

0 . . . l
|Zk+1|
B,k+1

⎤
⎥⎥⎦ ,
(25)

where l̃j,i,pk+1 = lj,i,pk+1/l
j,i,0
k+1 . The left |Zk+1|× |Ij

k| sub-matrix in
Lj

k+1 corresponds to previous detections, the right |Zk+1| ×
|Zk+1| diagonal sub-matrix corresponds to new detections,
and the off-diagonal elements of the right sub-matrix are
−∞. The γ-best data associations with weights representing
the probability per each can be selected out by solving the
assignment problem

minimize tr
�
ATLj

k+1

�
s.t. [A]α,β ∈ {0, 1} ∀ α, β�|Ij

k|+|Zk+1|
β=1

[A]α,β = 1, ∀ α�|Zk+1|
α=1

[A]α,β ∈ {0, 1}, ∀ β (26)

using the Murty’s algorithm [48], where A ∈
R|Zk+1|×(|Zk+1|+|Ij

k
|) is the assignment matrix. The solutions

are denoted by Aj,h, where h is an index in the index set of
new data associations under global hypothesis j, denoted as
Hj

k+1 with |Hj
k+1| ≤ γ. The index set of landmarks under

the j, h-th “new data association” is denoted as Ij,h
k+1, with

|Ij,h
k+1| ≤ |Ij

k| + |Zk+1|.
For the j, h-th data association, the corresponding assign-

ment matrix Aj,h, can be translated to an vector, denoted
as σj,h = [σj,h(1), · · · , σj,h(|Ij

k| + |Zk+1|)], defined as, for
t ≤ |Ij

k|

σj,h(t) =

�
p ∃ p : [Aj,h]p,t = 1,
0 � p : [Aj,h]p,t = 1,

(27)

and for t > |Ij
k|

σj,h(t) =

�
p ∃ p : [Aj,h]p,t = 1,
∅ [Aj,h]t−|Ij

k|,t = 0.
(28)
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These four cases correspond to a previously detected landmark
associated to measurement p, a previously detected landmark
being misdetected, a new landmark being associated to mea-
surement p, and a new landmark being non-existent. Note that
p can only be t− |Ij

k| in the third case.
Each data association has a weight wj,h

k+1, given by

wj,h
k+1 ∝ wj

ke
−tr((Aj,h)TLj) (29)

subject to5 �
j∈Ik

�
h∈H

j
k+1

wj,h
k+1 = 1.

3) Landmark Update: Under the j, h-th new data asso-
ciation σj,h, we introduce the random variable s̃j,h,i

k+1 =
[sT

k+1, (x
j,h,i)T]T with mean m̃j,h,i

k+1|k, comprising the pre-
dicted sensor state and the state of the i-th landmark under
the j, h-th new data association, as well as the random vari-
able šj,h

k+1 = [sT
k+1, (x

j,h,1)T, · · · , (xj,h,|Ij
k|)T]T with mean

m̌j,h
k+1|k, and covariance P̌

j,h

k+1|k. The mean vector, covariance
matrix, measurement function and measurement vector for the
joint state of the sensor and all previously detected landmarks
i ∈ Ij,h

k+1, i ≤ |Ij
k|, and associated measurement vector for all

previously detected landmarks are constructed as

m̌j,h
k+1|k = [mT

k+1|k, (u
j,h,1
k+1|k)T, · · · , (uj,h,|Ij

k|
k+1|k )T]T, (30)

P̌
j,h

k+1|k = blkdiag(P k+1|k,C
j,h,1
k+1|k, · · · ,C

j,h,|Ij
k|

k+1|k ), (31)

ȟ(šj,h
k+1) = [h(s̃j,h,1

k+1 )T, · · · ,h(s̃j,h,|Ij
k|

k+1 )T]T, (32)

ẑj,h
k+1|k = ȟ(m̌j,h

k+1|k)=[h(m̃j,h,1
k+1|k)T, · · ·,h(m̃j,h,|Ij

k|
k+1|k )T]T,

(33)

žj,h
k+1 = [(zσj,h(1)

k+1 )T, · · · , (zσj,h(|Ij
k|)

k+1 )T]T, (34)

where for i : σj,h(i) = 0, we set z
σj,h(i)
k+1 = 0 and

h(m̃j,h,i
k+1|k) = 0.

Then, the posterior mean and covariance under the j, h-th
new data association can be determined via the first-order EK
filter [45, Ch. 5.2]

Š
j,h

k+1|k+1 = Ȟ
j

k+1|kP̌
j,h

k+1|k(Ȟ
j,h

k+1|k)T + Ř
j,h

k+1|k+1, (35)

Kj,h
k+1|k+1 = P̌

j,h

k+1|k(Ȟ
j,h

k+1|k)T(Š
j,h

k+1|k+1)
−1, (36)

m̌j,h
k+1|k+1 = m̌j,h

k+1|k+Kj,h
k+1|k+1(ž

j,h
k+1|k+1−ẑj,h

k+1|k), (37)

P̌
j,h

k+1|k+1 = P̌
j,h

k+1|k − Kj,h
k+1|k+1Š

j,h

k+1|k+1(K
j,h
k+1|k+1)

T,

(38)

Ř
j,h

k+1|k+1 = blkdiag(Rσj,h(1)
k+1 , · · · ,Rσj,h(|Ij

k|)
k+1 ), (39)

where we define R0
k+1 = I . The matrix Ȟ

j,h

k+1|k represents

the Jacobian of ȟ(šj,h
k+1):

Ȟ
j,h

k+1|k =
∂ȟ(šj,h

k+1)

∂šj,h
k+1

�����
šj,h

k+1=m̌j,h
k+1|k

. (40)

The mean and the covariance of the j, h, i-th landmark, for i ∈
Ij,h
k+1, i ≤ |Ij

k|, can be obtained from m̌j,h
k+1|k+1 and P̌

j,h

k+1|k+1

5To further reduce the complexity, we can prune those data associations
with weights lower than a threshold, or only keep a certain number of data
associations with top weights. If such methods are applied, weights should
be renormalized.

by extracting the corresponding parts of the posterior mean
m̌j,h

k+1|k+1 and blocks along the diagonal of P̌
j,h

k+1|k+1, as we
drop cross-corrections for simplicity. The updated existence
probability is given by

rj,h,i
k+1|k+1 =

⎧⎪⎨
⎪⎩

1 σj,h(i) > 0,
(1−pj,i

D,k+1)r
j,i,0
k+1|k

1−rj,i,0
k+1|k+(1−pj,i

D,k+1)r
j,i,0
k+1|k

σj,h(i) = 0,

(41)

So-far, we have only considered the case of previously
detected landmarks i ∈ Ij,h

k+1, i ≤ |Ij
k|. To account for the

newly detected landmarks, we must also consider i ∈ Ij,h
k+1, i >

|Ij
k|, where σj,h (̃i) = p for some p, with σj,h (̃i) is the i-th

non-empty component6 in σj,h. The corresponding posterior
distributions do not affect the sensor state posterior and are
given by

uj,h,i
k+1|k+1 = up

B,k+1|k+1, (42)

Cj,h,i
k+1|k+1 = Cp

B,k+1|k+1, (43)

rj,h,i
k+1|k+1 = ρp

B,k+1|k+1/l
p
B,k+1, (44)

which were already computed in Appendix A-B and Appen-
dix A-C, when determining the local association weight in
(24).

4) Sensor State Update: The sensor mean and covariance,
mk+1|k+1 and P k+1|k+1, can be obtained from m̌j,h

k+1|k+1

and P̌
j,h

k+1|k+1 by marginalizing the landmark states out over
all data associations:

mk+1|k+1 =
�
j∈Ik

�
h∈H

j
k+1

wj,h
k+1[m̌

j,h
k+1|k+1]1:ν (45)

P k+1|k+1 =
�
j∈Ik

�
h∈H

j
k+1

wj,h
k+1([P̌

j,h

k+1|k+1]1:ν,1:ν

+ ([m̌j,h
k+1|k+1]1:ν − mk+1|k+1)

× ([m̌j,h
k+1|k+1]1:ν − mk+1|k+1)T), (46)

where ν is the length of the sensor state.
5) Final Form After Update: After sensor and

map update, the sensor posterior distribution is
N (sk+1; mk+1|k+1,P k+1|k+1), while the map follows
the PMBM format, with MBM components as
{{wj,h

k+1, {rj,h,i
k+1|k+1,u

j,h,i
k+1|k+1,C

j,h,i
k+1|k+1}i∈I

j,h
k+1

}h∈H
j
k+1

}j∈Ik

and PPP intensity as ηk+1|k+1 = (1− p̄D)ηk+1|k , representing
the previous undetected landmarks that remain undetected,
where p̄D is a constant that describes the average detection
probability over the considered space.

All data associations can be represented by only
using one index. Hence, we reorder all data associations
using index set Ik+1 = {1, · · · ,�j∈Ik

|Hj
k+1|}.

Then, MBM components can also be written as
{wj

k+1, {rj,i
k+1|k+1,u

j,i
k+1|k+1,C

j,i
k+1|k+1}i∈I

j
k+1

}j∈Ik+1 .

6For example, σj,h = [1, 0, ∅, 2] can form a MB with 3 Bernoullis, with
the first two corresponding to the previously detected landmarks which is
detected again with measurement 1 and misdetected, respectively. The third
corresponds to the new Bernoulli detected with measurement 2. The new
Bernoulli detected with measurement 1 does not exist. Therefore, σj,h(3̃) is
the third non-empty (fourth) component in σj,h, which is 2.
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V. PROPOSED EK-PMB SLAM FILTER

The EK-PMBM SLAM filter generates γ best global
hypotheses for each prior global hypothesis. This means that
the complexity of the EK-PMBM filter scales grows expo-
nentially with time k. To avoid this exponential complexity,
we propose a variant based on the PMB filter, which only
keeps one hypothesis at each time step.

A. Form of the EK-PMB Filter

In a PMB SLAM filter, the RFS landmark density
comprises a PPP ηk|k and a MB {r1,i

k|k, f
1,i
k|k(x)}i∈I

1
k
, where

each f1,i
k|k(x) is a Gaussian distribution N (x1,i; u1,i

k|k,C
1,i
k|k).

Therefore, the MB components can also be written as
{r1,i

k|k,u
1,i
k|k,C

1,i
k|k}i∈I

1
k
. If we apply the update step from

the EK-PMBM filter from Section IV, the resulting
map density at time step k + 1 will be a PMBM with
{wj

k+1, {rj,i
k+1|k+1,u

j,i
k+1|k+1,C

j,i
k+1|k+1}i∈I

j
k+1

}j∈Ik+1 .
Hence, to keep the PMB format, we need to approximate the
MBM to an MB, which we do through a modified TOMB/P
algorithm.

B. Proposed PMB Approximation

We firstly extend all MBs in the posterior PMBM density to
the same space, with index set Tk+1, where |Tk+1| = |I1k| +
|Zk+1| Then, we can rewrite the MBM part of the posterior
PMBM as

fk+1|k+1,MBM(X|Z1:k+1)

=
�

j∈Ik+1

wj
k+1

�
�t∈Tk+1X t=X

�
t∈Tk+1

f
t,σj(t)
k+1|k+1(X t|σj), (47)

where the Bernoulli density f
t,σj(t)
k+1|k+1(X t|σj) captures the

following cases (i) t ≤ |I1k| and σj(t) = 0 correspond to a
previously detected landmark that is misdetected, (ii) t ≤ |I1k|
and σj(t) = p to a previously detected landmark that is
detected with the p-th measurement, (iii) t > |I1k|, σj

k+1(t) =
t − |I1k| to a newly detected landmark with the (t − |I1k|)-th
measurement, and (iv) t > |I1k|, σj(t) = ∅ to a Bernoulli does
not exist (with f t,∅

k+1|k+1(X t) having 0 existence probability).
The Bernoulli is conditioned on the full association vector

σj , due to the joint update in (35)–(39). Before we can apply
the TOMB/P algorithm, we must remove this conditioning,
to obtain Bernoullis that only depend on the local association,
i.e., of the form f̂

t,σj(t)
k+1|k+1(X t). We do this by averaging

and representing f̂
t,σj(t)
k+1|k+1(X t) by the existence probability,

mean and covariance, computed as (for t ≤ |I1k| and q ∈
{0, 1, . . . , |Zk+1|} ∪ ∅)

rt,q
k+1|k+1 ∝

�
j∈Ik+1:σj(t)=q

wj
k+1r

j,σj(t)
k+1|k+1(σ

j) (48)

ut,q
k+1|k+1 ∝

�
j∈Ik+1:σj(t)=q

wj
k+1u

j,σj(t)
k+1|k+1(σ

j) (49)

Ct,q
k+1|k+1 ∝

�
j∈Ik+1:σj(t)=q

wj
k+1(C

j,σj(t)
k+1|k+1(σ

j)

+ (uj,σj(t)
k+1|k+1(σ

j) − ut,q
k+1|k+1)(u

j,σj(t)
k+1|k+1(σ

j)

−ut,q
k+1|k+1)

T), (50)

Algorithm 1 Proposed EK-PMB(M) SLAM Filter
Input: mk|k,P k|k and PMB(M) at time k
Output: mk+1|k+1, P k+1|k+1, and updated PMB(M) at time k+1
1: Sensor state prediction (Section IV-C)
2: for j ∈ Ik do � Each previous global hypothesis
3: Map prediction (Section IV-C)
4: Construct cost matrix Lj

k+1 (Section IV-D.1)
5: Compute best γ data associations (Section IV-D.2)
6: Compute updated PMBM (Section IV-D.3)
7: end for
8: Compute updated sensor density (Section IV-D.4)
9: if EK-PMB then � Convert to PMB

10: Express MBM as (47)
11: Merge Bernoullis (48)–(50)
12: Compute marginal association probabilities (51)–(52)
13: Apply the TOMB/P method [26, Fig.10]
14: end if

where all three terms are normalized by the marginal proba-
bility βt,q for q ∈ {0, 1, . . . , |Zk+1|} ∪ ∅, given by

βt,q =
�

j∈Ik+1:σj(t)=q

wj
k+1. (51)

For t > |I1k|, newly detected objects already satisfy
f̂ t,q

k+1|k+1(X t) = f t,q
k+1|k+1(X t|σj) by design, so averaging

has no effect. Marginal association probabilities are given by

βt,t−|I1k| =
�

j∈Ik+1:σj(t)=t−|I1k|
wj

k+1, (52)

βt,∅ = 1 − βt,t−|I1k|. (53)

Note that computing these marginal associations is straightfor-
ward, when γ is not too large. Finally, densities f̂ t,q

k+1|k+1(X t)
and the marginal probabilities βt,q are now be used as an input
for the standard TOMB/P method to form the new MB [26,
Fig.10].

C. Overview of the EK-PMB(M) SLAM Filters

The proposed EK-PMB(M) SLAM filter is summarized as
Algorithm 1 and the corresponding flowchart is shown as
Fig. 3. The EK-PMB SLAM filter generates γ best global
hypotheses every time step. This means that the complexity
of the EK-PMB filter scales as O(|I1k|3γ) at time k + 1,
where the power of 3 comes from the complexity of the
matrix inverse in (36). To compare the complexities for all
above mentioned algorithms, we summarize the complexi-
ties of the RBP-PMB(M) SLAM filters with N particles
in Section III-C, the proposed EK-PMBM SLAM filter that
generates γ best global hypotheses for each prior global
hypothesis in Section IV, and the proposed EK-PMB SLAM
filter generates γ best global hypotheses every time step in
Table I.

VI. EXTENSION TO MULTIPLE MODELS

In the data association, each measurement is associated to a
landmark. However, the type of the landmark is still unknown.
As mentioned in Section II-A, we consider three different
types of landmarks, BS, VA, and SP. Therefore, the SLAM
filter should not only be able to figure out the source of
each measurement, but also can distinguish the type of the
associated landmark.
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Fig. 3. The flowchart of the EK-PMB(M) SLAM filter for the case of γ = 2. The γ best data associations are determined per global hypothesis, after which
a joint update of the landmark states and sensor state is performed, conditioned on each association within each global hypothesis. Finally, the sensor and
landmark states are marginalized out.

TABLE I

COMPLEXITIES OF THE PMBM-BASED SLAM FILTERS AT TIME STEP

k + 1. HERE, N DENOTES THE NUMBER OF PARTICLES (FOR THE
RBP FILTERS), Ik THE NUMBER OF GLOBAL HYPOTHESES AT TIME

k, C AND P DENOTE THE COMBINATION AND PERMUTATION

OPERATIONS

A. Problem Description

The presented EK-PMBM and EK-PMB filters were
designed only for continuous state spaces. Following [49],
we introduce the mixed state space comprising the continuous
state x and the discrete state ξ ∈ A = {BS,VA, SP}. The
corresponding Bernoulli densities are given by

f j,i
B (X i) =

⎧⎪⎨
⎪⎩

1 − rj,i X i = ∅,
rj,if j,i(x, ξ)ψj,i,ξ X i = {[x, ξ]},
0 otherwise,

(54)

where ψj,i,ξ ∈ [0, 1] represents the probability that the type of
the j, i-th landmark is ξ, with

�
ξ∈A ψ

j,i,ξ
k|k = 1. Furthermore,

we set the detection probability model dependent, denoted as
pD(x, sk, ξ).

We now describe how the EK-PMBM and EK-PMB filters
should be modified to account for the multiple models.

B. Required Modifications

1) PMBM and PMB Form: We can rewrite the
PMBM components as {ηξ

k|k}ξ∈A and MBM parameters

{wj,i
k , {rj,i

k|k, {ψj,i,ξ
k|k ,uj,i,ξ

k|k ,C
j,i,ξ
k|k }ξ∈A}i∈I

j
k
}j∈Ik

.
2) Prediction Step: The prediction step can be reformulated

as ηξ
k+1|k = ηξ

k|k , rj,i
k+1|k = rj,i

k|k , ψj,i,ξ
k+1|k = ψj,i,ξ

k|k , uj,i,ξ
k+1|k =

uj,i,ξ
k|k , Cj,i,ξ

k+1|k = Cj,i,ξ
k|k .

3) Computation of Data Association Metric: Compared
to IV-D.1, there is only a different state definition. Hence,
when calculating (22), (23), and (24) in the Appendices,
we marginalize over ξ in addition to x.

4) Update Step: To perform the update, we must consider
all possible landmark types. Hence, in (30), (31), (32), (33),

uj,h,i
k+1|k , Cj,h,i

k+1|k, h(s̃j,h,i
k+1 ), h(m̃j,h,i

k+1|k) should be replaced by

uj,h,i
k+1|k → [(uj,h,i,1

k+1|k )T, · · · , (uj,h,i,|A|
k+1|k )T]T, (55)

Cj,h,i
k+1|k → blkdiag(Cj,h,i,1

k+1|k , · · · ,Cj,h,i,|A|
k+1|k ), (56)

h(s̃j,h,i
k+1 ) → [h(s̃j,h,i,1

k+1 )T, · · · ,h(s̃j,h,i,|A|
k+1 )T]T, (57)

h(m̃j,h,i
k+1|k) → [h(m̃j,h,i,1

k+1|k )T, · · · ,h(m̃j,h,i,|A|
k+1|k )T]T, (58)

respectively. In (34), z
σj,h(i)
k+1 is to replaced by 1|A|×1 ⊗

z
σj,h(i)
k+1 , and in (39) R

σj,h(t)
k+1 is replaced by 1|A|×|A| ⊗

R
σj,h(t)
k+1 , since replicating the measurements leads to perfect

correlation in the covariance matrix. The updates can then be
performed as before to recover the joint state posterior. Births
should be generated for each landmark type (except ξ = BS).

To account for the type probabilities in the posterior,
ψj,h,i,ξ

k+1|k+1, we compute, for i ≤ |Ij
k|

ψj,h,i,ξ
k+1|k+1

∝
�
(1−pj,i,ξ

D,k+1ψ
j,i,ξ
k+1|k) σj,h(i)=0,

pj,i,ξ
D,k+1ψ

j,i,ξ
k+1|kN (zp

k+1; h(m̃j,i,ξ
k+1|k),Sj,i,ξ

k+1|k) σj,h(i)=p,
(59)

where pj,i,ξ
D,k+1 = pD(s̃j,i,ξ

k+1 = m̃j,i,ξ
k+1|k), and for i > |Ij

k|,
σj,h(̃i) �= ∅
ψj,h,i,ξ

k+1|k+1

= ψ
σj,h (̃i),ξ
B,k+1|k+1

∝ ηξ
k+1|kp

σj,h (̃i),ξ
D,k+1 N (zσj,h (̃i); h(m̃σj,h (̃i),ξ

B,k+1|k ),Sσj,h (̃i),ξ
B,k+1|k ) (60)

where the proportionality constant can be recovered from�
ξ ψ

j,h,i,ξ
k+1|k+1 = 1. We recall that ĩ is the index of i-th non-

empty component in σj,h, and the global hypotheses j, h will
be finally re-indexed with j.

The PPP is updated by ηξ
k+1|k+1 = (1 − p̄ξ

D)ηξ
k+1|k , where

p̄ξ
D is a constant that describes the average detection probability

over the considered space.
5) PMB Approximation: When approximating PMBM to

PMB in Section V, the landmark type should also be con-
sidered and (49)–(50) should be computed for each landmark
type. Similarly, the marginal association probabilities must be
computed for each landmark type by marginalizing the prob-
ability of the type for each association over data associations,
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Algorithm 2 Modified MM-TOMB/P Algorithm

Input: Marginal probabilities βt,q and βt,q,ξ; MBM components;
Output: MB density

{r̂1,i
k+1|k+1, {ψ̂1,i,ξ

k+1|k+1, û
1,i,ξ
k+1|k+1, Ĉ

1,i,ξ

k+1|k+1}ξ∈A}i∈Tk+1

1: for t ≤ |I1k| do � Previously detected tracks
2: r̂1,t

k+1|k+1 =
�

q β
t,qrt,q

k+1|k+1

3: for ξ ∈ A do

4: ψ̂1,t,ξ
k+1|k+1 =

�
q βt,q,ξr

t,q
k+1|k+1

r̂
1,t
k+1|k+1

5: û1,t,ξ
k+1|k+1 =

�
q βt,q,ξr

t,q
k+1|k+1u

t,q,ξ
k+1|k+1

�
q βt,q,ξr

t,q
k+1|k+1

6: Ĉ
1,i,ξ

k+1|k+1 =
�

qβt,q,ξr
t,q
k+1|k+1(C

t,q,ξ
k+1|k+1+(û1,t,ξ

k+1|k+1−u
t,q,ξ
k+1|k+1)(û

1,t,ξ−u
t,q,ξ
k+1|k+1)

T)
�

q βt,q,ξr
t,q
k+1|k+1

7: end for
8: end for
9: for t > |I1k| do � New tracks

10: r̂1,t
k+1|k+1 = βt,t−|I1k|rt,t−|I1k|

k+1|k+1

11: for ξ ∈ A do

12: ψ̂1,t,ξ
k+1|k+1

=
β

t,t−|I1
k
|,ξ

r
t,t−|I1k|
k+1|k+1

r̂
1,t
k+1|k+1

13: û1,t,ξ
k+1|k+1

= u
t,t−|I1k|,ξ
k+1|k+1

14: Ĉ
1,t,ξ

k+1|k+1 = C
t,t−|I1k|,ξ
k+1|k+1

15: end for
16: end for

for t ≤ |I1k|, to yield

βt,q,ξ ∝
�

j∈Ik+1:σj(t)=q

wj
k+1ψ

j,t,ξ
k+1|k+1, (61)

and for t > |I1k|,
βt,t−|I1k|,ξ ∝

�
j∈Ik+1:σj(t)=t−|I1k|

wj
k+1ψ

t−|I1k|,ξ
B,k+1|k+1, (62)

with
�

ξ β
t,q,ξ = βt,q . We also have ψt,q,ξ

k+1|k+1 = βt,q,ξ . Then,
we modify the TOMB/P algorithm [26, Fig.10] as shown in
Algorithm 2.

VII. RESULTS

In this section, the proposed algorithms are evaluated
on a vehicular scenario and compared to two benchmarks.
We describe the simulation environment, the benchmarks and
performance metrics, before discussing the SLAM results in
terms of localization and mapping performance.

A. Simulation Environment

We consider a scenario as illustrated in Fig. 4. There is
a BS located at [0 m, 0 m, 40 m]T, 4 reflection surfaces with
VAs located at [200 m, 0 m, 40 m]T, [−200 m, 0 m, 40 m]T,
[0 m, 200 m, 40 m]T, [0 m,−200 m, 40 m]T, representing
4 reflection surfaces (wall in the physical environment),
and 4 SPs, located at [99 m, 0 m, 10 m]T, [−99 m, 0 m, 10 m]T,
[0 m, 99 m, 10 m]T, [0 m,−99 m, 10 m]T, representing some
small landmarks near the walls, for example some street
lamps. Compared with the scenarios in some previous
work [29]–[31], the SPs are closer to the reflection surfaces.
This brings additional challenges into the data association

Fig. 4. Scenario with the environment of a BS and 4 VAs and 4 SPs. The
UE moves counterclockwise along the trail centered at the BS.

problem, especially when the incidence points on the reflection
surfaces are near the SPs. In addition, there is a single sensor
doing a counterclockwise constant turn-rate movement around
the BS

v(sk−1) = sk−1 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ζ

�
(sin (�k−1 + �Δ) − sin�k−1)

ζ

�
(− cos (�k−1 + �Δ) + cos�k−1)

0
�Δ
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

(63)

where the state contains the position of the user
xUE,k = [xk, yk, zk]T, heading �k, and clock bias Bk,
ζ is the translation speed, set as 22.22 m/s, � is the turn
rate, set as π/10 rad/s, Δ is the sampling time interval,
set as 0.5 s. The covariance of the process noise Q is
diag[0.2 m2, 0.2 m2, 0 m2, 0.001 rad2, 0.2 m2]. In practice,
a good initial can be acquired by using external sensors,
such as GPS or by applying snapshot-based localization
algorithms, like [50], [51], which do not require a prior
sensor state information. For simplicity, the UE is initialized
at [70.7285 m, 0 m, 0 m, π/2 rad, 300 m]T, and the initial
covariance is diag[0.3 m2, 0.3 m2, 0 m2, 0.0052 rad2, 0.3 m2].
The UE has no prior knowledge on the map, apart from the
BS location and the PPP intensities, which are initialized with
weights ηξ

0 = 1.5 × 10−5 for both VA and SP.
To apply the proposed SLAM algorithm to the mmWave

scenario, the Fisher information matrix of channel parame-
ters [52] is used to determine the measurement covariances
at each time step. The Fisher information matrix is based
on the following model. The BS and the user are equipped
with square planar arrays, and the numbers of BS and user
antennas are 64 and 16, respectively. The operating carrier fre-
quency is 28 GHz. We consider the OFDM pilot signals with
Np = 16 symbols, S = 64 subcarriers, 200 MHz bandwidth,
corresponding to a pilot duration of 5.12 us. The transmitted
power and noise spectral density are set to 5 dBm and -
174 dBm/Hz, respectively. Path loss is generated according
to [52, eq. (45)], with reflection coefficient of surfaces set as
0.7, and the radar cross-section of SPs set as 50 m2.
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SPs are only visible when SPs are in the field-of-view of the
UE, which is set as 50 m, while the BS and VAs are always
visible. The effect of different detection probabilities and
clutter intensities can be found in [43, Table II]. The detection
probabilities pξ

D are set to 0.9 for BS, VAs and visible SPs,
and set to 0 for SPs which are out of FoV. The clutter intensity
c(z) is 1/(4 × 200π4), with 200 representing the sensing
range and 1 representing the average of the number of clutter
measurements. Moreover, we utilize pruning, and merging
for Bernoullis to decrease the computational complexity, with
thresholds set as 10−4 and 50, respectively.

B. Studied Methods and Performance Metrics

We evaluate the performance by comparing five algorithms:
1) the proposed EK-PMB SLAM filter with γ = 10;
2) the proposed EK-PMB SLAM filter with γ = 1;
3) the proposed EK-PMBM SLAM filter with γ = 10;
4) the RBP-PMBM SLAM filter [32];
5) the EK-PHD SLAM filter [33].
The mapping performance is measured by generalized opti-

mal subpattern assignment (GOSPA) distance [53]

dGOSPA(X̂ ,X )

= min
γ∈Γ

(
�

(i,j)∈γ

dqp(x̂i,xj) +
q

qp
c

qa
(Nmiss +Nfalse))

1
qp , (64)

where Γ is the set of possible assignment set, Nmiss is the
number of miss detection, Nfalse is the number of false
alarm. We set the cut-off distance qc = 20, the cardinality
penalty factor qa = 2, the exponent factor qp = 2, and
the measure accuracy of the state estimates is evaluated by
the root mean squared error (RMSE) over time and the
mean absolute error (MAE) changing with time. Overall, 10
Monte Carlo (MC) simulations and 1000 MC simulations are
performed for the fourth and the other algorithms, respectively,
and the results are obtained by averaging over the different
MC simulations. All the codes are written in MATLAB, and
the simulations and experiments are run on a MacBook Pro
(15-inch, 2019) with a 2.6 GHz 6-Core Intel Core i7 processor
and 16 Gb memory.

C. Results and Discussion

Firstly, we study the mapping performance of the different
SLAM methods. From Fig. 5 and Fig. 6, we observe that all
algorithms can overcome the challenges i)–iv) in the radio
SLAM problem, and provide good mapping results, as the
GOSPA distances of all algorithms converge to small values in
the end, due to the map is modeled as RFSs. We also observe
that the first and third algorithms perform slightly better than
the second algorithm, as the blue and black solid lines are
lower than the red solid lines in Fig. 5 and Fig. 6. The reason
is that the second algorithm takes the hard decision for the data
association, which may pick up a wrong data association at
some time steps, making the second algorithm not very stable
and bringing additional error. The first and third algorithms
perform similar, while the third algorithm has negligibly better
performance. This is because even though the third algorithm
keeps the PMBM format, there is usually a dominant MB,

Fig. 5. Comparison of mapping performances for VAs among 5 algorithms.

Fig. 6. Comparison of mapping performances for SPs among 5 algorithms.

making the rest MBs unimportant. Moreover, from Fig. 5 and
Fig. 6, we can find that the first four algorithms outperform the
EK-PHD SLAM filter, as the red dashed lines are higher than
the others in both figures, which is because the PHD filter can-
not enumerate all possible data associations explicitly. Based
on the PMBM filter, the RBP-PMBM filter is slightly better
than the first three algorithms, as the nonlinearity is solved by
using enough particles, and the density conditioned on each
particle keeps the PMBM format and no approximation of
MBM to MB is executed.

Next, performance of the proposed SLAM filter in sensor
state estimation is studied. Fig. 7 shows the RMSEs of the
estimated sensor position, bias, and heading of the five SLAM
filters, and Fig. 8 shows the MAE of the estimated position
changing with time. Overall, all four PMB(M)-filter-based
SLAM filters perform better than the EK-PHD SLAM filter,
which is due to the PHD filter do not have explicit enu-
meration of the different data associations, and approximate
the posterior density to a PPP. Within the four PMB(M)-
filter-based SLAM filters, the RBP-SLAM filter performs the
best, which is due to enough particles are used to solve the
nonlinearity, all possible data associations are tracked to keep
the PMBM format of the density conditioned on each particle.
Because of not doing hard decision in data association and
considering more than one MBs, the EK-PMB SLAM filter
with γ = 10 and EK-PMBM SLAM filter perform slightly
better than the EK-PMB SLAM filter with γ = 1. However,
these two filters perform similar, as the sensor state prediction
and update processes are the same in both algorithms, and
there is usually one global hypothesis having the dominant
weight every time step.

Another main advantage of the proposed SLAM filters is the
low computational cost. In order to show this benefit, we mea-
sured the average execution time per time step of five SLAM
filters, as shown in Table II. We measured that the proposed
EK-PMB SLAM filter with γ = 10 takes 14.4 ms per time
step, with the prediction and the update steps costs 0.34 ms
and 14.1 ms, respectively, while the RBP-PMBM SLAM
filter takes 71865.9 ms per time step, with the prediction and
the update steps costs 581.8 ms and 71284.1 ms, respectively.
It is obvious that the proposed EK-PMB algorithm is able
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Fig. 7. Comparison of sensor state estimation among 5 algorithms.

Fig. 8. Comparison of sensor position estimation among 5 algorithms.

TABLE II

AVERAGE COMPUTATION TIME IN MILLISECONDS OF THE PREDICTION
AND UPDATE STEPS OF THE SLAM FILTERS

to reduce the complexity, which is 5000 times faster than
the RBP-PMBM SLAM filter approximately. One of the
reasons is that the later uses 2000 particles to propagate the
non-linearity of the UE state and there is an PMBM density
presenting the map conditioned on each particle, while the
former utilizes the first-order Taylor extension to approximate
the nonlinear model and there is only one PMB(M) over the
time. Another reason is that the inverse-CKF is used to create
new births and CKF is used to update detected landmarks
in the RBP-PMBM algorithm. In the other algorithms, the
mean of the newly detected landmarks are directly estimated
from the measurements, covariance of the birth components is
computed from the Jacobians, and the UE and landmark states
are jointly updated using the EK filter. The first algorithm
takes slightly longer time that the EK-PMB SLAM filter with
γ = 1, which is due to more data associations are considered
in the update step. The proposed EK-PMBM SLAM filter
takes much longer time than the proposed EK-PMB filter,
because the PMBM format is kept and the number of global
hypotheses rapidly increases. The EK-PHD SLAM filter
takes a short time, that is because the low complexity of
the PHD filter compared to the PMBM filter, and the hard
decisions are taken both on the data association and the
type of the landmark. Although the EK-PMB does not has
lowest complexity or highest accuracy, online and real-time
operation of the filter could still be guaranteed with good
accuracy performance. Therefore, it offers a superior overall
performance. In the practical usage of the EK-PMB SLAM
filter, we could choose adaptive γ to reduce the complexity,
keeping a relatively larger number of γ global hypotheses
and marginalize over them when the data association problem
is more challenging, for example, at the crossing of a street,
and choose a relatively smaller γ, when the data association
problem is less challenging, for example, if there are only a
limited number of geometrically-separated landmarks.

VIII. CONCLUSION

mmWave bistatic sensing is of great relevance to 5G and
Beyond 5G systems. When the sensing device is mobile,
a SLAM problem needs to be solved to simultaneously localize
the sensor and determine the locations of landmarks in the
environment. In this paper, we have proposed two novel, low-
complexity SLAM filters, based on the PMBM and PMB
filters, which utilize an EK filter to perform a joint update
of the sensor state and the landmark states. An extension to
multiple models, relevant for the mmWave bistatic sensing
problem, is also introduced. Via simulation results using
reasonable mmWave signal parameters, we demonstrate that
the proposed filters can attain good mapping and positioning
performance, with very low complexity. Our results also
demonstrated that the proposed SLAM filters can not only
handle mapping and sensor state estimation simultaneously,
but also distinguish the type of landmarks accurately, which
is comparable to the performance of the RBP-PMBM SLAM
filter. The high mapping and positioning performance and
the low computational overhead of the proposed EK-PMB(M)
SLAM filter are attractive for real-time execution of 5G and
Beyond 5G mmWave SLAM algorithms.

Future work will include comparison with additional SLAM
filters, the use of ray tracing data to validate the performance
under more realistic operating conditions, the inclusion of
high-dimensional channel estimation and optimized signal
design (precoding and combining) to boost the localization
accuracy, batch processing of measurements over a time
window, as well as the extension to a multi-UE and multi-BS
setup.

APPENDIX A
COMPUTATION OF DATA ASSOCIATION METRIC

A. Previously Detected Landmark i, Hypothesis j Detected
Again

The value of ρj,i,p
k+1|k+1 is given by

ρj,i,p
k+1|k+1 =

	
pD(s̃j,i

k+1)f(zp
k+1|s̃j,i

k+1)f(s̃j,i
k+1)ds̃j,i

k+1

= pj,i
D,k+1N (zp; h(m̃j,i

k+1|k),Sj,i
k+1|k), (65)

where pD(s̃j,i
k+1) is assumed to be a constant over s̃j,i

k+1,
with the value pj,i

D,k+1 = pD(s̃j,i
k+1 = m̃j,i

k+1|k), m̃j,i
k+1|k =

[mT
k+1|k, (u

j,i
k+1|k)T]T is the mean of s̃j,i

k+1, which is the joint
state of the UE state and j, ith landmark state. The innovation
covariance Sj,i,p

k+1|k is given by

Sj,i,p
k+1|k = Hj,i

k+1|kP̃
j,i

k+1|k(Hj,i
k+1|k)T + Rp

k+1, (66)

in which Hj,i
k+1|k represents the Jacobian of h(·) with respect

to s̃j,i
k+1, evaluated at s̃j,i

k+1 = m̃j,i
k+1|k, with elements

Hj,i
k|k =

∂h(s̃j,i
k+1)

∂s̃j,i
k+1

�����
s̃j,i

k+1=m̃j,i
k+1|k

. (67)

The covariance of s̃j,i
k+1 is given by P̃

j,i

k+1|k =
blkdiag(P k+1|k,C

j,i
k+1|k).
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B. Newly Detected Landmark

The value of ρp
B,k+1|k+1 is given by

ρp
B,k+1|k+1 =

	
pp

D,k+1ηk+1|kf(zp
k+1|s̃p

k+1)f(s̃p
k+1)ds̃p

k+1

= pp
D,k+1ηk+1|kN (zp; h(m̃p

B,k+1|k),Sp
B,k+1|k),

(68)

where pp
D,k+1 is a constant with pD(s̃p

k+1 = m̃p
B,k+1|k),

m̃p
B,k+1|k = [mT

k+1|k, (u
p
B,k+1|k)T]T is the mean of s̃p

k+1,
which is the joint state of the UE state and the newly detected
landmark state xp

k+1. The innovation covariance Sp
k+1 is given

by

Sp
B,k+1|k = Hp

B,k+1|kP̃
p

B,k+1|k(Hp
B,k+1|k)T + Rp

k+1, (69)

where Hp
B,k+1|k is the Jacobian of h(s̃p

k+1), given by

Hp
B,k+1|k =

∂h(s̃p
k+1)

∂s̃p
k+1

����
s̃p

k+1=m̃p
B,k+1|k

. (70)

The covariance of s̃p
k+1 is given by P̃

p

B,k+1|k =
blkdiag(P k+1|k,C

p
B,k+1|k). Generation of the mean and

covariance of a new landmark is explained in Appendix A-C.

C. Birth Generation

The mean of newly detected landmark up
B,k+1|k+1 can be

estimated by [29, Appendix B]. The covariance of the newly
detected landmark can be computed as follows. Consider a
joint prior distribution of the sensor state and the newly
detected landmark of the form

N (s̃k+1; [mT
k+1|k, (u

p
B,k+1|k+1)

T]T, blkdiag(P k+1|k,C
prior)),

with Cprior → ∞I . Then, after applying an EK filter update,
the marginal posterior covariance of the landmark is given by

Cp
B,k+1|k+1

= ((H̀
p

B,k+1|k)T

× (H́
p

B,k+1|kP k+1|k(H́
p

B,k+1|k)T+Rp
k+1)

−1H̀
p

B,k+1|k)−1,

(71)

with the Jacobians of h(·)

H̀
p

B,k+1|k =
∂h(sk+1 = mk+1|k,x

p
k+1)

∂xp
k+1

����
xp

k+1=up
B,k+1|k+1

,

H́
p

B,k+1|k =
∂h(sk+1,x

p
k+1 = up

B,k+1|k)

∂sk+1

�����
sk+1=mk+1|k

.
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